Download Pregnancy & Human Development Part 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
PREGNANCY
and
HUMAN DEVELOPMENT
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
From Egg to Embryo
 Pregnancy – events that occur from fertilization until the
infant is born
 Conceptus – the developing offspring
 Gestation period – from the last menstrual period until birth
 Preembryo – conceptus from fertilization until it is two
weeks old
 Embryo – conceptus during the third through the eighth
week
 Fetus – conceptus from the ninth week through birth
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Relative Size of Human Conceptus
Figure 28.1
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Accomplishing Fertilization
 The oocyte is viable for 12 to 24 hours
 Sperm is viable 24 to 72 hours
 For fertilization to occur, coitus must occur no more
than:
 Three days before ovulation
 24 hours after ovulation
 Fertilization – when a sperm fuses with an egg to
form a zygote
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Sperm Transport and Capacitation
 Fates of ejaculated sperm
 Leak out of the vagina immediately after deposition
 Destroyed by the acidic vaginal environment
 Fail to make it through the cervix
 Dispersed in the uterine cavity or destroyed by
phagocytic leukocytes
 Reach the uterine tubes
 Sperm must undergo capacitation before they can
penetrate the oocyte
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Acrosomal Reaction and Sperm Penetration
 An ovulated oocyte is encapsulated by:
 The corona radiata and zona pellucida
 Extracellular matrix
 Sperm binds to the zona pellucida and undergoes the
acrosomal reaction
 Enzymes are released near the oocyte
 Hundreds of acrosomes release their enzymes to
digest the zona pellucida
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Acrosomal Reaction and Sperm Penetration
 Once a sperm makes contact with the oocyte’s
membrane:
 Beta protein finds and binds to receptors on the
oocyte membrane
 Alpha protein causes it to insert into the
membrane
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Acrosomal Reaction and Sperm Penetration
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Figure 28.2a
Blocks to Polyspermy
 Only one sperm is allowed to penetrate the oocyte
 Two mechanisms ensure monospermy
 Fast block to polyspermy – membrane
depolarization prevents sperm from fusing with
the oocyte membrane
 Slow block to polyspermy – zonal inhibiting
proteins (ZIPs):
 Destroy sperm receptors
 Cause sperm already bound to receptors to
detach
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Completion of Meiosis II and Fertilization
 Upon entry of sperm, the secondary oocyte:
 Completes meiosis II
 Casts out the second polar body
 The ovum nucleus swells, and the two nuclei
approach each other
 When fully swollen, the two nuclei are called
pronuclei
 Fertilization – when the pronuclei come together
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Events Immediately Following Sperm Penetration
Figure 28.3
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Preembryonic Development
 The first cleavage produces two daughter cells
called blastomeres
 Morula – the 16 or more cell stage (72 hours old)
 By the fourth or fifth day the preembryo consists
of 100 or so cells (blastocyst)
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Preembryonic Development
 Blastocyst – a fluid-filled hollow sphere composed
of:
 A single layer of trophoblasts
 An inner cell mass
 Trophoblasts take part in placenta formation
 The inner cell mass becomes the embryonic disc
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Cleavage: From Zygote to Blastocyst
Degenerating
zona pellucida
Inner cell mass
Blastocyst cavity
Blastocyst
cavity
(a) Zygote
(fertilized egg)
Fertilization
(sperm meets
egg)
(b) 4-cell stage
2 days
(a)
(c) Morula
3 days
(d) Early blastocyst
4 days
Trophoblast
(e) Implanting
blastocyst
6 days
(b)
(c)
Ovary
Uterine tube
(d)
Oocyte
(egg)
Ovulation
(e)
Uterus
Endometrium
Cavity of
uterus
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Figure 28.4
Implantation
 Begins six to seven days after ovulation when the
trophoblasts adhere to a properly prepared
endometrium
 The trophoblasts then proliferate and form two
distinct layers
 Cytotrophoblast – cells of the inner layer that
retain their cell boundaries
 Syncytiotrophoblast – cells in the outer layer
that lose their plasma membranes and invade
the endometrium
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Implantation
 The implanted blastocyst is covered over by
endometrial cells
 Implantation is completed by the fourteenth day
after ovulation
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Implantation of the Blastocyst
Figure 28.5a
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Implantation of the Blastocyst
Figure 28.5b
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Implantation
 Viability of the corpus luteum is maintained by
human chorionic gonadotropin (hCG) secreted by
the trophoblasts
 hCG prompts the corpus luteum to continue to
secrete progesterone and estrogen
 Chorion – developed from trophoblasts after
implantation, continues this hormonal stimulus
 Between the second and third month, the placenta:
 Assumes the role of progesterone and estrogen
production
 Is providing nutrients and removing wastes
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Hormonal Changes During Pregnancy
Figure 28.6
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Placentation
 Formation of the placenta from:
 Embryonic trophoblastic tissues
 Maternal endometrial tissues
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Placentation
 The chorion develops fingerlike villi, which:
 Become vascularized
 Extend to the embryo as umbilical arteries and
veins
 Lie immersed in maternal blood
 Decidua basalis – part of the endometrium that
lies between the chorionic villi and the stratum
basalis
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Placentation
 Decidua capsularis – part of the endometrium
surrounding the uterine cavity face of the implanted
embryo
 The placenta is fully formed and functional by the end
of the third month
 Embryonic placental barriers include:
 The chorionic villi
 The endothelium of embryonic capillaries
 The placenta also secretes other hormones – human
placental lactogen, human chorionic thyrotropin,
and relaxin
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Placentation
Figure 28.7a-c
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Placentation
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Figure 28.7d
Placentation
Figure 28.7f
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Germ Layers
 The blastocyst develops into a gastrula with three
primary germ layers: ectoderm, endoderm, and
mesoderm
 Before becoming three-layered, the inner cell mass
subdivides into the upper epiblast and lower
hypoblast
 These layers form two of the four embryonic
membranes
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Embryonic Membranes
 Amnion – epiblast cells form a transparent
membrane filled with amniotic fluid
 Provides a buoyant environment that protects the
embryo
 Helps maintain a constant homeostatic temperature
 Amniotic fluid comes from maternal blood, and
later, fetal urine
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Embryonic Membranes
 Yolk sac – hypoblast cells that form a sac on the
ventral surface of the embryo
 Forms part of the digestive tube
 Produces earliest blood cells and vessels
 Is the source of primordial germ cells
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Embryonic Membranes
 Allantois – a small outpocketing at the caudal end of
the yolk sac
 Structural base for the umbilical cord
 Becomes part of the urinary bladder
 Chorion – helps form the placenta
 Encloses the embryonic body and all other
membranes
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Gastrulation
 During the 3rd week, the two-layered embryonic disc
becomes a three-layered embryo
 The primary germ layers are ectoderm, mesoderm,
and endoderm
 Primitive streak – raised dorsal groove that establishes
the longitudinal axis of the embryo
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Gastrulation
 As cells begin to migrate:
 The first cells that enter the groove form the
endoderm
 The cells that follow push laterally between the
cells forming the mesoderm
 The cells that remain on the embryo’s dorsal
surface form the ectoderm
 Notochord – rod of mesodermal cells that serves as
axial support
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Primary Germ Layers
 Serve as primitive tissues from which all body
organs will derive
 Ectoderm – forms structures of the nervous
system and skin epidermis
 Endoderm – forms epithelial linings of the
digestive, respiratory, and urogenital systems
 Mesoderm – forms all other tissues
 Endoderm and ectoderm are securely joined and
are considered epithelia
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Primary Germ Layers
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings
Figure 28.8a-e
Primary Germ Layers
Figure 28.8e-h
Copyright © 2004 Pearson Education, Inc., publishing as Benjamin Cummings