Download Ch. 3. KINETIC VS. EQUILIBRIUM MODELING

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Metal carbonyl wikipedia , lookup

Hydroformylation wikipedia , lookup

Metalloprotein wikipedia , lookup

Jahn–Teller effect wikipedia , lookup

Ligand wikipedia , lookup

Spin crossover wikipedia , lookup

Evolution of metal ions in biological systems wikipedia , lookup

Coordination complex wikipedia , lookup

Stability constants of complexes wikipedia , lookup

Transcript
Ch. 4. AQUEOUS COMPLEXES

4-1. A Few Definitions

Aqueous complexes


Ligands


Ions or molecules binding to a central metal to form a complex (by
donating electron pair)
Addend




Association of dissolved (c,a)ions or molecules
Pieces of complexes (either cations or anions)
Monodendate (Cl-), bidendate (CO32-), polydendate
Chelates
P. 91, Table 3.2
Description: Chemical structure of EDTA chelate
(from wikipedia.org)

4-2. Significance of Complexes
Speciation of metals
 Adsorption
 Toxicity
 Solubility


4-3. Outer vs. Inner Sphere Complexes

Hydration (shell)

Outer sphere complex (ion pair): ex) CaSO4


Inner sphere coplex: ex) AgS

Weak, electrostatic (depending on charges)
Strong, covalency
Most complexes are in between

4-4. Geometry of Common Inorganic Ligands
All depends on the radius ratio (p.89)
 Plan triangular triangle (NO3-, CO3-, BO3-)
 Regular trigonal low pyramidal (PO33-, AsO33- )
 Regular tetrahedron (PO43-, SO42-, CrO43- )
 Distorted tetrahedron (MoO42-)
 Spherical (halogens)
 Dumbel shape (UO22- )


See page 89 & 90 tables

4-5. Complexation Mass Balance & Equilibria

Extent of complex formation (average ligand
number)


Stepwise formation constant


P. 90, eqn (3.17)
P. 92, eqn (3.18)
Cumulative formation constant

P.92, eqn (3.21)

4-6. Hydrolysis of Cations in Water and Ionic
Potential
Hydrolysis?
 Ionic potential?
 How these two factors affect the behavior of the
dissolved ions in water?


See p.98, Fig. 3.4; p.99, Table 3.3.; p.100, Fig. 3.5

4-7. Electronegativities & the Stability of
Inner-Sphere Complexes
What is EN? (p.101, Tanle 3.4)
 How does EN controls bonding character ?
 Conseq., the stabilities of complexes? (p.102, Fig.
3.6)


4-8. Schwarzenbach’s & Pearson’s Classification of
Acids & Bases (forming Complexes)

Schwarzenbach’s classes A, B, & C




Pearson’s hard & soft



A: Those of noble gas configuration (p.103, bottom table)
B: Those of Nio, Pdo, Pto electron config.
C: Transient metals
Hard: Rigid & nondeformable elctron cloud, tend to form ionic
bonding
Soft: Deformable & polarizable electron cloud, tend to form (more)
covalent bonding
See p.104, Table 3.5; p.105, Fig. 3.7; p.106, Fig. 3.8; p.108,
Fig. 3.9.

4-9. Thermodynamics of Complexation
DGo = -RT ln Kassoc
 DGo = DGo - TDSo
 Mostly due to entropy change
 DSo = DSonet charge + DSotr + DSorot + DSovibr +
DSodehyd
 DSodehyd is probably contributing most


4-10. Distribution of Complex Species as a
Function of pH
Write down the association reactions
 Express Kassoc in terms of species
 Convert them into a function of pH


See p.113, Fig. 3.12