Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
9/10/2016 Unit 3: Electrons! Beginnings with Bohr – Page 6 • Atomic theory (Niels Bohr) involved absorption and emission of light. 1 9/10/2016 Schrodinger – Page 9 • Mathematical equations are used to describe wave properties of electrons. • Based on probable location of electrons – Heisenberg Uncertainty Principle. Quantum Mechanics • Orbital (“electron cloud”) – Region in space where there is 90% probability of finding an electron 90% probability of finding the electron Electron Probability vs. Distance Electron Probability (%) 40 30 20 10 0 0 50 100 150 200 250 Distance from the Nucleus (pm) Orbital Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem 2 9/10/2016 Orbitals • The location of an electron is described with 4 terms. - Energy Level - Sublevel - Orbital - Spin Sublevels • There are four sublevel. -s -p -d -f 3 9/10/2016 Energy Level • Describes the energy and distance from the nucleus. • Whole numbers, ranging from 1 to 7. Orbital Shapes – s sublevel - s for “sphere” - The s sublevel contains only 1 orbital. 4 9/10/2016 P Sublevel • 3 orbitals present in this sublevel. • P for “petal/peanut” D Sublevel • 5 orbitals present in this sublevel. • D for “double peanut/petal” 5 9/10/2016 F Sublevel • 7 orbitals present in this sublevel. • F for “flower” Summary Energy Level Sublevels Present # of Orbitals Total # of electrons in Energy Level 1 2 3 4 6 9/10/2016 Arrangement of E- (Page 10) • Electrons are arranged according to a few rules. – Aufbau Principle – Pauli’s Exclusion Principle – Hund’s Rule 7 9/10/2016 Aufbau Principle – Page 9 • As protons are added one by one to the nucleus to build up the elements, electrons are similarly added to orbitals • Electrons fill in low energy orbitals before high energy orbitals Increasing energy Aufbau Principle – Page 10 7s 6s 5s 7p 6p 6d 5p 4d 4p 4s 3p 3s 2p 2s 5d 5f 4f 3d He with 2 electrons * orbital energy order found on periodic table 1s 8 9/10/2016 Pauli’s Exclusion – Page 9 • No 2 electrons in the same atom can have the same 4 quantum numbers. • Each orbital can only hold 2 electrons and they will have opposite spins. – Example 9 9/10/2016 Hund’s Rule – Page 9 • When there are multiple orbitals, one electron goes in each before pairing takes place. Orbital Notation – Page 13 • Orbital Notation shows the energy level, sublevel, orbital, and spin for every electron in an atom. 10 9/10/2016 Practice • Step 1: Start by drawing out the orbitals in the correct order. • Step 2: Determine the total number of electrons. Practice • Step 3: Start arranging the electrons • Step 4: Follow the rules! 11 9/10/2016 Quantum Numbers • Four Quantum Numbers: – Specify the “address” of each electron in an atom UPPER LEVEL Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem Quantum Numbers Principal Quantum Number ( n ) Angular Momentum Quantum # ( l ) Magnetic Quantum Number ( ml ) Spin Quantum Number ( ms ) 12 9/10/2016 Quantum Numbers 1. Principal Quantum Number ( n ) – Energy level 1s – Size of the orbital 2s – n2 = # of orbitals in the energy level =1-7 3s Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem Quantum Numbers 2. Angular Momentum Quantum # ( l ) – Energy sublevel – Shape of the orbital s p d Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem f 13 9/10/2016 The angular momentum quantum number Allowed values of l depend on the value of n and can range from 0 to n – 1 Copyright © 2006 Pearson Benjamin Cummings. All rights reserved. Quantum Numbers 3. Magnetic Quantum Number ( ml ) – Orientation of orbital – Specifies the exact orbital within each sublevel – ml can range from –l to l in integral steps – ml = l, -l + l, . . . 0 . . ., l – 1, l Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem 14 9/10/2016 Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 336 Quantum Numbers 4. Spin Quantum Number ( ms ) – Electron spin +½ or -½ – An orbital can hold 2 electrons that spin in opposite directions. Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem 15 9/10/2016 Quantum Numbers n shell 1, 2, 3, 4, ... l subshell 0, 1, 2, ... n - 1 ml orbital - l ... 0 ... +l ms electron spin +1/2 and - 1/2 Let’s try quantum #’s! 16 9/10/2016 Allowed Sets of Quantum Numbers for Electrons in Atoms Level n 1 l 0 0 Sublevel Orbital ml Spin ms 2 0 0 1 3 1 0 -1 0 0 1 1 0 -1 2 1 2 0 -1 -2 = +1/2 = -1/2 Electron Orbitals: Electron orbitals Equivalent Electron shells (a) 1s orbital (b) 2s and 2p orbitals c) Neon Ne-10: 1s, 2s and 2p 1999, Addison, Wesley, Longman, Inc. 17 9/10/2016 What sort of covalent bonds are seen here? H H H O O O H O (b) O2 (a) H2 H H O H O H H O H H H C H H H H (c) H2O (d) CH4 THIS SLIDE IS ANIMATED IN FILLING ORDER 2.PPT H = 1s1 1s He = 1s2 1s Li = 1s2 2s1 1s 2s 1s 2s 1s 2s 2px 2py 2pz 1s 2s 2px 2py 2pz Be = 1s2 2s2 C = 1s2 2s2 2p2 S = 1s2 2s2 2p63s2 3p4 3s 3px 3py 3pz 18 9/10/2016 26 electrons. Iron has ___ Fe = 1s1 2s22p63s23p64s23d6 1s 2px 2py 2pz 2s 3px 3py 3pz 3s 4s 6s 6p 5d 5s 5p 4d 4p 3d 3d 3d 3d 3d 3d 4f 32 e- eee- e- +26 e- e- e- ee- e- ee- e- e- 4s e- ee- ee- 18 e- e- e- e- 18 Arbitrary Energy Scale 3s 3p 8 ee- 2s 2p 8 1s 2 NUCLEUS Electron Configurations Orbital Filling Element 1s 2s 2px 2py 2pz 3s Electron Configuration H 1s1 He 1s2 C NOT CORRECT 1s22s1 Violates Hund’s Rule 1s22s22p2 N 1s22s22p3 O 1s22s22p4 F 1s22s22p5 Ne 1s22s22p6 Na 1s22s22p63s1 Li 19 9/10/2016 Electron Configurations Orbital Filling Element 1s 2s 2px 2py 2pz 3s Electron Configuration H 1s1 He 1s2 Li 1s22s1 C 1s22s22p2 N 1s22s22p3 O 1s22s22p4 F 1s22s22p5 Ne 1s22s22p6 Na 1s22s22p63s1 Filling Rules for Electron Orbitals Aufbau Principle: Electrons are added one at a time to the lowest energy orbitals available until all the electrons of the atom have been accounted for. Pauli Exclusion Principle: An orbital can hold a maximum of two electrons. To occupy the same orbital, two electrons must spin in opposite directions. Hund’s Rule: Electrons occupy equal-energy orbitals so that a maximum number of unpaired electrons results. *Aufbau is German for “building up” 20 9/10/2016 Filling Rules for Electron Orbitals Aufbau Principle: Electrons are added one at a time to the lowest energy orbitals available until all the electrons of the atom 6s 6p 5d 4f have been accounted for. 32 5s 5p 4d 18 Pauli Exclusion Principle: An orbital can hold a maximum of two electrons. 4s 4p 3d To occupy the same orbital, two electrons must spin in opposite 18 directions. Arbitrary North South 3s 3p Energy Scale 8 - - Hund’s Rule: Electrons occupy equal-energy orbitals so that a maximum 2s 2p number of unpaired electrons results. 8 1s *Aufbau is German for “building up” S 2 N NUCLEUS Spin Quantum Number, ms North Electron aligned with magnetic field, South N S Electron aligned against magnetic field, ms =its -½ ms = +behaves ½ The electron as if it were spinning about an axis through center. This electron spin generates a magnetic field, the direction of which depends on the direction of the spin. Brown, LeMay, Bursten, Chemistry The Central Science, 2000, page 208 21 9/10/2016 Energy Level Diagram of a Many-Electron Atom 6s 6p 5d 4f 32 5s 5p 4d 18 4s 4p 3d 18 Arbitrary Energy Scale 3s 3p 8 2s 2p 8 1s 2 NUCLEUS O’Connor, Davis, MacNab, McClellan, CHEMISTRY Experiments and Principles 1982, page 177 Maximum Number of Electrons In Each Sublevel Maximum Number of Electrons In Each Sublevel Sublevel Number of Orbitals Maximum Number of Electrons s 1 2 p 3 6 d 5 10 f 7 14 LeMay Jr, Beall, Robblee, Brower, Chemistry Connections to Our Changing World , 1996, page 146 22 9/10/2016 Quantum Numbers n shell 1, 2, 3, 4, ... l subshell 0, 1, 2, ... n - 1 ml orbital - l ... 0 ... +l ms electron spin +1/2 and - 1/2 Order in which subshells are filled with electrons 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f 5s 5p 5d 5f 6s 6p 6d 7s 2 2 6 2 6 2 10 6 2 10 1s 2s 2p 3s 3p 4s 3d 4p 5s 4d … 23 9/10/2016 Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 5s 5p 4d 4s 4p 3d 3s 3p 4f Bohr Model N 2s 2p 1s Electron Configuration NUCLEUS H He Li C N Al Ar F Fe La CLICK ON ELEMENT TO FILL IN CHARTS Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 5s 5p 4d 4s 4p 3d 3s 3p Hydrogen 4f Bohr Model N 2s 2p 1s Electron Configuration NUCLEUS H He Li C N Al Ar F Fe La H = 1s1 CLICK ON ELEMENT TO FILL IN CHARTS 24 9/10/2016 Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 5s 5p 4d 4s 4p 3d 3s 3p Helium 4f Bohr Model N 2s 2p 1s Electron Configuration NUCLEUS H He Li C N Al Ar F Fe La He = 1s2 CLICK ON ELEMENT TO FILL IN CHARTS Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 5s 5p 4d 4s 4p 3d 3s 3p Lithium 4f Bohr Model N 2s 2p 1s Electron Configuration NUCLEUS H He Li C N Al Ar F Fe La Li = 1s22s1 CLICK ON ELEMENT TO FILL IN CHARTS 25 9/10/2016 Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 5s 5p 4d 4s 4p 3d 3s 3p Carbon 4f Bohr Model N 2s 2p 1s Electron Configuration NUCLEUS H He Li C N Al Ar F Fe La C = 1s22s22p2 CLICK ON ELEMENT TO FILL IN CHARTS Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 5s 5p 4d 4s 4p 3d 3s 3p Nitrogen 4f Bohr Model N Hund’s Rule “maximum number of unpaired orbitals”. 2s 2p 1s Electron Configuration NUCLEUS H He Li C N Al Ar F Fe La N = 1s22s22p3 CLICK ON ELEMENT TO FILL IN CHARTS 26 9/10/2016 Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 5s 5p 4d 4s 4p 3d 3s 3p Fluorine 4f Bohr Model N 2s 2p 1s Electron Configuration NUCLEUS H He Li C N Al Ar F Fe La F = 1s22s22p5 CLICK ON ELEMENT TO FILL IN CHARTS Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 5s 5p 4d 4s 4p 3d 3s 3p Aluminum 4f Bohr Model N 2s 2p 1s Electron Configuration NUCLEUS H He Li C N Al Ar F Fe La Al = 1s22s22p63s23p1 CLICK ON ELEMENT TO FILL IN CHARTS 27 9/10/2016 Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 5s 5p 4d 4s 4p 3d 3s 3p Argon 4f Bohr Model N 2s 2p 1s Electron Configuration NUCLEUS H He Li C N Al Ar F Fe La Ar = 1s22s22p63s23p6 CLICK ON ELEMENT TO FILL IN CHARTS Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 5s 5p 4d 4s 4p 3d 3s 3p Iron 4f Bohr Model N 2s 2p 1s Electron Configuration Fe = 1s22s22p63s23p64s23d6 NUCLEUS H He Li C N Al Ar F Fe La CLICK ON ELEMENT TO FILL IN CHARTS 28 9/10/2016 Arbitrary Energy Scale Energy Level Diagram 6s 6p 5d 5s 5p 4d 4s 4p 3d 3s 3p Lanthanum 4f Bohr Model N 2s 2p 1s Electron Configuration La = 1s22s22p63s23p64s23d10 NUCLEUS H He Li C N Al Ar F Fe La 4s23d104p65s24d105p66s25d1 CLICK ON ELEMENT TO FILL IN CHARTS Shorthand Configuration A neon's electron configuration (1s22s22p6) B third energy level [Ne] 3s1 C D one electron in the s orbital orbital shape Na = [1s22s22p6] 3s1 electron configuration 29 9/10/2016 Shorthand Configuration Element symbol Electron configuration Ca [Ar] 4s2 V [Ar] 4s2 3d3 F [He] 2s2 2p5 Ag [Kr] 5s2 4d9 I [Kr] 5s2 4d10 5p5 Xe [Kr] 5s2 4d10 5p6 22p64s [He] 2s[Ar] 3s223d 3p664s23d6 Fe [Rn] 7s2 5f14 6d4 Sg General Rules • Pauli Exclusion Principle Wolfgang Pauli – Each orbital can hold TWO electrons with opposite spins. Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem 30 9/10/2016 General Rules 6d Aufbau Principle 7s 5d – Electrons fill the lowest energy orbitals first. 6s 5f 6p 5d 6s 4d 5s 3d 3p 4f 5p 5s 4p 4s 6d 7s 4f 5p 4d Energy – “Lazy Tenant Rule” 5f 6p 4p 3d 4s 3p 3s 3s 2p 2p 2s 2s 1s 1s Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem General Rules • Hund’s Rule – Within a sublevel, place one electron per orbital before pairing them. – “Empty Bus Seat Rule” WRONG RIGHT Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem 31 9/10/2016 8 O Notation 15.9994 • Orbital Diagram O 8e- 2s 1s 2p • Electron Configuration 1s2 2s2 2p4 Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem 16 Notation S 32.066 • Longhand Configuration S 16e- 1s2 2s2 2p6 3s2 3p4 Core Electrons Valence Electrons • Shorthand Configuration S 16e- [Ne] 3s2 3p4 Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem 32 9/10/2016 Periodic Patterns s 1 2 3 4 5 6 7 p 1s 2s 1s 2p 3s d (n-1) 3p 4s 3d 4p 5s 4d 5p 6s 5d 6p 7s 6d 7p 6 4f f (n-2) 7 5f Periodic Patterns • Period # – energy level (subtract for d & f) • A/B Group # – total # of valence e- • Column within sublevel block – # of e- in sublevel Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem 33 9/10/2016 Periodic Patterns • Example - Hydrogen 1 2 3 4 5 6 7 1st column of s-block 1s1 1st Period s-block Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem Periodic Patterns • Shorthand Configuration – Core electrons: • Go up one row and over to the Noble Gas. – Valence electrons: • On the next row, fill in the # of e- in each sublevel. 1 2 3 4 5 6 7 Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem 34 9/10/2016 32 Periodic Patterns Ge 72.61 • Example - Germanium 1 2 3 4 5 6 7 [Ar] 4s2 3d10 4p2 Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem Stability • Full energy level • Full sublevel (s, p, d, f) • Half-full sublevel 1 2 3 4 5 6 7 Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem 35 9/10/2016 The Octet Rule Atoms tend to gain, lose, or share electrons until they have eight valence electrons. This fills the valence shell and tends to give the atom the stability of the inert gasses. 8 ONLY s- and p-orbitals are valence electrons. Write out the complete electron configuration for the following: 1) An atom of nitrogen 2) An atom of silver 3) An atom of uranium (shorthand) POP QUIZ Fill in the orbital boxes for an atom of nickel (Ni) 1s 2s 2p 3s 3p 4s 3d Which rule states no two electrons can spin the same direction in a single orbital? Extra credit: Draw a Bohr model of a Ti4+ cation. Ti4+ is isoelectronic to Argon. 36 9/10/2016 Answer Key Write out the complete electron configuration for the following: 1) An atom of nitrogen 1s22s22p3 1s22s22p63s23p64s23d104p65s24d9 2) An atom of silver 3) An atom of uranium (shorthand) [Rn]7s26d15f3 Fill in the orbital boxes for an atom of nickel (Ni) 1s 2s 2p 3p 3s 4s 3d Which rule states no two electrons can spin the same direction in a single orbital? Pauli exclusion principle Extra credit: Draw a Bohr model of a Ti4+ cation. n= 22+ n Ti4+ is isoelectronic to Argon. Electron Configurations of First 18 Elements: Hydrogen 1H Helium 2He Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon 3Li 4Be 5B 6C 7N 8O 9F 10Ne Sodium Magnesium Aluminum Silicon Phosphorous Sulfur Chlorine Argon 11Na 12Mg 13Al 14Si 15P 16S 17Cl 18Ar 37 9/10/2016 Electron Dot Diagrams Group 1A 1 2A 2 3A 13 4A 14 5A 15 6A 16 7A 17 H 8A18 He Li Be B C N O F Ne Na Mg Al Si P S Cl Ar K Ca Ga Ge As Se Br Kr s1 s2 s2p1 s2p2 s2p3 s2p4 s2p5 s2p6 = valence electron V. Outer Level e-’s • Valence electrons • Usually involved in chemical changes • Dot diagram –Symbol represents the nucleus –Dots represent the outer e-’s 38 9/10/2016 39 9/10/2016 40 9/10/2016 41 9/10/2016 42 9/10/2016 43 9/10/2016 44