* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download CF for coordinated monitoring in WSN
Survey
Document related concepts
Transcript
Collaborative Filtering for Coordinated Monitoring in Sensor Networks Janne Toivola & Jaakko Hollmén -Department of Information and Computer Science, Aalto University School of Science, Finland 1 lauantaina 10. joulukuuta 2011 An idea... Collaborative filtering useful in a wireless sensor network? Recommendation system Wireless sensor network ??? Content based... Collaborative filtering Variety of methods... 2 IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 Outline Background -Structural Health Monitoring (SHM) -Wireless Sensor Networks (WSN) Coordinated monitoring problem -Collaborative Filtering (CF) -Random assignment and Majority voting Experiments and results -Wooden model bridge -Aluminum bookshelf Summary 3 IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 Background Multidisciplinary research project -Intelligent Structural Health Monitoring System (ISMO) -Applied mechanics, data mining, sensor networks... Structural Health Monitoring -Assessing the condition of man-made structures Data mining -Extracting relevant information from data Wireless Sensor Networks -Distributed computing environment 4 IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 Structural health monitoring No sensors that directly indicate damage -Extracting features from vibration measurements -Sensitive to damages, not to environmental variability -Transmissibility magnitude: how well vibrations of certain frequency propagate between two sensors Novelty detection problem -Not allowed to damage the (unique) structure to collect training samples -Supervised feature selection not possible -Maybe some additional information available? 5 IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 Wireless sensor networks Eliminate costly and error-prone wires Restricted bandwidth and computation -Simple features can be computed locally on a node -Number of transmitted features should be low Each sensor node should concentrate on measuring relevant features! Relevance depends on what the other nodes are measuring => coordination problem! 6 IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 Coordinated monitoring Monitor at most D local features / node -An upper limit on computation & communication -Sparsity helps also the detection algorithm Each local feature can be given a rating -Encodes additional application-specific information -The above restriction holds: only D ratings at a time Computation of combined features -Requires measuring certain sets of local features -Local ratings combined to select monitored features 7 IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 Collaborative filtering Traditionally in recommendation systems -Users give ratings to items -Recommend new items to a user based on ratings from other similar users Assumes structure in the rating data -Similar users like prefer same items Needs to deal with the sparsity of ratings WSN: recommend features to nodes! -some similarities & differences to conventional CF... 8 IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 Baseline: random & voting What if it doesn’t matter which features to monitor / all are equally good? -Let’s try also random selection, at most D/node What if the sensors don’t need to specialize / just one global choice enough? -Let’s try majority voting based on the same ratings -Number of combined features may still be high due to the number of combinations... 9 IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 The proposed architecture Accelerometers: Distributed sensor nodes Acceleration time series -time series xs[n] DFT Local features: Coordinated by CF -power spectrum Xs[k] Transmissibility Combined features: -transmissibility T[s1,s2,k] = Xs1[k] / Xs2[k] Novelty detector Centralized user Novelty detector: k-NN or Gaussian 10 IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 Frequency domain ratings -run FFT etc. -over t time windows Sensor 8 0.2 Acceleration Mean power spectrum Xs[k] 0.1 0 −0.1 −0.2 0 0.1 0.2 0.3 0.4 0.5 Time (s) 0.6 0.7 0.8 0.9 1 −4 x 10 Power Sort by power 15 10 5 For top-D bins 20 40 60 Frequency (Hz) 80 100 120 0 20 40 60 Frequency (Hz) 80 100 120 10 Rating -r[s,k] += 1 -Default vote 0 0 5 0 Repeat MCF times 11 IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 Combined ratings and CF After collecting local ratings r[s,k] Compute ratings for the combined features -w[s1,s2,k] = corrj(r[s1,j], r[s2,j]) * r[s1,k] * r[s2,k] -similarity of sensors s1 and s2 measured by correlation -symmetric, since transmissibility is ”symmetric” Sort and select top-D combined features for each sensor node -some sensors may be left with less than D features, if other nodes are fully utilized -no eliminated items like in recommendation systems 12 IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 Data: Wooden bridge [19] A 1 A 7 4 10 2 B 13 weights A 8 5 11 3 A 6 12 9 shaker 14 15 C 15 accelerometers and a shaker Added weights to simulate damages 1998 + 265 time series measurements -32 seconds • 256 Hz = 8192 samples each 13 IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 Example: Random, D=4 14 IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 Example: Majority vote, D=4 15 IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 Example: CF, D=4 16 IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 Example: CF, D=20 17 IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 Novelty detection accuracy AUC values with kïNN 1 Iterated 10 times 0.9 CF, vote, random k-NN detector min, med, max AUC 18 AUC D=2...20 0.8 0.7 0.6 0.5 Random Vote CF 0.4 0 50 100 150 200 250 300 number of transmissibility features IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 350 400 450 Novelty detection accuracy AUC values with Gaussian 1 Iterated 10 times 0.9 CF, vote, random Gaussian detector min, med, max AUC 19 AUC D=2...20 0.8 0.7 0.6 0.5 Random Vote CF 0.4 0 50 100 150 200 250 300 number of transmissibility features IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 350 400 450 Data: LANL bookshelf [20] 18 17 19 20 10 9 11 12 2 1 3 4 24 accelerometers damages 24 23 15 16 22 21 14 13 6 5 7 8 A 20 C shaker Loosened and removed bolts Shaker at the bottom 150 + 120 time series measurements -5.12 sec • 1600 Hz = 8192 samples each IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 Novelty detection accuracy AUC values with kïNN 1 Iterated 10 times 0.9 CF, vote, random k-NN detector min, med, max AUC 21 AUC D=2...20 0.8 0.7 0.6 0.5 Random Vote CF 0.4 0 200 400 600 800 number of transmissibility features IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 1000 1200 Novelty detection accuracy AUC values with Gaussian 1 Iterated 10 times 0.9 CF, vote, random Gaussian detector min, med, max AUC 22 AUC D=2...20 0.8 0.7 0.6 0.5 Random Vote CF 0.4 0 200 400 600 800 number of transmissibility features IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011 1000 1200 Summary Problem of coordinated monitoring Collaborative filtering as a solution Applied as part of SHM system Demonstrated with two data sets -8192•S acceleration samples => one detection result -CF performed well with wooden bridge data -Differences smaller with the LANL bookshelf data Some CF problems remain: coverage 23 IEEE ICDMW DaMNet 2011: Collaborative Filtering for Coordinated Monitoring in Sensor Networks lauantaina 10. joulukuuta 2011