* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download MSP430_How_To_Clocks
Chirp spectrum wikipedia , lookup
Transmission line loudspeaker wikipedia , lookup
Immunity-aware programming wikipedia , lookup
Flip-flop (electronics) wikipedia , lookup
Standby power wikipedia , lookup
Pulse-width modulation wikipedia , lookup
Alternating current wikipedia , lookup
Regenerative circuit wikipedia , lookup
Semiconductor device wikipedia , lookup
Crystal oscillator wikipedia , lookup
Utility frequency wikipedia , lookup
Phase-locked loop wikipedia , lookup
MSP430 Ultra-Low Power | High Integration | Easy-to-Use “How To” Series: Clock System 2011 Agenda Purpose – Provide a brief but informative technical overview in “HOW-TO” use the MSP430 clock system Objectives – Clock system basics & ULP – Clocking & MSP430 generations – Design considerations Why is the clock system important? MSP430 Ultra-Low Power • Ultra-Low Power Active Mode – – – – • Up to 7 Low Power Modes (LPMx) • Instant Wakeup • Autonomous peripheral operation in low power modes The clock system is fundamental to enabling the ULP feature set of the MSP430 Careabouts: CPU Clock Peripheral Clock – – – – – High frequency Low power Stable & Flexible Fast wake-up High frequency Low power Stable & Flexible Fast wake-up Independent from CPU Standby Clock – – – – Ultra-low power Low frequency Accurate (RTC) Reliable (WDT) MSP430 Clock System Basics All ULP MSP430 devices have a fundamental clocking architecture 32768 low-power peripherals On demand DCO ~1uA Always-on ACLK – On-chip, high frequency, instant-on oscillator (DCO) – ULP, low frequency, 32.768kHz crystal oscillator (LFXT1) ~250uA MSP430 MCLK CPU and peripherals Enables ULP embedded operation DCO for fast, low power active CPU processing LFXT1 Ultra-low power standby clock for timer wakeup DCO Instant-on ablity to service interrupts Breaking down the terminology LFXT1 – – – – – Extremely ULP on-chip oscillator, fixed to ~10kHz Useful for standby clocking where power is more critical than accuracy REFO – On-chip ULP 32.768kHz oscillator for crystal-less operation at more accurate frequencies that via the VLO DCO – – Feature in some devices (4xx, 5xx, 6xx) that will automatically adjust the DCO frequency based on a provided reference clock MODOSC – Digitally Controlled Oscillator built into every MSP430 device Capable of 100’s kHz to 10’s MHz & is user programmable FLL – VLO – This is the ULP low frequency crystal oscillator in every MSP430 device Typical usage is with a 32.768kHz watch crystal for RTC In some devices (2xx, 5xx, 6xx) it is also possible to source a digital clock directly to the LFXT1 input Most devices also support a high frequency mode (see XT1) that can interface with MHz-range crystals & resonator 5MHz on-chip oscillator for automatic use with select peripherals XT1 & XT2 – – – – Oscillator circuit for crystals & resonators (HF)XT1 on almost all MSP430s (except the F20xx and some G2xx devices XT2 present only on larger pin count MSP430s (64+) High frequency support only Clocking & MSP430 generations Clock/ Feature Frequency Range Relative Precision Application/Devices Supported High-Frequency DCO +ROSC 100kHz to 25MHz+ +FLL Low (2xx: Medium) ALL MSP430s: High frequency source for CPU & peripherals 2xx only: Integrates a high stability DCO over temp & Vcc w/ calibrated constants stored in flash for common freqs Better 1xx, some 2xx: Can help stabilize DCO drift over temperature using external precision resistor Best 4xx,5xx,6xx: Auto-tunes DCO based on reference clock such as 32kHz xtal HFXT1/ XT2 100’s kHz to 10’s MHz High Most MSP430s: use when high accuracy/frequency is required. Higher current than DCO. Typically, smaller devices do not support XT2 ’20xx & some G2xx devices do not support HF mode at all MODOSC 5MHz Medium 5xx, 6xx: Integrate osc for auto-on use with FLASH, ADC & other modules Low-Frequency LFXT1 32kHz High ALL MSP430s: standard use in LPM3/3.5 & RTC applications VLO ~10kHz Low 2xx, 5xx, 6xx: Integrated low freq osc consuming lowest current of any clock option REFO 32kHz Medium/ High 5xx, 6xx: Integrated 32kHz osc for crystal-less applications providing reasonable accuracy Design considerations MSP430 has 3 clock trees – – – Design for robust 32kHz crystal operation if needed – – As with any ULP oscillator, proper crystal selection, loading & PCB layout are key factors in achieving a reliable 32KHz XTAL design Check oscillation allowance BEFORE production to address any weakness Know the differences in device family features – – ACLK: typical use as low frequency, low power LPMx peripheral clock MCLK: active CPU clock SMCLK: high or low frequency peripheral clock Basics are the same, however a lot of variation in feature set exists Understanding what is possible is key to realizing ULP operation Understand device/family-specific behavior: – – – Active WDT: sourced from the DCO at power up/reset: handle the WDT first in your software! Clock failsafe: crystal fault detection means safe & reliable operation but may result in incorrect frequencies. Take care to configure clocks and properly handle osc fault conditions. Clock requests: some clocks may or may not automatically remain active when entering LPMx modes, resulting in unexpected halting of peripherals or higher than expected LPMx current consumption References MSP430F5xx and MSP430F6xx Core Libraries – MSP430 32-kHz Crystal Oscillators – Provides functions that implement the most common operations using the PMM, UCS, PMAP and Flash modules, such as changing the core voltage to operate at higher frequencies, crystal/clock initialization, mapping port I/O, and write/erase flash operations. Describes selection of the right crystal, correct load circuit, and proper board layout key to stable crystal oscillator performance. Information regarding recommended PCB desing and possible oscillator tests to ensure stable oscillator operation in mass production are included. MSP430 LFXT1 Oscillator Accuracy – Details the factors that influence achievable accuracy of the low frequency oscillator, specifically for real-time clock (RTC) applications in 1xx & 4xx devices. Microcrystal Recommendations for 32.768kHz crystals Epson Toyocom Recommendations for 32.768kHz crystals Your specific MSP430 device’s datasheet & Family User’s Guide Thank you!