Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Protons for Breakfast Electricity Week 1 November 2013 In the event of an alarm sounding… Toilets… Parents and children… The plan for the evening… More talk Talk 7:00 p.m. to 7:59 p.m. Walkabout 8:00 p.m. to 8:29 p.m. 8:30 p.m. to 8:59 p.m. Feedback 8:59 p.m. to 9:00 p.m. Amir Kayani Who is helping? Andrew Hanson Andy Knott Averil Horton Claire Greenwell Dale Partridge David Clay Deborah Lea Edward Brightman Gianluca Memoli James Claverley James Miall Jane Burston Jeff Flowers Jenny Hully Jenny Wilkinson Jessica Cross Brown John Gallop John Makepeace John Mountford Jonathan Pearce Jordan Tompkins Joseph Thom Kate Wilkinson Lauren Petrie Laurie Winkless Leigh Stanger Lindsay Chapman Lloyd England Louise Brown Maria Lodeiro Marieke Beckmann Marta Doval Minarro Nadia Smith Nori Safi Paul Carroll Paul Green Peter Nisbet-Jones Peter Quested Peter Woolliams Rainer Winkler Ralf Mouthaan Robert Goddard Ruth Pearce Sharmila Hanson Stephanie Bell Sue Gibbons Sue Oakley Tracey Skinner Member the Podesta Most Excellent Order of the British Empire! Michaelof de Age 53: Weight 82.6 kg • Lecturer in Physics at University of London for 13 years • Understanding the Properties of Matter • At NPL for 13 years. • Most accurate thermometer ever made! • International Surface Temperature Initiative • Married with two sons (aged 15 & 17) • Keen on Water Rockets Why am I here? I am here because I believe … Science is humanity’s greatest achievement Why are you here? • • • • • • To better understand science and maybe improve my grade in science GCSE, and to ask as many questions as I like. I love science and [I want to ] to expose my son to science as it is one of his favourite subjects at school Enjoyed your session at last year's NPL Open Day and would like to find out more. ‘cos Princess Diana said "knowledge is power" and I want power. Lack of basic understanding about physics and would like to be able to be more critical about 'new discoveries' etc. in news media. My mum says it will be fun. …there is a problem about how we, as citizens, relate to science… The image of science:1 Mad Muppets top cult science poll Dr Honeydew is known the world over for his disastrous research at Muppet Labs, "where the future is being made today". His experiments invariably go awry, with poor old Beaker usually being blown to bits or electrocuted. BBC 6/9/2004 The image of science:2 Science Gone Wrong The final touch… What! BANG! Alex Noble (Age 9) The image of science:3 An un-scientific experiment Scientist ……… Scientist In contrast… • A room full of people who want to learn about science • Helped by volunteers • In a world where ignorance makes us powerless Tonight’s talk • The scale and size of the Universe • Electricity • How Electricity works • Atoms • Light Tonight’s talk The scale and size of the Universe or ‘How not to be boggled!’ The imperceptible and the vast As human beings we can judge: temperatures close to ‘normal’ weights greater than a gram up to around 1000 kilograms distances greater than a millimetre or less than a few kilometres. times greater than a second or less than a fraction of a lifetime. The imperceptible and the vast As human beings we cannot judge: temperatures more a few degrees away from ‘normal’ Such temperatures just feel ‘very hot’ or ‘very cold’ weights beyond a few tonnes or less than a gram Such weights seem either stupendously heavy or negligible distances less than a millimetre or greater than a few kilometres. Such distances are too tiny or too far to perceive directly times less than a second or more than a fraction of a lifetime. Such times are too small or too long for us to appreciate The imperceptible and the vast Measuring instruments extend our senses Telescopes & Microscopes, Weighing machines, Devices sensitive to electricity & light, Clocks NPL enables people to trust measurements Quantities and qualities that extend beyond our ability to perceive them seem: imperceptible or vast ? ? Science helps us extend our senses But we can still feel boggled! The Planet Earth Diameter: 12,800 km Deepest hole: 10 km Atmosphere: 10 km Photo Credit: NASA The Moon Diameter Earth: 12,800 km Moon: 3476 km Photo Credit: NASA The Sun Diameter: 1,390,800 km Photo Credit: NASA Powers of Ten I hope that you are now a little unsettled and ready to go on a 9 minute journey to see how the world looks at different levels of ‘fantasy magnification’ Photo Credit: Powers of 10 Powers of Ten (1) 1 metre 1000000000000 m 0.000001 m Very Very Small 1000000 m 1000 m 0.001 m 1000000000 m Very Very Large 0.000000001 m Can you see the problem with very small and very large numbers? Powers of Ten (2) 10 10 10-18 10-120.000001 10-6 1000000 106 1012 1018 1024 1030 1036 Very Very Small 10-15 10-9 0.001 10-3 1000 103 109 1015 1021 1027 1033 Very Very Large Powers of Ten (3) 1 metre 1000000000000 m 0.000000000001 m 10-18 10-12 10-6 Very Very Small 10-15 10-9 10-3 103 106 1012 1018 1024 1030 1036 109 1015 1021 1027 1033 Very Very Large Diameter of a hair Diameter of the Earth Distance to the Sun Powers of Ten Length Scale in metres Microbes Viruses Quarks 10-18 10-12 Human Relationships 10-6 Very Very Small 10-15 10-9 100 10-3 103 106 Current estimate of the size of the universe 1012 1018 1024 1030 1036 109 1015 1021 1027 1033 Nuclei of atoms Atoms & molecules Nanotechnology Tallest Mountain Light Year ? Very Very Large Nearest Star Diameter of a hair Distance to the Sun Diameter of the Earth Powers of Ten Length Scale in metres Microbes Viruses Quarks 10-18 10-12 Human Relationships 10-6 10-15 10-9 100 10-3 103 106 Current estimate of the size of the universe 1012 1018 1024 1030 1036 109 1015 1021 1027 1033 Nuclei of atoms Atoms & molecules Nanotechnology Tallest Mountain Light Year Nearest Star Diameter of the Earth Powers of Ten Global Warming Microbes 10-18 10-12 Human Relationships 10-6 Very Very Small 10-15 10-9 100 106 10-3 103 Distance to the Sun 1012 1018 1024 1030 1036 109 1015 1021 1027 1033 Atoms & molecules Tallest Mountain Very Very Large The phenomenon of global warming involves physical processes with length scales spanning 20 powers of 10! Diameter of the Earth Powers of Ten NuclearMicrobes Power 10-18 10-12 Human Relationships 10-6 Very Very Small 10-15 10-9 100 106 10-3 103 Distance to the Sun 1012 1018 1024 1030 1036 109 1015 1021 1027 1033 Nuclei of atoms Atoms & molecules Tallest Mountain Very Very Large The issues surrounding nuclear power involve physical processes with length scales spanning 25 powers of 10! 1 second Earth moves once around the Sun Powers of Ten (time) Time for a Time scale in seconds molecule to Light wave wiggles once Estimated time since the big bang jiggle once 10-18 10-12 10-6 Very Very short 10-15 10-9 Sound travels 1 metre 100 106 10-3 103 Fastest response of human eye A human lifetime 1012 1018 1024 109 1015 1021 Lifetime of a Civilisation End of last ice age Very Very Long Age of the Earth The Universe Its very big, but full of very small things ? ? Tonight’s talk • The scale and size of the Universe Its very big, but full of very small things • Electricity • How it works • Atoms • Light Electricity Electricity How it all fits together… Electricity Atoms Electromagnetic waves Heat EeeeeElectricity - lec- tric-ity Electricity Some experiments… Lets take a look at some odd phenomena… • A balloon and a piece of paper Lets take a look at some odd phenomena… • If I balance my glasses carefully… Even a sausage… • Sausages… …its everything… The balloon affects anything and everything nearby To understand this, we need to understand • what matter is made of, and • how this ‘influence’ is communicated across ‘space’ A simple scientific instrument: The gold leaf electroscope • • Scientists can develop instruments to measure the relative strengths of the ‘electric influence’ Based on the same effect we saw with bits of paper The Van de Graaff Generator • Scientists can develop machines to automate and amplify the ‘rubbing’ process with the balloon Photo Credits: Katherine Robinson and MIT The Van de Graaff Generator It is not important to understand how a Van de Graaff generator works PictureCredits: http://www.ikp.uni-koeln.de/~3T/tandem-prinzip1.htmlhttp://science.howstuffworks.com/vdg1.htm The Van de Graaff Generator It is not important to understand how a Van de Graaff generator works The Wimshurst Machine Sorry: I cannot explain how a Wimshurst Machine works! Photo Credits: Wikipedia and http://www.coe.ufrj.br/~acmq/electrostatic.html Electrostatic Generators • People have been doing this for a long time… Photo Credits: http://www.ikp.uni-koeln.de/~3T/tandem-prinzip1.html Conclusion… Electricity is present inside ALL matter Its ‘influence’ can be communicated across ‘empty’ space Tonight’s talk • The scale and size of the Universe Its very big, but full of very small things • Electricity It’s everywhere! • How it works • Atoms • Light How do we describe the world? Stuff • matter Not Stuff • the gaps in between matter • fields How do we describe the world? How do we describe the world? Two different kinds of physical entity Stuff (Particles) • • Atoms • Electrons • Neutrons • Protons Very small Not Stuff (Fields) • Fields Gravitational Electroweak Strong • Extend throughout space We need to know about both particles and fields How do charged particles interact? It’s a three-step process… Particle Particle with electric charge Interact by means of an electric field …but the steps happen very quickly with electric charge How do we describe the world? The electrical nature of matter • Electric charge is a fundamental property of electrons and protons. • Two types of charge (+ and -) If particles have the same sign of electric charge they repel If particles have different signs of electric charge they attract The forces (attractive or repulsive) get weaker as the particles get further apart. Tonight’s talk • The scale and size of the Universe Its very big, but full of very small things • Electricity It’s everywhere! • How it works There are ‘particles’ and ‘fields’ • Atoms • Light How it all fits together… Electricity Atoms Electromagnetic waves Heat Atoms Atoms Protons, neutrons and electrons normally exist inside atoms Atoms Atoms are small • Think of a millimetre 1 mm • Atoms are roughly 10,000 times smaller than this… 0.1 mm 0.01 mm 0.001 mm Atoms • There are VAST numbers of atoms in everything. In just a handful of anything there are about the same number of atoms as there are grains of sand on all the beaches and deserts on Earth combined Photo Credit: http://www.morguefile.com ID = 104101 The electrical nature of matter Atoms Internal Structure Tonight’s Drama: The importance of being electrical How are atoms made? Electrical Repulsion proton Interact by the short range ‘strong’ force – not electrical How are atoms made? Atomic Structure Electrons • ‘orbit’ around the outside of an atom • very light • possess a property called electric charge Nucleus • occupies the centre • very tiny and very heavy • protons have a property called electric charge • neutrons have no electric charge Atomic Structure • Nuclei (+) attract electrons (-) until the atom as a whole is neutral • The electrons repel each other They try to get as far away from each other as they can, a and as near to the nucleus as they can The electrical nature of matter Chemistry Atoms, Elements & Molecules Atoms &… The Periodic Table • Atoms with up to about 82 protons can be stable. • A substance made up of a single type of atom is called an element • Elements with with similar arrangements of outer electrons behave similarly. Atoms &… Molecules • A molecule is a collection of atoms stuck together electrically. H NN H2 H N H H 2O O 2 H Atoms &… Ions • A ion is an atom or molecule which has lost or gained an electron. H O H The electrical nature of matter Solids Atoms in solids • Atoms can be imaged on a surface Photo Credit: Patrick Josephs Franks: NPL The electrical nature of matter • In ‘normal’ matter, there are equal quantities of positive and negative charge so that there is no attraction or repulsion of objects. Object 1 Object 2 The electrical nature of matter Mechanical Properties Atoms and mechanics • Whenever two materials touch, the forces between them are the forces between the outer (valence) electrons • All mechanical forces are actually electrical in nature Object 1 Object 2 The electrical nature of matter Conductors and Insulators Atoms in solids Solids are made up out of lots atoms very close together. If the electrons can’t move easily from atom to atom: The material is called an insulator If the electrons can move easily from atom to atom: The material is called a conductor The electrical nature of matter Magnetic Forces Magnetism Electric & Magnetic • We call forces ‘magnetic’ when both particles are moving with respect to us. • They are still electrical in origin. • This was first explained by Albert Einstein in his Theory of Relativity Winding up… The electrical nature of matter How the balloon affected the paper… Odd phenomena… • A balloon and a piece of paper Odd phenomena… • A balloon and a piece of paper Tonight’s talk • The scale and size of the Universe Its very big, but full of very small things • Electricity It’s everywhere! • How it works There are ‘particles’ and ‘fields’ • Atoms They’re everywhere! And they are all electrical! • Light The electrical nature of matter How is the electrical force transmitted from one charged particle to another? How do charged particles interact? It’s a three-step process… Particle Particle with electric charge Interact by means of an electric field …but the steps happen very quickly with electric charge The nature of interactions (1) Analogy with water level and water waves Tonight’s talk • The scale and size of the Universe Its very big, but full of very small things • Electricity It’s everywhere! • How it works There are ‘particles’ and ‘fields’ • Atoms They’re everywhere! And they are all electrical! • Light An electro-magnetic wave How it all fits together… Electricity Atoms Electromagnetic waves Heat Summary • Physics concepts span vast ranges of mass, length and time. • The universe has two kinds of objects in it: Matter and Fields • All matter (on Earth) is made of atoms which interact electrically. • In matter as we normally experience it, there are equal amounts of the two types of electric charge and their effects cancel • If we add or remove some particles with electric charge from matter then we can see the electrical effects. Homework • Activity: Remember when you have your breakfast that you are eating protons and neutrons coated with tasty electrons. • Research: What is the ‘frequency’ of your favourite radio station? Don’t just get the number (98.9, 198 etc.) get the units as well! They should be in Hertz Kilohertz Megahertz One minute feedback • • • On the back of your handouts! Rip off the last sheet Please write down what is in on your mind RIGHT NOW! A question? OK A comment? OK A surprising thought in your mind? I’d love to hear it! Goodnight • www.protonsforbreakfast.org This PowerPoint ™ presentation. Questions and Answers as a pdf file • blog.protonsforbreakfast.org Links to other sites & resources Me going on about things See you next week! Don’t forget your pencils and badges! Goodnight