* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download instituto tecnologico de costa rica
Immunity-aware programming wikipedia , lookup
Electrical substation wikipedia , lookup
Pulse-width modulation wikipedia , lookup
Three-phase electric power wikipedia , lookup
History of electric power transmission wikipedia , lookup
Electrical ballast wikipedia , lookup
Power inverter wikipedia , lookup
Variable-frequency drive wikipedia , lookup
Negative feedback wikipedia , lookup
Power MOSFET wikipedia , lookup
Analog-to-digital converter wikipedia , lookup
Current source wikipedia , lookup
Surge protector wikipedia , lookup
Stray voltage wikipedia , lookup
Alternating current wikipedia , lookup
Integrating ADC wikipedia , lookup
Two-port network wikipedia , lookup
Power electronics wikipedia , lookup
Voltage optimisation wikipedia , lookup
Voltage regulator wikipedia , lookup
Buck converter wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Mains electricity wikipedia , lookup
Schmitt trigger wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
INSTITUTO TECNOLOGICO DE COSTA RICA ESCUELA DE INGENIERÍA ELECTRÓNICA CURSO: EL- 4311 ESTRUCTURA DE MICROPROCESADORES PROF.: Ing. José Alberto Díaz García 4 de Agosto del 2006 PRIMER PROYECTO DE INVESTIGACIÓN a. INTRODUCCIÓN Para la solución de sistemas lineales utilizando microprocesadores se requiere de funciones matemáticas que nos permitan realizar: multiplicaciones, divisiones, potencias, raíces, logaritmos y antilogaritmos, entre otras. Existen muchos algoritmos que nos permiten realizar estas funciones, sin embargo desde el punto de vista de la eficiencia del procesador son procedimientos que lo hacen operar lentamente en la ejecución de tareas, ya que se necesitan muchos cientos de ciclos de reloj para que se ejecuten. Desde el punto de vista analógico el problema fue resuelto hace mucho tiempo, por ejemplo, en 1985 Analog Devices colocó en el mercado el circuito integrado AD538 (se adjuntan las hojas de datos) que realiza todas estas funciones. La idea de este trabajo consiste en realizar un conjunto de módulos combinacionales desarrollados en un lenguaje de programación orientado a hardware (Verilog o VHDL) que realicen esas mismas operaciones, para luego insertarlo en un microprocesador con el fin de resolver modelos matemáticos de sistemas lineales. b. OBJETIVO GENERAL Diseñar e implementar una serie de módulos combinacionales empotrados en un FPGA (Spartan 3) y desarrollados con un lenguaje de programación orientado a hardware (Verilog o VHDL) que realicen las operaciones de: multiplicación, división, potencias, raíces, logaritmos y antilogaritmos. c. OBJETIVOS ESPECIFICOS 1. Diseñar un sistema que contenga módulos para multiplicación, división, potencias, raíces, logaritmos y antilogaritmos, en lógica combinacional, utilizando un lenguaje de programación orientado a hardware Verilog o VHDL y que cumplan con las especificaciones que se suministran. 2. Simular utilizando la herramienta ModelSim de Mentor Graphics, el comportamiento de cada uno de los módulos. 3. Utilizar las diferentes herramientas que ofrece el paquete ISE de Xilinx para sintetizar, enrutar y optimizar los diseños digitales. 4. Generar la documentación necesaria que cumpla con las especificaciones que se suministran. 1 d. ESPECIFICACIONES DE DISEÑO a. Todo el sistema debe ser combinacional. b. El sistema debe utilizar la mínima cantidad de recursos del FPGA con el fin que se puedan empotrar en el microprocesador existente. c. Utilice el Spartan III, XC3S1000-FT256. d. No utilice los comandos de suma, resta, multiplicación, división que ofrecen los lenguajes de programación, ya que estos consumen muchos recursos del FPGA. e. Realice una descripción detallada del método utilizado para realizar cada una de las funciones. f. Para el diseño del sistema utilice el procedimiento de diseño modular. g. Debe indicar claramente las especificaciones de las entradas y las salidas. h. Los datos de entrada deben codificarse en 16 bits y las salidas en 32 bits. i. Todas las operaciones utilizan operandos enteros. j. Las señales de selección de las funciones cumplen con la siguiente tabla. SELECCION A2 A1 A0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 FUNCION Multiplicación División Potencia Raíz Logaritmo natural Antilogaritmo natural e. SIMULACIÓN DE LOS MODULOS. a. b. c. d. e. El archivo de simulación debe incluir como mínimo una prueba para cada uno de los módulos desarrollados. Se debe realizar la simulación “post-place and route”, para ello tome en cuenta que el programa se empotrará en un Spartan III, XC3S1000-FT256 de Xilinx. El tiempo de retardo máximo para los módulos que se simularán debe ser menor o igual a 20nseg. El programa ISE de Xilinx necesario para esta simulación se encuentra instalado en las salas de computadores A8 y A7. Suministre un resumen del proyecto en donde se muestren todos los recursos que se utilizan. 2 f. DOCUMENTACIÓN. Incluya como mínimo los siguientes elementos a. Aspectos generales del trabajo como por ejemplo: portada, sumario, introducción, índices, descripción del problema, conclusiones, recomendaciones, bibliografía, etc. (según referente a presentación de informes). b. Presentación: debe presentar un informe escrito del proyecto y una versión electrónica donde se incluya: 1. 2. 3. 4. Informe del proyecto, en formato Word para Windows. Módulos del sistema (archivos *.v). Bancos de prueba utilizados para la simulación (archivos *.v). Incluir el archivo de simulación generado en el modelo “del emplazamiento y ruteo”. 5. Establezca en su documentación las rutas críticas, suministre una explicación de sus datos. 6. Analice los diferentes reportes que se generan en cada una de las etapas del proceso de síntesis. 7. Incluya las relaciones lógica/ruta y área/frecuencia en cuanto al uso del FPGA, documente y justifique sus datos. c. Diagramas: Se deben incluir diagramas que permitan el entendimiento del diseño implementado por ustedes. Oriéntese en el diseño modular, recuerde que se esta modelando hardware. d. Los programas deben documentarse según la orientación indicada en el documento “Documentación de procedimientos” disponible en www.ie.itcr.ac.cr/jdiaz. a. EVALUACIÓN. La evaluación del proyecto es integral, esto es: a. Se deben entregar TODAS las partes para ser evaluado. Por ejemplo no se aceptan trabajos en donde se dejen partes incompletas donde se evidencie su realización con el fin de obtener simplemente unos puntos para la nota, el proyecto debe tener sentido lógico. b. En caso de que necesite ayuda sobre aspectos técnicos relacionados con el informe consulte esta dirección http://www.apastyle.org/ encontrará los estándares para realizar bibliografías, referencias a documentos encontrados en Internet (referencias electrónicas), etc. 3 c. La ponderación de cada punto se indica en la Tabla 4. Tabla 4. Valoración de los puntos abarcados. DOCUMENTACIÓN Portada e índices (-1, hasta -10) Redacción y ortografía (-1, hasta -10) Introducción (-1, hasta 10) Diagramas de bloques Descripciones de señales Diagramas de estados Diagramas de flujo Eficiencia de programación Programas escritos en Verilog Conclusiones y recomendaciones Bibliografía Archivos con el programa Archivos de simulación 8 8 10 10 10 10 10 2 1 1 70 SIMULACIÓN Multiplicación División Potencia Raíz Logaritmo natural Antilogaritmo natural 5 5 5 5 5 5 TOTAL 30 100 % 4 COMPLETE M[INOLlTHIC ANALOG MULl'IFlINC'I'I11N CHIP AD538 ~mbodies~ ( ~with f lHigh ) ~Performance and Wide Dynamic Range Performs Multiplication, Division; Computes Powers, Roots, Logs,Antilogs by Lew Counts, Charles Kitchin, and Steve Sherman The AD538' is a Real-Time Analog Computational Unit (ACU) in an 18-pin DIP. It performs the function, A 0 b where the OUTl'UT is a positive voltage and the variables, X, Y, and Z, represent inputs in the form of positive voltage or current. The ADS38 can be used for multiplication and division (simultaneously), powers and roots, logarithms and antilogarithms, Jts repertoire ot analog computing operations makes the device useful in ratio measurements, signal conditioning, linearization, measuremcncof energy andstochastic quantities, andcontrol. The ADS38's versatility is the serendipitous result of a quest for a monolithicanalog division circuit that could accurately compute ratios over a wide dynamic range of denominator values; indeed, this is its most important application. With a 1000:l dynamic range (V, = V, = 10 mV, V, = 10 V, V, = 10 V), the maximum total error (ADS38B) is only 2.5% of output - with no external trims. Conventional IC analog multipliers, configured and optimized for division, have yet to achieve even the modest 100:l dynamic range specification that might be considered practical for many divider applications; for example, the premium AD535KW (A?rolog Dialogue 12-2, 1978) is specified to have maximum total error o f 2% over a 50: 1 dynamic range o t denominator input, with no external trims. Besides overcoming the dynamic-range limitations of dividers based on multipliers, the AD538 has low input offsets (100pV or less) and low noise, essentially proportional to output for outputs above 10 mV: for I-volt outvut in a 1-kHz bandwidth, peak-topeak output noise is about 1.4 mV. In addition to performing onequadrant multiplication, it can also be configured for division in nvo quadrants, i.e., a bipolar numerator by a unipolar denominator; and it can calculate a wide range of powers or roots, whether positive (direct) or negative (inverse), integer or fractional (for example, 2.25, '/I, - 2). With feedback, it can be configured to perform rms and vector operations. Though generally similar in function-and many o t its applications-to the Model 433' module (see Analog Dialogue 6-2 (1972) and Chapter 3-6 of the Nonlinear Circuits ~ o n d b o o k ' ) , the ADS38 is considerably more versatile and much lowcr in cost. Figure 1 is a combined block diagram and pinout of the ADS38; it comprises five precision op amps-laser-trimmed ro less than 100 FV of offset voltage, an accurate reference source (configurable for -t 10V or +2V), and an error-corrected computing core. Functionally, the device is disposed into a log-ratio section, an antilog section, and a voltage reference. High performance, with the high-yield bipolar process employed, is the result of advanced circuit design and a thermally balanced chip layout. 'Fortechnicaldata,uscthe reply card. 'See REFERENCES o n pagc6. Analog Dialogue 19-1 1985 v. SIGNAL GNO PWR GNU Figure 1. Block diagram and pin connectionsoftheAD538. Functions are determined by the choice of inputs and appropriate connections of the device's pins. In some cases, one or two external resistors will be required. In addition to the overall transfer function, the constituent log-ratio and antilog functions-and the reference-are available for independent use. Volume 19, Number 1,1985- 28 Pages .iD538Brcaks through with multiple analog functions. ..,..... Cover Ediror's Notes, AD1 Authors . . . . . . . . . . . . . . . . . . . . . . . . 2 CDmple~eMonolithir Analog Multifunction Chip, output = Y (Z/X)"( ~ D s 3 8 ). . . . . . . . . . . . . . . . . . . . . . . 3 Dual 1 ,?-Bit Microprocwsor-Compatible DAC in 0.3'DIP (AD7549) . . . 7 24 X 24-Hit Firrd-Poin! CMOS 1)igital Multiplipr (ADSP- 1024) . . . . . . 8 Low-Cox! Voltage-to-Freqrtency Conuer~erChip (AD654) . . . . . . . . . 10 High-Per{onnunce Precision Ifybid IsoLtion Amplifier (AD29S) . . . . .12 New Plug-In Signal-Conditioning Modules for 3 B Series {3B47,3B17) . I3 Double-Buffered 14-Bit Monolithic CMOS Multiplying DAC (AD7535) . 14 Low-Cost 8-Bit Monolithic ADC Converts m 1 . 3 6 M ~ a x (AD7820) 15 Sofiwure-Programmable-GainAmplilier-Trackltlold {or Data-Acquisilion (AD365) . . . . . . . . . . . . . . . . . . . . . . . . 16 ~ligl,-PPr/onnrmr~1@Bit. 800-ns AID Conwrter {AD ADC-8 16) . . . . .17 Real-WorldIIOCprds/oriheCMOSSTDDUS(RT1-1280112811128L). 18 Thennometer wilh Resolutfon Better than 0.0001 "C . . . . . . . . . . . . 2D Ncw-ProduccBriefs: Fast 8-Bit Monolithic CMOS ADC Convcns in 1 0 (AD7S76) ~ . . . .22 Low-Cost 12-Rit Rnolvcr-to-Digital Convcner (25x0) . . . . . . . . . . 22 Ncw Options in I.IIZG 4-IC-8-Rit Raster I>AC Family . . . . . . . . . . 22 Thermocouple Xmplificrs in Cerdip for T y p j and K (hDS94Q1595Q) 23 Prrcision BiFET Op Amps in Metal and Cerdip (AD61 I ) . . . . . . . . 23 Precision Op Amp with Exisring Second Sources (AD OP-37) . . . . . . 23 16-Bir Hybrid A/D Convcrrcr - 1 7 p maw Conversion Time (AD376) 24 Digital-r~ResolvrrlSynchroTrans~ormcrs-LOH' Profile, low-Frequency . 24 Hr-Kcl for Non-Military Parts - Analog Deviccs PLUS Pragnm . . . . . 24 Mort Authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . LS New Analog Dcviccs Division Fcllow Namrd: Peter liolloway . . . . . . 25 Worth Re3ding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 6 Porpurn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 7 ..... hdvcrrixmcnt: . . . . . . . . . . . . . . Rack Cnvcr . ... . . , I I CHARACTERISTICS Although its sub-functions can be used independently, the AD538 is designed and specified as a complete analog computing system, with overall performance specified for both voltage and current inputs. Its dynamic range is 80dB for voltage signals-from 1mV to 1OV, and its current input range is 0.1 to 4 0 0 p 4 (72dB). For flexibility, the summing junctions at the inputs of four of the five amplifiers are accessible for external connections, This makes it possible to sum several signals-including feedbacks and signals from current sources-into the same input terminat, and to add offsets or change the scaling for input voltages. The wide range of dual power-supply voltages that can be usedfrom ? 18 volts to 2 4 . 5 v o l t q i v e s the user many options, including standard ? 15-volt supplies, the increasingly popular 2 12-volt supplies, and even 2 5 volts (employing the 2-volt reference connection). Multifunction devices that nominally perform the Y(Z.0oM function have been on the market since 1972, in the form of modules and-later (in less-complete form)-hybrids. 7he ADS38 is the first monolithic IC on the market to perform this function. As Table 1 indicates, though monolithic, it sacrifices neither performance nor completeness-and in fact adds some hitherto unavailable features. hionolilhic IC Hybrid lC (AD538B) Mixerror ( a s a r n u l ~ ~ p l l r r ] 100: 1 dynamlcrangc 1 O.S%oloutput1 1 5 0 p VA O r o l ~ ~ w i r l c r a n ~ c 1.04boloucpuc ~ =2(OpVA Ma%banduidrh QOkH7. I n l c r n ~ rcfcrcncr l vol~agc I 0 V, 1 V Supply vol~rgcringc 5 4 . 5 Vro 18 V Uppcr 11mi1 +18V Lower limu 14.5V Supply rurrcnl 4.5 rnA I'schgc IR-pli~DIP (IC] = Table 1. Examples of salient features of multifunction device technologies. HOW ITWORKS Logarithm T h e upper portion of the circuit shown in Figurc I computes the logarithm of the ratio of inputs Z and X. The inputs may be eithcr current (I, and I,), voltage (V, and V,), or any combination. Voltage inputs, applied at the V, and V, terminals, are converted to current by the (nominally) 25 k n resistors; the resulting currents, flowing through the feedback transdiodes, develop logarithmic voltages at the outputs of A1 and A2. The difference between the output voltages, taken by subtractor A3, is proportional to the logarithm of the ratio of the input voltages. The output of A3 is available at pin 3, labeled "B". k is Boltzmann's constant, q is the charge on an electron (Wq = 86.17pV/K), and T is absolute tetnperature in kelvins ("C+ 273.LK). At T = 3OOK (26.8"C), VE=25.85mV for each power of e, or 59.52mV per decade. This voltage constitutes a basic logarithmic output; however it would be useful: to scale the 60-millivolt output to a more convenient level, to cornpensate for the 86pVIK (or 3,330 ppm) temperature sensitivity (dVJdT = 86.17pV/K), and to buffer the output. This can bc readily done, as will be seen in the Applications section. For multiplication and division, it is necessary to add a voltage representing the logarithm of V, or ly and take the antilogarithm, or exponential. This operation is performed in the lower portion of Figure 1. The total input current a t rhe summing point of amplifier AS, determined by V,, I,, andlor any additive currents from sources wired to that point, flows through the feedback transdiode and dcvelops a negative voltage at the output of AS proportional tothe logarithm of that current. Amplifier A4 i s connected to perform a current-to-voltage conversion, which results in an antilogarithmic operation. With C (pin 12) grounded, and no offset current added at 1 (pin 9), the output voltage will be equal to the effective Y-input voltage (all currents at 1, referred to V,). When C is connected to the log-ratio output of A3 (B), its positive voltage is summed in series with the transdiode basc-emitter voltage drops, and A4 ~erformsthe balancing operation (inputs and outputs ot this scction referred to Vy and V,): therefore, and Vc may be derived from an external voltage for direct antilogarithmic operations; however, in the case of multiplication and division, since Vc= V,and, from (2), kT V, = -In' V VY thcn (4) Powers ond roots I f the output of A3 is amplified (by connecting resistance between terminals A and D to attenuarc its feedback), or attenuated (by connecting a voltage divider betwecn Band C), the gain or attenuation of the log signal affects the exponent of the (ZM)term. I f h.1 is the multiplication factor of the resistor-programmed gain or attenuation, Equation (4) becomes Vc = MV,' = kT M-In' q V VY (6) where VU' is the voltage a t B when h.1 = 1 . Thus, Equation ( I ) . expressed i n voltage, is: When the AD538 is used for two-variable analog division (ratios)-r powers and roots-the Vy input is used to sct a convenient scale factor. Amplifier A4 buffers and scales the antilog section output. The output amplifier's summing junction has been made available to provide for offsetting o r external trimming of the output stage-and to allow direct connection of the log-ratio section to this stage, thus pcrmining it to provide the amplified, buffered output of a straight log amplifier. Reference At pins 4 and 5 are output voltages from a stable (1SppnlPC typical) bandgap voltage reference, provided to eliminate the need ior an external source of the necessary reference voltages. The reference portion o f the AD538 makes available + 10 volts (buffered) and -1-2volts at the tap of a 5: 1, 20-kn laser-trimmed voltage di- Analog Dialogue 19-1 1985 vider (3,200-ohm nominal output resistance). Amplification of the 1-2-V bandgap voltage is determined by the resistance ratio. If 10volt output is not desired (for example, in operation on kS-volt power supplies), a buffered 2-volt reference may be obtained by jumpering pins 4 and 5 together. APPLICATIONS The following circuits show the basic connection modes for the ADS38 and may suggest a variety ofuses. Multiplier Figure 2 shows the basic connections for multiplication. B is connected dircctly to C, (i.e., M = I ) , and the reference voltage is connected as V,. If the 10-volt reference is used, the output is V,=V,VJlOV. Figure 4. Comparison of division errors in the AD538 and the AD535, when connectedfor division. scale-factor and the offset-trim scheme shown in Figure 5, the error can be reduced to 20.25% of reading. The offset trim current is summed at the l, input. This scheme may be used for any of theAD538 applications, and offset trim currents may beapplied to any o l the current-summing inputs for optimizing particular modes of operation. - v. -- - Figure2. Basic connection for multiplying two voltages. One-Quadrant Divider Figure 3 shows the basic connections for division. B is connected directly to C and M is set to 1 .O; the reference voltage is connected as V,. I f the 10-volt reference is used, the output voltage becomes v, = I ov VJV,. Figure 5. Connection of t h e AD538 for multiplication and division ( W X ) , with offset trim for improved accuracy. Figure 3. Basic connection for dividing t w o variables. As a divider with 10-volt scaling, the ADS38 has a -3-dB bandwidth of about 370kHz for 1 to 10-volt levels; at lower amplitudes, the bandwidth decreases gradually to about 2OOkHr ac the 2-millivolt input level. The input dynamic range is approximately 74dB, from the 2-mV noise threshold to the 10-volt + clipping level. Figure 4 compares the periormance of the AD538 as a divider with a typical contemporary multiplier-typedivider. Division with 2-Qr~adrantN~trneratot Figure 6 shows how the AD538 divides a numerator that can swing positive or negative by a positive denominator voltage. l o insure that the current flowing through the "2" transistor is positive, the numerator and denominator voltages (Zand X) are translated ro reduced currents (1, and I,) through external 34.8-kfl resistors; the denominator is translated into a n additional current that is summed into the numerator input, V,, by its on-chip 25-kn Higlt-Performance Mtrltiplier-Divider Figure 5 shows how the AD538 is configured as a high-performance one-quadrant multiplierldivider, to compute the three-variable function, V y V f l , . Conventional 4-quadrant analog multipliers cannot handle three variables, and-as noted earlier-are all but unusablewith denon~inatorshavingwidedynamic range. The circuit has a typical bandwidth of 400kHz for values of V, varying over a 100: 1 range, from lOOmV to 10 volts. The maximum error, over a 0 to 10-volt range for the other two variables, will be approximately 20.5% of reading. With the external Analog Dialogue 19-1 1985 Figure 6. Basic connection for division with numerator. bipolar resistor. As long as the magnitude of numerator signal, 2,is less than that of X, the current into the Z amplifier will be positive, with the signal inputs attenuated by a factor, A ( = 2S134.8), relative to the additional numerator input. Thus, With V, constant, V, (1/A) is constant, and its dc valuc can besubtracted out-if desired-by summing an appropriate current into input I, pin 9. Trims providecancellarion. Log Ratio Figure 7 shows the basic connections for log ratio, using the logratio section and the output amplifier. An overall gain of 15.9 V N is distributed to minimize errors contributed by the output amplifier: the gain is 5 in the input section and about 3.2 in the output section. The log-ratio output, at B, is connecred to the summing junction of the output amplifier (I,, pin 9) via a remperature-variable resistor consisting of two resistors in series-a 90.9-ohm, 1 % metal-film resistor and a 1,000-ohm, +3,500 ppmPC temperature-compensation resistor. Together, they have a resistance of 1,09 1 ohms with a 3,300 ppmPC tempco. The nominal relationship (if the feedback resistance =25,00Oohms) is ERROR SPECIFICATIONSOF ANALOG DIVIDERS Since there are many sources of error in a multifunction component, specifying each individually could, in concept, provide a means of determining the maximum error for any condition. However, it is often more useful to have a single total errorspecification that serves as an explicit predictor of performance in a particular configuration, such as division. Total error, in the multiplier or divider mode, is the sum of three terms reflectingnonlinearity, output offset, and numerator offset: 1.O% (reading) + ZSOpV + [ F a IS O ~ V ] forV, = lmVtolOV,V, = IOmVto lOV,andV, = Oto 1OV. The ADS38A's 100:l divider accuracy specfication is + 1% of reading 2 SOOFV. The B-grade specification is 2 0.5% of reading 22SOpV. AD538 prices start at $17.00 in 100s (A-grade in an 18-pin DfP). In many cases, the internally trimmed performance of the AD538 will be more than adequate for the application; but for the best possible dynamic range and accuracy, some form of external trimming should be used. Offset trims have already been discussed, in relation to Figures. Scale-factor trimscan be implemented by adding variable resistance in series with (voltage) inputs Z or Y, to reducegain, or X, to increasegain. This is yet another demonstration of the flexibility of the AD538. Figure 8 shows a way of implementingscale-factor trims for positive and negative roots. w'iiin Y. I IDJIIhI Figure 7. Connection for high-accuracy log ratio. In order to minimize any influence from the V, input, it should be returned to a small negative voltage. If a 1.2-volt AD589 is used to obtain regulated negative voltage ( - 1.2 V) for offset adiustment (as in the high-accuracy multiplication circuit of Figure 3), V, can be tied back to - 1.2 volts. Powers, Including Roots Often it is necessary to raise a quantity, which may be a ratio, to a power, which may be positive or negative, greater or less than unity, and either an integer or a mixed fraction. 7he ADS38 offers a convenient way to achieve any positive or negative power, from 115 to5, with the addition of one or two external resistors. For powers less than 1 (i.e., roots), a simple voltage divider attenuates the log-ratio output in the connection between B and C, as shown in Figure 8. For powers greater than I , the gain of the subtractor must instead be increased, by connecring resistance (RAin the table of Figure 8) between points A and D to attenuate the subtractor's feedback. For negative powers, inputs Z and X are interchanged (but this works only if the Y input is not active-for convenience, it may be set at 1 .O volts). The resistances listed are the nominal resistance values specified for standard 1% metal-film resistors. POWERS > 1 W W R S rl (ROOTS) 14811 97.611 64.911 48.711 Figure 8. Connections for raising to powers less than 1.0 (roots), with offset and gain trims; tables of resistancevalues for selected powers and roots. REFERENCES Counts, Lew, Charles Kitchin, and Stcvc Sherman, "One-Chip 'Slide Rule' Works with Logs, Antilogs for Real-Time Processing," Electronic Design(2 May 1985) Counts, Lew, and Fred Pouliot, "Versatile New Module: Y[Z/XIM at Low Cost," Analog Dialogue 6-2 (1972). Sheingold, Daniel H., ed., Nonlinear Circuits Handbook. Norwood: Analog Devices, 1974 ($5.95). a Analog Dialogue 19-1 1985