* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download The Earth in the Universe - Sierra College Astronomy Home Page
Galileo affair wikipedia , lookup
Definition of planet wikipedia , lookup
International Ultraviolet Explorer wikipedia , lookup
Rare Earth hypothesis wikipedia , lookup
Tropical year wikipedia , lookup
Formation and evolution of the Solar System wikipedia , lookup
Armillary sphere wikipedia , lookup
Astrobiology wikipedia , lookup
Planets in astrology wikipedia , lookup
Astronomical unit wikipedia , lookup
History of Solar System formation and evolution hypotheses wikipedia , lookup
De revolutionibus orbium coelestium wikipedia , lookup
Archaeoastronomy wikipedia , lookup
Satellite system (astronomy) wikipedia , lookup
Comparative planetary science wikipedia , lookup
Galilean moons wikipedia , lookup
Extraterrestrial life wikipedia , lookup
Constellation wikipedia , lookup
Astronomy in the medieval Islamic world wikipedia , lookup
Chinese astronomy wikipedia , lookup
International Year of Astronomy wikipedia , lookup
Patronage in astronomy wikipedia , lookup
Celestial spheres wikipedia , lookup
Observational astronomy wikipedia , lookup
Theoretical astronomy wikipedia , lookup
Timeline of astronomy wikipedia , lookup
Copernican heliocentrism wikipedia , lookup
History of astronomy wikipedia , lookup
Hebrew astronomy wikipedia , lookup
Dialogue Concerning the Two Chief World Systems wikipedia , lookup
The Earth in the Universe Observations and Models Presented By Professor Harry L. F. Houpis © Sierra College Astronomy Department 1 The Celestial Sphere Celestial sphere is the sphere of heavenly objects that seems to center on the observer. Celestial pole is the point on the celestial sphere directly above a pole of the Earth. In the Northern Hemisphere the north celestial pole is very near to the star Polaris. In the Southern Hemisphere, there is no obvious star near the south celestial pole. Height of the celestial pole above the horizon is equal to your latitude All celestial objects move from east to west on a minute-by-minute basis. © Sierra College Astronomy Department 2 The Celestial Sphere A constellation (from the Latin, meaning “stars together”) is an area of the sky containing a pattern of stars named for a particular object, animal or person. The earliest constellations were defined by the Sumerians as early as 2000 B.C. The 88 constellations used today were established by international agreement. An asterism is an unofficial arrangement of stars. © Sierra College Astronomy Department 3 The Sun’s Motion: A Year Timing The Sun appears to move constantly eastward among the stars (on a day-to-day basis). The time the Sun takes to return to the same place among the stars is about 365.24 days. Consequently, the stars rise about 4 minutes earlier each day. Paths in the Sky The celestial equator is a line on the celestial sphere directly above the Earth’s equator The ecliptic is the apparent path of the Sun on the celestial sphere The zodiac is the band that lies 9° on either side of the ecliptic on the celestial sphere and contains the constellations through which the Sun passes © Sierra College Astronomy Department 4 Observation: The Planets Five planets are visible to the naked eye: Mercury, Venus, Mars, Jupiter, Saturn. Planets lack the simple, uniform motion of the Sun and Moon. These planets always stay near the ecliptic. Mercury and Venus never appear very far from the position of the Sun in the sky. Planets sometimes stop their eastward motion and move westward against the background of stars. This is called retrograde motion. © Sierra College Astronomy Department 5 Pre-Copernican Models Models of Claudius Ptolemy (circa A.D. 150) To account for retrograde motion, the epicycle is introduced – the epicycle is the circular orbit of a planet, the center of which revolves around the Earth in another circle. © Sierra College Astronomy Department 6 Pre-Copernican Models Models of Claudius Ptolemy (continued) Needed to “tie” Mercury and Venus to the Sun. To account for other non-uniform variations in the planets’ motions while maintaining the principle that the Universe was constructed of circles and spheres, the following constructs were introduced: Deferent and equant (note that the Earth is no longer at the center of the Universe) “Embedded” spheres © Sierra College Astronomy Department 7 Pre-Copernican Models © Sierra College Astronomy Department 8 Pre-Copernican Models Models of Tycho Brahe (born 3 years after Copernicus died) Placed all the planets around the Sun except the Earth. The Earth-less Solar System then orbited around the stationary Earth Other Variations and Models See http://www.csit.fsu.edu/~dduke/models © Sierra College Astronomy Department 9 Criteria for Scientific Models Three criteria for scientific models: Model must fit the data Model must make predictions that can be tested and be of such a nature that it would be possible to disprove it Model should be aesthetically pleasing - simple, neat, and elegant (Occam’s razor) Ptolemy’s and Tycho’s models meet the first two criteria for a good scientific model fairly well but it is much less successful with the third (aesthetically pleasing). 400 years before Ptolemy, the Greek philosopher Aristarchus proposed a moving-Earth solution to explain celestial motions. Ptolemy and others discredited Aristarchus’s model, but used wrong assumptions to do so. © Sierra College Astronomy Department 10 Nicholas Copernicus Copernicus, a contemporary of Columbus, worked 40 years on a heliocentric (sun-centered) model for two reasons: Ptolemy’s predicted positions for celestial objects had become less accurate over time. The Ptolemaic model was not aesthetically pleasing enough. His system revived many of the ideas of the ancient Greek Aristarchus. © Sierra College Astronomy Department 11 Nicholas Copernicus Model Specifics: The Earth rotates under a stationary sky (which gives the same observations as a rotating celestial sphere and a stationary Earth). The Earth revolves around a stationary Sun, which appears to move among the background stars. (Projection is the key concept) His model explains the generally west to east motion of the planets. Observed retrograde motion of planets (such as Mars) is explained more simply and conclusively. Copernicus had the Moon revolving around the Earth. All others circled the Sun. © Sierra College Astronomy Department 12 Nicholas Copernicus Model Specifics (continued) The Sun’s apparent motion north and south of the equator is explained by having the Earth’s equator tilted with respect to the planet’s orbit around the Sun. Closeness of Mercury and Venus to Sun is easily explained. However, the Copernican model turns out to be no more accurate (relative to the observations) than the geocentric models © Sierra College Astronomy Department 13 Tycho Brahe Tycho was born 3 years after Copernicus died. Tycho built the largest and most accurate naked-eye instruments yet constructed. He could measure angles to within 0.1º, close to the limit the human eye can observe. © Sierra College Astronomy Department 14 Tycho Brahe and Johannes Kepler In 1600, a year before Tycho died, Kepler accepted a position as Tycho’s assistant, working on models of planetary motion. Tycho’s best data had been gathered for Mars. Based on circles and epicycles Kepler’s best model for Mars matched Tycho’s data to an accuracy of 0.13º. Yet, this error exceeded the error in Tycho’s measurements, which bothered Kepler. Kepler’s persistence led him to abandon circles and try other shapes. The shape that worked for Mars and all other planets was the ……….. © Sierra College Astronomy Department 15 Johannes Kelper The Ellipse The ellipse is a geometrical shape every point of which is the same total distance from two fixed points (the foci). Eccentricity is the distance between the foci divided by the longest distance across (major axis). Astronomers refer to the semi-major axis distance and eccentricity. Consequences Kepler developed his three laws The heliocentric theory worked far better than the old geocentric theory with regard to predictions Kepler’s empirical laws were later explained by the use of Newton’s dynamical laws of motion and gravitation – the first unified theory of physics © Sierra College Astronomy Department 16 Galileo Galilei Galileo was born in 1564 and was a contemporary of Kepler. Galileo built his first telescope in 1609, shortly after hearing about telescopes being constructed in the Netherlands. Galileo was the first person to use a telescope to study the sky. © Sierra College Astronomy Department 17 Galileo Galilei Galileo made 5 important observations: Mountains and valleys on the Moon Sunspots More stars than can be observed with the naked eye Four moons of Jupiter Complete cycle of phases of Venus Though Galileo’s first three observations do not disprove the geocentric theory, they cast doubt on the assumption of perfection in the heavens. © Sierra College Astronomy Department 18 Galileo Galilei Satellites of Jupiter In 1610 Galileo discovered that Jupiter had four satellites of its own, now known as the Galilean moons of Jupiter. Jupiter and its orbiting moons contradicted the Ptolemaic notions that the Earth is the center of all things and if the Earth moved it would leave behind the Moon. The Phases of Venus Galileo observed that Venus goes through a full set of phases: full, gibbous, quarter, crescent. Venus’s full set of phases can be explained by the heliocentric theory. The Ptolemaic theory predicts that Venus will always appear in a crescent phase, which is not borne out by the observations. © Sierra College Astronomy Department 19 Summary The Pre-Copernican Era Ancient Greek desire to explain the Universe with the “most perfect” of all geometries: circles and spheres “Common sense” and human intuition were all that were needed to explain the observations The Earth was the center of the Universe and the heavens followed a different physics The “science” of the times was not held hostage to observations – models were only for calculation purposes and not necessarily a required reality The Copernican Era What’s with the circles? – “around the corner” vs “direct consequences” inquiries How common is common sense and how reliable is intuition? Unification is the holy grail of science Models are held hostage to observations and fundamental symmetries (realities?) are sought © Sierra College Astronomy Department 20