* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Due Date: Thursday, September 8th (at the beginning of class)
Economic democracy wikipedia , lookup
Ragnar Nurkse's balanced growth theory wikipedia , lookup
Fei–Ranis model of economic growth wikipedia , lookup
Pensions crisis wikipedia , lookup
Post–World War II economic expansion wikipedia , lookup
Steady-state economy wikipedia , lookup
Rostow's stages of growth wikipedia , lookup
Okishio's theorem wikipedia , lookup
Problem Set 3 FE411 Spring 2009 Rahman Some Answers 1) The Malthusian Model Consider the Malthusian model, as described by Weil in section 4.1. a. Suppose that the economy is in steady state when suddenly there is a change in cultural attitudes toward parenthood. For a given income, people now want to have more children. Draw graphs showing the growth rates of population and income per capita over time. B,D Birth Ratenew Birth Rate Death Rate yss,2 yss,1 y L1 L2 L The sudden shift (shown by an upward shift in the birth rate) implies that population growth will suddenly be positive. As the population size grows, the income per capita falls and slows down the growth rate of population. The final point will be at a lower income per person level with no more population growth. Page 1 of 9 Problem Set 3 FE411 Spring 2009 Rahman b. Let’s look at a Malthusian model with some actual functions. Let’s say that the growth rate of population is given by: ^ L y 100 100 Let X be the total quantity of land in the economy, which is fixed. Let x then be the quantity of land per capita. The function that relates land per capita and income per capita is simply y Ax where A is just a measure of productivity. Suppose that A is constant. What will the steady-state level of income per capita be? ^ y 0 . The steady-state level of income per worker is characterized by Hence, we must find the relationship among the growth rate of income per worker, productivity, and population. By taking natural logs of the production function and taking the derivative with respect to time, we get: AX ln( y ) ln( Ax) ln ln A ln X ln L, L ^ ^ ^ ^ d ln( y ) y A X L . dt Therefore, the growth rate of income per worker must equal the growth rate of productivity plus the growth rate of land minus the population growth rate. Since land, X, and productivity, A, is constant, it must be that the growth of income per person equals the growth of population. Now, we plug the growth rate of population into the equation relating population growth to income per capita to arrive at the solution: ^ L0 y 100 y ss 100. 100 Page 2 of 9 Problem Set 3 FE411 Spring 2009 Rahman ^ Now suppose that A grows at a rate of 10% per year (that is, A = 0.1). What will be the steady-state level of income per capita? Explain what is going on. Again, in steady-state growth in income must be zero. Thus we have that growth in population must equal 0.1. Using this value to solve for steady-state income, we have: ^ L 0.1 y 100 y ss 110. 100 The steady-state value is higher in this scenario. Due to consistent productivity growth of 10%, the population can grow as well, leading to a higher level of income per capita. 2) Solow when Population > Workers Consider how the Solow growth model is affected when the number of workers differs from the total population. Suppose that total output is produced according to the production function: Y K [(1 x) L]1 where K is capital, L is the population, and x is the fraction of the population that does not work. The national savings rate is γ, the labor force grows at rate n, and capital depreciates at rate δ. a. Express output per capita (y = Y/L) as a function of capital per capita (k = K/L) and x. y k (1 x)1 b. Describe the steady-state of this economy by solving for yss and describing (in a couple of sentences) how this case differs from our standard one. 1 y ss (1 x) n Page 3 of 9 Problem Set 3 FE411 Spring 2009 Rahman The fact that there are fewer workers lowers the marginal product of capital and , hence, acts like a negative technological shock that reduces the amount of capital the economy reproduce in steady. This lowers the steady-state level of output per person. c. Suppose that some change in government policy reduces x (for example, the retirement age is retroactively raised from 65 to 70 years of age). Describe (both graphically and with words) how this change affects output both immediately and over time. Is the steady-state effect on output larger or smaller than the immediate effect? Explain. As soon as x falls, output jumps up from its initial steady-state value. The economy has the same amount of capital (since it takes time to adjust the capital stock), but this capital is combined with more workers. At that moment the economy is out of steady state: it has less capital than it wants to match the increased number of workers in the economy. More capital is accumulated, raising output even further than the original jump. 3) Composition Effects of Population Growth Suppose that the world has only two countries. The following table gives data on their populations and GDP per capita. It also shows the growth rates of population and GDP. The growth rates of population and GDP per captia in each country never change. Country Population in 2000 GDP per Capita in 2000 Country A Country B 1,000,000 1,000,000 1000 1000 Growth Rate of Population (% per year) 0 2 Growth Rate of GDP per Capita (% per year) 2 0 a. What will the growth rate of world population be in the year 2000? Following 2000, will the growth rate of world population rise or fall? Explain why. Draw a graph showing the growth rate of world population starting in 2000 and continuing in to the future. Toward what growth rate does the world population move in the long run? Page 4 of 9 Problem Set 3 FE411 Spring 2009 Rahman Growth Rate of World Population 2% 1% time b. Draw a similar graph showing the growth rate of total world GDP. Growth Rate of Total World GDP 2% 1% time Page 5 of 9 Problem Set 3 FE411 Spring 2009 Rahman c. Draw a similar graph shoing the growth rate of average GDP per capita in the world. Growth Rate of Average GDP per Capita 1% 0% time 4) Education as a Form of Human Capital Accumulation Read 6.2 and 6.3 of the Weil text, which describes how years of education translates in to human capital, and how his human capital in turn translates into additional income. Use the insights from these sections to answer the following: a. What fraction of wages is due to human capital for a worker who has nine years of education? The return to education for an individual with 9 years of education is: (1.134)4 · (1.101)4 · (1.068)1 = 2.6. In other words, if the wage of an individual with no education is W, the wage paid to this individual is 2.6·W. Therefore, we can conclude that the payment to raw labor is W and the payment to human capital is the difference between the total wage and the wage for raw labor. To find the fraction, we compute: Page 6 of 9 Problem Set 3 FE411 Spring 2009 Rahman Payment to Human Capital / Total Payment = 2.6 1 0.615. 2.6 The fraction of wages paid to human capital is 61.5%. b. In a certain country, everyone in the labor force in the year 2000 had 12 years of education. In 1900 everyone in the labor force had 2 years of education. What was the annual growth in income per worker that was due to the increase in education? The relative return to 12 years of schooling is 3.16, and the relative return to 2 years of schooling is (1.134)2 or 1.29. Writing the steady-state ratio for one country over time and denoting h1900 = 1.29 and h2000 = 3.16, we get: y2000,ss y1900,ss h2000 3.16 2.45. h1900 1.29 Thus, the ratio of steady-state output per worker for this country over time is 2.45. If over 100 years, the steady-state output has increased by a factor of 2.45, we can solve for the growth rate, g, by the following calculation: g (2.45) 1 100 1 0.009 . We conclude that the annual average growth rate of output per worker is 0.9%. 5) An Alternative Production Function with Human Capital Consider a Cobb-Douglas production function with three inputs. K is capital (the number of machines), L is labor (the number of workers), and H is human capital (the number of college degrees among the workers). The production function is: Y K 1/ 3 L1/ 3 H 1/ 3 a. Derive an expression for the marginal product of labor. How does an increase in the amount of human capital affect the marginal product of labor? MPL = 1/3*K1/3H1/3 L-2/3. Increase in human capital raises MPL. Page 7 of 9 Problem Set 3 FE411 Spring 2009 Rahman b. Derive an expression for the marginal product of human capital. How does an increase in the amount of human capital affect the marginal product of human capital? MPH = 1/3*K1/3H-2/3 L1/3. Increase in human capital lowers MPH. c. What is the income share paid to labor? What is the income share paid to human capital? In the national income accounts of this economy, what share of total income do you think all workers would appear to receive? 1/3, 1/3, and 2/3, respectively. d. Say an unskilled worker earns the marginal product of labor, whereas a skilled worker earns the marginal product of labor plus the marginal product of human capital. Using your answers to (a) and (b), find the ratio of the skilled wage to the unskilled wage. How dies an increase in the amount of human capital affect this ratio? Explain. Wskilled/Wunskilled = (MPL + MPH) / MPL = 1 + (L/H). When H increases, this ratio falls because the diminishing returns to human capital lower its return, while at the same time increasing the marginal product of unskilled workers. e. Some people advocate government funding of college scholarships as a way of creating a more egalitarian society. Others argue that scholarships help only those who are able to go to college. Do your answers to the preceding questions shed light on this debate? If more college scholarships increase H, then it does lead to a more egalitarian society. The policy lowers the returns to education, decreasing the gap between the wages of more and less educated workers. More importantly, the policy even raises the absolute wage of unskilled workers because their marginal product rises when the number of skilled workers rises. Page 8 of 9 Problem Set 3 FE411 Spring 2009 Rahman 6) Physical and Human Capital as Perfect Complements Consider two countries, Sri Lanka and Japan. Both countries have a production function per person where physical capital per person (k) and human capital per person (h) are the only two inputs in production. Specifically, the production function per person is: y min[ k , h] Suppose Sri Lanka has a low rate of physical capital investment, a large h, and a very low k. Japan on the other hand as a high rate of physical capital investment, a large h, and a moderate amount of k. Both countries are the same in all other respects. a. Which country do you predict will grow faster in the short term? Why? Japan. Because both countries have large h’s, we would expect physical capital per person to be the relatively scare factor, so only growth in k will allow growth in y. Thus in the short run, Japan should grow faster because its investment rate in physical capital is higher. b. Which country do you predict will grow faster in the long term? Why? Sri Lanka. Once Japan has large levels of both k and h, its growth stops once k = h, further increases in k does nothing to increase y. Since Sri Lanka starts with such an imbalanced situation, where k <<< h, it can grow for a much longer period of time by increasing k though physical capital investment. Page 9 of 9