* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download AC Circuit Power Analysis
Survey
Document related concepts
Transcript
Chapter 11 AC Circuit Power Analysis 11.1 Instantaneous Power 11.2 Average Power 11.3 Effective Values of Current and Voltage 11.4 Apparent Power and Power Factor 11.5 Complex Power 회로이론-І 2013년2학기 이문석 1 11.1 Instantaneous Power Instantaneous Power Product of the time-domain voltage and time-domain current associated with the element or network of interest. ∶ 1 ∶ 1 assume 회로이론-І 2013년2학기 이문석 0 ∞ 0 1 ∶ ∞ 1 assume 2 11.1 Instantaneous Power 1 1 1 1 Total power delivered by the source Power delivered to the resistor 1 1 Power absorbed by the inductor 회로이론-І 2013년2학기 이문석 At all times t, power supplied = power absorbed 3 11.1 Instantaneous Power Power due to Sinusoidal Excitation cos tan cos cos 2 cos cos 2 cos 2 Example 11.1 Find the power being absorbed by the capacitor and the resistor at t=1.2ms. ⇒ 200 5 300 / 10 1 , 300 ⇒ 1.2 100 1.2 300 60 회로이론-І 2013년2학기 이문석 , 0 40 , = 100 60 0 200 0.3 40 60u(t ) 5 200 . 300 1.2 200 1.633 1.2 90.36 81.93 7.403 4 11.2 Average Power 1 Average power selected on a general interval 1 Average power for periodic waveforms 1 1 , 1, 2, 3, ⋯ / lim 1 → / / / Average power in the sinusoidal steady state cos cos cos 1 2 cos 회로이론-І 2013년2학기 이문석 cos 1 2 cos 2 Average power 1 2 cos 5 11.2 Average Power Example 11.2 Find both the average power and an expression for the instantaneous power. 4 cos ⇒ 6 4∠0° 4∠0° 2∠60° Phasor current Average power 1 cos 0° 2 60° 4 cos • 6 2∠ 60° 2 2 cos 60° 6 2 4 cos 3 60° Average power absorbed by an ideal resistor 1 2 • 2 ∠60° cos 0° 1 2 1 2 1 2 cos cos 0° 1 Instantaneous power Phase-angle difference is zero across a pure resistor Average power absorbed by purely reactive elements Average power for (L , C )= 0 회로이론-І 2013년2학기 이문석 cos cos 90° 0 0 6 11.2 Average Power Example 11.3 Find the average power being delivered to an impedance ZL by I . 520 A L 8 j11 P 1 2 1 I m R 528 100 W 2 2 Example 11.4 Find the average power absorbed by each of the three passive elements. 5 10 5 5 7.071∠ 5 1 2 11.18∠ 5∠ 1 5 2 63.53° 45° 90° 2 25 Absorb 1 2 cos 1 20 11.18 cos 0 2 1 cos 2 1 10 7.071 cos 0 2 50 회로이론-І 2013년2학기 이문석 25 63.53 45 50 25 Deliver Absorb 25 7 11.2 Average Power Maximum Power Transfer An independent voltage source in series with an impedance Zth delivers a maximum average power to that load impedance ZL which is the conjugate of Zth: = = 1 2 cos ZL = Zth* 1 2 cos tan Example 11.5 Find Z for maximum power deliver. Source voltage is 3cos(100t-3). * ? ZTh 500 j3 500 j3 * This impedance can be constructed by series connection of 500 resistor and 3.333mF capacitor. 1 1 j j3 jC 100 3.333 103 회로이론-І 2013년2학기 이문석 8 11.2 Average Power Average Power for Non-periodic Functions Usually, the sum of periodic functions is periodic except the ratio of periods is irrational number. sin sin 2 sin sin sin 100 2 sin sin 2 lim → Generally Non-periodic sin 3.14 sin 100 sin sin 3.14 sin 3.14 314 with 1 2 / lim / cos → cos 100 Periodic with period 100 1 1 / sin sin 2 sin sin / ⋯ cos 1 2 Example 11.6 Find the average power delivered to a 4 resistor. 1 2 cos10 3 20 2 3 4 2 회로이론-І 2013년2학기 이문석 1 2 1 2 0 1 ⋯ 26 9 11.3 Effective Values of Current and Voltage Power outlet of 220 V do Not mean the instantaneous voltage of 220 V, but effective value of the sinusoidal voltage out. The same power is delivered to the resistor in the circuits shown. 1 1 1 회로이론-І 2013년2학기 이문석 The effective value is often referred to as the root-meansquare or RMS value. 10 11.3 Effective Values of Current and Voltage Effective (RMS) value of a sinusoidal waveform cos 2 with / 1 cos 2 1 2 1 2 2 2 2 Use of RMS values to compute Average Power 1 2 1 2 1 2 cos 2 1 2 2 2 cos ∴ cos Effective Value with Multiple-Frequency Circuits cos cos ⋯ 회로이론-І 2013년2학기 이문석 ⋯ cos ⇒ ⇒ 1 2 ⋯ ⋯ 11 11.4 Apparent Power and Power Factor Let cos , cos phaseangle: Apparent power Average power 1 cos 2 unit: VA cos Power factor Sinusoidal case pure resistive load: pure reactive load: cos 1 90° → 0 Example 11.8 Calculate the average power delivered to each of the two impedances. 60∠0° 3 4 12∠ 12 12 60 12 Apparentpower: Load: inductive 회로이론-І 2013년2학기 이문석 12 53.13° 2 288 1 144 720 288 144 720 432 720 0.6 12 11.5 Complex Power Define the complex power S as • • S Veff I*eff Veff I eff e j( ) P jQ the real part of S is P, the average power the imaginary part of S is Q, the reactive power, which represents the flow of energy back and forth from the source (utility company) to the inductors and capacitors of the load (customer). Average power ∗ cos sin 회로이론-І 2013년2학기 이문석 reactive power unit: VAR ∗ 13 11.5 Complex Power The Power Triangle 0: powerfactorislagging inductiveload 0: powerfactorisleading capacitiveload 회로이론-І 2013년2학기 이문석 • Real power (average power) : the magnitude of voltage phasor the magnitude of current phasor which is in phase with the voltage. • Reactive power (quadrature power) : the magnitude of voltage phasor the magnitude of current phasor which is 90 out of phase with the voltage. 14 11.5 Complex Power Power Measurement S VI* V(I1 I 2 )* V(I1* I*2 ) S1 S2 Example 11.9 An industrial consumer is operating a 50 kW induction motor at a lagging PF of 0.8. The source voltage is 230 V rms. In order to obtain lower electrical rates, the customer wishes to raise the PF to 0.95 lagging. Specify the suitable solution. S1 : 50 kW induction motor at a lagging PF of 0.8 ∗ 230 V rms 50 ∠ cos 0.8 In order to achieve PF of 0.95 50 ∠ cos 0.95 ⇒ 50 0.95 16.43 회로이론-І 2013년2학기 이문석 50 0.8 ∠ 50 ∠36.9° 0.8 ⇒ 50 16.43 37.5 21.07 ⇒ ∠ 50 ∗ ⇒ 37.5 ∗ 21.07 10 230 230 91.6 91.6 2.51Ω 15 11.5 Complex Power Homework : 11장 Exercises 5의 배수 문제. 기말고사 칠 때 제출. 회로이론-І 2013년2학기 이문석 16 이 자료에 나오는 모든 그림은 McGraw·hill 출판사로부터 제공받은 그림을 사 용하였음. All figures at this slide file are provided from The McGraw-hill company. 회로이론-І 2013년2학기 이문석