Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Modelling, Measuring and Managing of Extreme Risks Vortragender: Dr. Mag. Stefan Hochrainer-Stigler IIASA-International Institute for Applied Systems Analysis Laxenburg, Austria Website for ppt: http://user.iiasa.ac.at/~hochrain/KIT2013/ Allgemeines: Vorlesung -> mündliche oder schriftliche Prüfung (80 Prozent) Seminar -> ohne Prüfung, aber Vortrag (30 Prozent) und Ausarbeitung (50 Prozent) • Bachelor-Studierende einen Vortrag und arbeiten ihn schriftlich aus, • Master- und Diplom-Studierende, erweiterte Seminararbeit. Anwesenheitspflicht Mitarbeit (alle) (20 Prozent): Selbständiger Versuch der Berechnung der Beispiele. Überblick Zeiteinteilung: Dienstag: 20.05: Teil I: 10:30-13:30: 3h -> 4 EH Teil I: 14.30-16:45: 2h.15 ->3 EH Teil II: 17.00-18.00: 1h->2 EH Mittwoch: 21.05: Teil III: 8:00-9:30: 1h.30 ->2 EH 09:30-12:30: 3 -> 4 EH Teil VI: 13:30-15:00: 1.30 -> 2 EH Teil IV: 15:00-18:00: 3h -> 4 EH Donnerstag: 22.05: Teil IV: Präsentationen: 8:30-14:45: 6h.15 -> 7 EH Insgesamt: 28 EH Überblick Teil I: • 4 Stunden: Einführung, Motivation, Risiko, Nutzenfunktion, Risikoaversion, Prämien (Beispiele rechnen) • 1.5 Stunde : Arrow Lind Theorem, Ausnahmen, Diskussion, Katastrophen, Naturkatastrophen Teil II: Risikoinstrumente, Naturkatastrophen, Extreme, Maßzahlen • 2.5 Stunde: Risiko öffentlicher Sektor etc. Einführung • 2.5 Stunde: Risikomanagement Methoden (Beispiel rechnen) • 1 Stunde: Versicherungslösungen für Katastrophen Teil III: • 2.5 Stunde: Extremwertstatistik I + II • 2 Stunde: Katastrophenmodelle, Simulationsmethoden • 1 Stunde: Fiskalische Risikomatrix Teil IV: • • • • Spezialthemen Anwendungsbeispiele Aktuelle Anwendungs- und Forschungsgebiete Abschliessende Diskussion Motivation Example Natural Disasters • Only a few global databases of past natural disaster events exist, most important ones are. - EmDat: The International Disaster Database CRED, Catholic University of Louvain, Brussels (Belgium) , http://www.emdat.be, publish reports annually - Munich Re: Special issue: Topics (published annually) - Swiss Re: Special issue: Sigma (published annually) Munich Re: Topics, Swiss Re: Sigma www.munichre.com www.swissre.com Motivation • Different definitions of disasters: Munich Re SwissRe Em-Dat Adjustment for inflation • Swiss Re example based on Floods in UK: 29 October-10 November 2000 EMDAT starts from 1900 * EM-DAT 2005 Munich Re Figures: 1980-2010 Munich Re 2011 Munich Re Figures Munich Re 2011 Munich Re Figures Munich Re 2011 Munich Re Figures Munich Re 2011 Munich Re Figures Munich Re 2005 Swiss Re: Insured Losses Swiss Re 2011 Average losses per income group * 250 Fatalities/event 200 150 100 ** 50 0 High income Middle income Low income Per capita income country groups * NatCatService 2005 ** NatCatService 2005 Average losses per income group Losses as % of GDP 14 12 10 8 6 4 2 0 High income Middle income Low income Per capita income country groups * NatCatService 2005 ** NatCatService 2005 Methodology for comparison Hochrainer, 2006 Honduras Impact of disasters on GDP growth in Honduras 6.0 5.0 4.0 3.0 2.0 1.0 0.0 1996 1997 1998 1999 2000 2001 2002 2003 2004 -1.0 -2.0 Growth without Mitch or drought Growth with Mitch and drought 1.Actual GDP growth in Honduras with events vs. projected growth without events Source: Zapata, 2008 Honduras GDP in Honduras 7,500 7,000 6,500 Indirect development loss 6,000 Projected w/o event-ECLAC Projected w/o event-IIASA Observed 5,500 Observed GDP in Honduras with events vs. projected growth without events. Source: Zapata, 2008; World Bank, 2007; own calculations 1.GDP trajectories Source: WDI, 2007; own calculations 2004 2003 2002 2001 2000 1999 1998 1997 5,000 1996 Million constant 2000 USD 8,000 Direct effect due to wealth loss Currently Paradigm shift Government assistance (taxes) Kinship arrangements Donor assistance Reactive Traditional approach to risk financing Insurance and reinsurance, microinsurance Catastrophe bond, weather derivatives Contingent credit, reserve fund Proactive Turkey: Insurance Pool (2000) India: Weather derivatives (04) Mexico: Cat bond (06) India, Colombia, Mexico etc: Funds Colombia: Contingent credit (05) Caribbean: Regional insurance pool (2006) Pacific: Regional insurance pool (in the making) Global: GFDRR, GIRIF (2008) All with donor support Planning and mainstreaming disaster risks into developmental planning Planning disaster risk into development Source: Bettencourt et al., 2006 Planning and mainstreaming disaster risks into developmental planning Planning disaster risk into development Source: Bettencourt et al., 2006 Planning and mainstreaming disaster risks into developmental planning Planning disaster risk into development Source: Bettencourt et al., 2006 Planning and mainstreaming disaster risks into developmental planning Planning disaster risk into development Source: Bettencourt et al., 2006 Planning and mainstreaming disaster risks into developmental planning Planning disaster risk into development Source: Bettencourt et al., 2006 Planning and mainstreaming disaster risks into developmental planning Planning disaster risk into development Source: Bettencourt et al., 2006 Planning and mainstreaming disaster risks into developmental planning Planning disaster risk into development Source: Bettencourt et al., 2006 Planning and mainstreaming disaster risks into developmental planning Planning disaster risk into development Source: Bettencourt et al., 2006 Planning and mainstreaming disaster risks into developmental planning Planning disaster risk into development Source: Bettencourt et al., 2006 Planning and mainstreaming disaster risks into developmental planning Planning disaster risk into development Source: Bettencourt et al., 2006 Planning and mainstreaming disaster risks into developmental planning Source: Bettencourt et al., 2006 Planning and mainstreaming disaster risks into developmental planning Source: Bettencourt et al., 2006