Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
III. Atoms, Elements and Minerals A. Changing scales to looking at the elements of the earth and its crust (8 most common) B. Introduction to minerals that comprise rocks (11 most common) C. The silicate minerals (7) D. Other important rock-forming minerals (4) E. Mineral properties A. Changing Scale: Zooming in from global view to atomic scale Quartz Biotite Feldspar The crust is made of rocks > Rocks are made of minerals > … A. Changing Scale: Zooming in from global view to atomic scale Rocks are made of minerals > Minerals are made of atoms Atoms and Elements Nucleus Protons Neutrons + Charge Has Mass, Atomic # 0 Charge Mass same as One Proton Atomic Mass # Electrons In shells (2, 8, 8…) - charge (balances each proton +) Very little Mass Electron Shells Ions Incomplete electron shells tend to be filled E.g. Chlorine (Cl-) 17 protons (at.# 17) 17 electrons would make it neutral (no charge) with the last shell one electron short {2, 8, 7} Soooo… Tends to grab an electron to fill the third shell Making it a negatively charged Ion (anion) Ions Other Common Examples Sodium Sodium, at.# 11 {2, 8, 1} Na+ (Cation) Oxygen, at.# 8 {2,6}, O-2 Silicon, at.# 14 {2,8,4} Si+4 Oxygen Most Common Elements of Earth’s Crust Oxygen: Silicon: Aluminum: Iron: O-2 Si+4 Al+3 Fe+2 or +3 Calcium: Ca+2 Sodium: Na+1 Potassium: K+1 Magnesium: Mg+2 B. Introduction to Minerals Halite (Rock Salt) Mineral mined for rock salt and table salt Na gives electron to Cl Opposites attract, elements bond NaCl (Sodium Chloride) * Intro to Minerals Repeating 3-D pattern forms a Crystalline Solid (or Crystal) Naturally occurring Crystal Form crystals are Minerals Crystalline structure and bonding leads to physical properties: hardness, crystal form, cleavage specific gravity (density) (pg. 38-43) 3 planes of cleavage * Some Familiar Crystal Forms Quartz Crystal (SiO2) Fig. 2.15a Snow Flake (Ice Crystal) due to crystalline structure of H2O Silica Tetrahedra The building block of most common rock forming minerals Four O2- in a tetrahedral configuration One Si4+ nested in the center (4 -2) +4 = -4 (SiO4)-4 Silica Tetrahedra The building block of most common rock forming minerals Four O2- in a tetrahedral configuration One Si4+ nested in the center (4 -2) +4 = -4 (SiO4)-4 Silica Tetrahedra The building block of most common rock forming minerals Four O2- in a tetrahedral configuration One Si4+ nested in the center (4 -2) +4 = -4 (SiO4)-4 Silica Tetrahedra The building block of most common rock forming minerals Four O2- in a tetrahedral configuration One Si4+ nested in the center (4 -2) +4 = -4 (SiO4)-4 Silica Tetrahedra The building block of most common rock forming minerals Four O2- in a tetrahedral configuration One Si4+ nested in the center (4 -2) +4 = -4 (SiO4)-4 Silica Tetrahedra The building block of most common rock forming minerals Four O2- in a tetrahedral configuration One Si4+ nested in the center (4 -2) +4 = -4 (SiO4)-4 Silica Tetrahedra The building block of most common rock forming minerals Four O2- in a tetrahedral configuration One Si4+ nested in the center (4 -2) +4 = -4 (SiO4)-4 Silica Tetrahedra The building block of most common rock forming minerals Four O2- in a tetrahedral configuration One Si4+ nested in the center (4 -2) +4 = -4 (SiO4)-4 -4 Definition of Mineral Naturally Occurring Crystalline Solid With a definite chemical composition A unique composition or A definite range of compositions Mineral Group, e.g. Olivine C. Silica Tetrahedra and Silicate Minerals * Si and O bond in a tetrahedron shape The basic building block of most minerals of the crust Bond with other tetrahedra and cations to form Silicate Minerals * Silicate Minerals: Examples E.g., Olivine Isolated silicate structure (SiO4)-4 + 2×Fe+2 Fe2SiO4 Fe Mg SiO4 Mg2SiO4 Definite Range (Fe,Mg) 2 SiO4 Olivine Mineral Group Silicate Minerals: Examples E.g., Olivine * Isolated silicate structure bonded with iron and magnesium Makes up much of the mantle Fe/Mg rich >50% Silica poor <45% Silicate Minerals: Examples E.g., Pyroxenes (Mineral Group) Single Chain Silicate structure (SiO3)-2 + Fe+2 FeSiO3 (Fe,Mg) SiO3 MgSiO3 (Fe,Mg) SiO3 Pyroxene Mineral Group Ferromagnesian Silicate Minerals: Examples E.g., Pyroxenes (Group of minerals) Single Chain Silicate structure bonded with Fe, Mg, Ca, and Al Found in Oceanic Crust Fe/Mg/Ca rich (20%) Silica poor (<20%) Building Silicates What is the net charge of: a silica tetrahedron? a single chain of single tetrahedra? *Hint: a shared apex is ½ an Oxygen Building Silicates What is the net charge of: a silica tetrahedron? a single chain of single tetrahedra? a double chain of tetrahedra? a sheet of tetrahedra? a framework of tetrahedra? a framework of tetrahedra with every fourth silicon replaced with an aluminum ion? a framework with every other Si replaced with an Al? *Hint: a shared apex is ½ an Oxygen Building Silicates What common elements would balance the charges of : an isolated silicate? a single chain silicate? a double chain silicate? a sheet silicate? a framework silicate? a framework of tetrahedra with every fourth silicon replaced with an aluminum ion? a framework with every other Si replaced with an Al? Silicate Minerals: Examples E.g., Pyroxenes (Group of minerals) * Single Chain Silicate structure bonded with Fe, Mg, Ca, and Al Found in Oceanic Crust Fe/Mg/Ca rich Silica poor Single Chain Silicates E.g., Pyroxenes (SiO3) Silicate Minerals: Examples E.g., Amphiboles (Group of minerals) * Double Chain Silicate structure bonded with Fe, Mg, Ca, and Al Found in Continental Crust More silica and less iron than pyroxenes Double Chain Silicates E.g., Amphiboles (Si8O22) Silicate Minerals: Examples E.g., Micas (Muscovite and Biotite) Sheet Silicate structure bonded with Al, K, (biotite has Fe, Mg) Found in Continental Crust More silica and less iron than Amphiboles E.g., Clays (Mineral Group) Hydrated, sheet silicates from weathering of other silicates * Sheet Silicates E.g., Micas (Biotite and Muscovite) (AlSi3O10) Silicate Minerals E.g., Feldspars (Orthoclase and Plagioclase) and Quartz Framework Silicate bonded with Al, and K (orthoclase) or Na-Ca (plagioclase) Found in Continental Crust More silica than micas, no iron * Granite Orthoclase Quartz Framework Silicates E.g., Quartz (SiO2) and Feldspars (AlSi3O8) Framework Silicates E.g., Quartz (SiO2) and Feldspar (AlSi3O10)