Download Document

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chapter 4, 5, and 13
Notes
4-7 Exponents and
Multiplication
 To multiply numbers or
variables with the same base,
add the exponents.
 Examples:
1. 3 • 32 = 3 • 3 • 3 = 31+2 = 33
2. 22 • 23 = 2 • 2 • 2 • 2 • 2 = 22+3
= 25
You can also do the same
thing with variables
a5 • a1 • b2
m5 • m7
y2 • y3 • z • z4
You can also do the same thing
with variables - answers
a5 • a1 • b2 = a5+1b2 = a6b2
m5 • m7 = m5+7 = m12
y2 • y3 • z • z4 = y2+3z1+4 = y5z5
Simplify:
1. -2x2 • 3x5
2. 6a3 • 3a
3. -5c2 • -3c7
Simplify: Answers
1. -2x2 • 3x5 = -2 • 3 • x2 • x5 = -6x7
2. 6a3 • 3a = 18a4
3. -5c2 • -3c7 = 15c9
Finding a Power of a Power
 To find a power of a power,
multiply the exponents

1.
2.
3.
Examples:
(32)3
(24)2
(72)3
Finding a Power of a Power
- Answers
 To find a power of a power,
multiply the exponents

1.
2.
3.
Examples:
(32)3 = (3)2 •3 = 36 = 729
(24)2 = (2)4 •2 = 28 = 256
(72)3 = (7)2 •3 = 76
 Simplify each expression:
1. (c5)4
2. (m3)2
3. (3x2)2
 Simplify each expression: Answers
1. (c5)4 = (c)5 •4 = c20
2. (m3)2 = (m)3 •2 = m6
3. (3x2)2 = 9x4
4-8 Exponents and Division
 To divide numbers or variables
with the same base, subtract the
exponents
 x0 = 1
 Examples:
1. 38
35
2. 107
104
4-8 Exponents and Division Answers

To divide numbers or variables with the
same base, subtract the exponents
 x0 = 1
 Examples:
1. 38 = 38-5 = 33 = 27
35
2. 107 = 107-4 = 103 = 1,000
104
Simplify each expression
1. X25
x18
2. 12m5
3m
Simplify each expression
1. x25
x18
= x25-18 = x7
2. 12m5 = 4m5-1 = 4m4
3m
Zero as an Exponent
1. (-8)2
(-8)2
2. 52x6
5x6
Zero as an Exponent Answers
1. (-8)2 = (-8)2-2 = (-8)0 = 1
(-8)2
2. 52x6 = 25x6 = 5x6-6 = 5
5x6
5x6
Negative/Positive
Exponents
1. 56
58
2. 3y8
9y12
Negative/Positive
Exponents - Answers
1. 56 = 56-8 = 5-2 = 1 = 1
58
52 25
2. 3y8 = 1y8 = 1
9y12 3y12 3y4
Using exponents without a
fraction bar
1. x2y3
x3y
2. m3n2
m6n8
Using exponents without a
fraction bar - Answers
1. x2y3 = x2-3y3-1 = x-1y2
x3y
2. m3n2 = m3-6n2-8 = m-3n-6
m6n8
5-9 Powers of Products and
Quotients
 To raise a product to a
power, raise each factor to
the power.
Examples:
1. (4x2)3
2. (xy2)5
5-9 Powers of Products and
Quotients - Answers
 To raise a product to a
power, raise each factor to
the power.
Examples:
1. (4x2)3 = (4)3(x2)3 = 64x6
2. (xy2)5 = x5y10
Working with a negative
sign
1.
2.
3.
4.
(-5x)2
-(5x)2
(-5a2b3)2
-(2y)4
Working with a negative
sign - Answers
1. (-5x)2 = (-5)2x2 = 25x2
2. -(5x)2 = -(52)(x2) = -25x2
3. (-5a2b3)2 = 25a4b3
4. -(2y)4 = -16y4
Powers of Quotients
 To raise a quotient to a
power, raise both the
numerator and denominator
to the power.
1. (3/b)2
2. (2x2/3)3
Powers of Quotients Answers
 To raise a quotient to a
power, raise both the
numerator and denominator
to the power.
1. (3/b)2 = 32/b2 = 9/b2
2. (2x2/3)3 = 8x6/27
13-4 Polynomials
Polynomial - a monomial or a
sum or difference of
monomials
Monomial - a real number, a
variable, or a product of a real
number and variables
Is the expression a
monomial? Explain
7x2y
8 + a
a/7y
5x/4
Is the expression a monomial?
Explain -Answers
 7x2y - yes, it is the product of 7 and the
variables x and y
 8 + a - no, the expression is a sum
 a/7y - no, the denominator contains a
variable
 5x/4 - yes, it is the product of 5/4 and
the variable x
Polynomial
# of terms
Examples
Monomial
1
4, 32, x, x2
Binomial
2
Trinomial
3
x-3, 5x+1,
x3-x
x2 + x + 1
x4 -2x -5
Naming a Polynomial
x - y
8xyz
y2 + 8y + 18
10
Naming a Polynomial Answers
x - y
----- binomial
8xyz ----- monomial
y2 + 8y + 18 ----- trinomial
10
------ monomial
Evaluating a Polynomial
 Substitute values for the
variables
m = 8 and p = -3
1. 2mp
2. 3m - 2p
3. m2 + 2p - 3
Evaluating a Polynomial Answers
 Substitute values for the
variables
m = 8 and p = -3
1. 2mp = -48
2. 3m - 2p = 30
3. m2 + 2p - 3 = 55
13-5 Add/Subtract
Polynomials
Add by combining like terms or
aligning like terms
Example:
(2x2 + 3x -1) + (x2 + x -3)=
(2x2 + x2) + (3x + x ) + (-1 + -3) =
3x2 + 4x -4
More Examples
1. (z2 + 5z + 4) + (2z2 -5)
2. (4x + 9y)
+(3x - 5y)
3. a2 + 6a - 4
+ 8a2 - 8a
More Examples - Answers
1.
2.
3.
(z2 + 5z + 4) + (2z2 -5) = 3z2 + 5z -1
(4x + 9y)
+(3x - 5y)
7x + 4y
a2 + 6a - 4
+ 8a2 - 8a
9a2 - 2a - 4
Subtracting Polynomials
To subtract polynomials, you have
to add the opposite of each term
in the 2nd polynomial.
Example:
(5x2 + 10x) - (3x - 12)
5x2 + 10x
+
- 3x + 12
5x2 + 7x + 12
More examples
1. (7a2 - 2a) - (5a2 + 3a)
2. (10z2 + 6z + 5) - (z2 -8z + 7)
3. (3w2 + 8 + v) - (5w2 -3 - 7v)
More examples - Answers
1. (7a2 - 2a) - (5a2 + 3a) =
2a2 - 5a
2. (10z2 + 6z + 5) - (z2 -8z + 7) =
9z2 + 14z - 2
3. (3w2 + 8 + v) - (5w2 -3 - 7v) =
-2w2 + 11 + 8v
13-6 Multiplying a
Polynomial by a Monomial
Use the distributive property to
multiply each term of the
polynomial by the monomial.
Example:
2x(x + 4) =
2x(x) + 2x(4) =
2x2 + 8x
More examples
1. 3x2(8x2 - 5x + 2)
2. 2b(b2 + 3b -6)
3. 3x (2x2 + x + 3)
4. x(x2 + 2x + 4)
More examples - Answers
1. 3x2(8x2 - 5x + 2) = 24x4 - 15x3 + 6x2
2. 2b(b2 + 3b -6) = 2b3 + 6b2 - 12b
3. 3x (2x2 + x + 3) = 6x3 + 3x2 + 9x
4. x(x2 + 2x + 4) = x3 + 2x2 + 4x