Download Chap1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Chapter 1 - Introduction to Electronics
Introduction
Microelectronics
Integrated Circuits (IC) Technology
Silicon Chip
Microcomputer / Microprocessor
Discrete Circuits
Signals
Signal processing
http://www.eas.asu.edu/~midle/jdsp/jdsp.html
Signals
Voltage Sources
Current Sources
Thevenin & Norton
http://www.clarkson.edu/%7Esvoboda/eta/ClickDevice/refdir.html
http://www.clarkson.edu/%7Esvoboda/eta/Circuit_Design_Lab/circuit_design_lab.html
http://www.clarkson.edu/%7Esvoboda/eta/CircuitElements/vcvs.html
Signals
Voltage Sources
Current Sources
Signals
Voltage Sources
Current Sources
http://www.clarkson.edu/~svoboda/eta/ClickDevice/super.html
http://javalab.uoregon.edu/dcaley/circuit/Circuit_plugin.html
Frequency Spectrum of Signals
Fourier Series
frequency
x
time
Fourier Transform
Fundamental and Harmonics
http://www.educatorscorner.com/experiments/spectral/SpecAn3.shtml
Frequency Spectrum of Signals
Fourier Series
Def i ni ng t he Si gnal

or Func t i on t o be Anal y z ed:


f ( t)  sin 0 t   ( t)  .2 cos 7 0 t

2
f ( t)
0
2
0
1
2
3
4
5
6
t
http://www.jhu.edu/%7Esignals/fourier2/index.html
Frequency Spectrum of Signals
Fourier Series
Four i er Ser i es ( Tr i gonomet r i c f or m) of f ( t ) :
1 
a0   
T 
T
2 
a   
n
T 
T
a0  0
f ( t) dt
av er age v al ue
0


f ( t)  cos n  0 t d t
c os i ne c oef f i c i ent s
0
n v ar y i ng f r om 1 t o N
an
0
0.1
0
10
20
30
40
n
50
60
Frequency Spectrum of Signals
Fourier Series
2 
b   
n
T 
T


f ( t)  sin n  0 t d t
s i ne c oef f i c i ent s
0
1
bn
0
0.5
0
10
20
30
40
n
50
60
Frequency Spectrum of Signals
Fourier Series
Rear r angi ng t ot al
a1  a
n
c1 
n
b1  b
n
1
2

ex pr es s i on t o i nc l ude a0 i n t he c ompl et e s pec t r um
n
n
a1n2  b1n2
c  a0
0
0.4
c1 n
0
0.2
0
0
10
20
30
40
n
50
60
Frequency Spectrum of Signals
Fourier Series
Rec ons t r uc t i on of t i me- domai n f unc t i on f r om t r i g. Four i er s er i es :
f2( t) 
 an1cos n10t  bn1sinn10t  a0
n1
2
f2( t )
f ( t)
0
2
0
1
2
3
4
t
5
6
Frequency Spectrum of Signals
Fourier Series
Four i er Ser i es ( Compl ex For m) of f ( t ) :
1
w    N     n
n
2


 i w n  0 t
1 
C    f ( t)  e
dt
n
T 
0
0.04
Cn
0
0.02
0
0
10
20
30
40
n
50
60
Frequency Spectrum of Signals
Four i er
Tr ans f or m of
 
f (t )
gi v es :
 1  N      1  N    .25   1  N

 

 2
  2
 2

F   


f ( t)  e
 i   t
dt
0
0.3
F(  )
0.2
0
0.1
0
30
20
10
0
10
20
30

The
obv i
A pl
v ol t
F 
" v ol
magni t
ous l y
ot of
age pr
s hows
t s per
ude of F( ) y i el ds t he c ont i nuous f r equenc y s pec t r um, and i t i s
of t he f or m of t he s ampl i ng f unc t i on.
The v al ue of F( 0) i s A.
| F( ) | as a f unc t i on of  does not i ndi c at e t he magni t ude of t he
es ent at any gi v en f r equenc y .
What i s i t , t hen?
Ex ami nat i on of


t hat , i f f ( t ) i s a v ol t age wav ef or m, t hen F  i s di mens i onal l y
uni t f r equenc y , " a c onc ept t hat may be s t r ange t o mos t of us .
Frequency Spectrum of Signals
http://www.jhu.edu/%7Esignals/fourier2/index.html
http://www.jhu.edu/%7Esignals/listen/music1.html
http://www.jhu.edu/%7Esignals/phasorlecture2/indexphasorlect2.htm
Analog and Digital Signals
Sampling Rate
http://www.jhu.edu/%7Esignals/sampling/index.html
Binary number system
http://scholar.hw.ac.uk/site/computing/activity11.asp
Analog-to-Digital Converter
http://www.astro-med.com/knowledge/adc.html
http://www.maxim-ic.com/design_guides/English/AD_CONVERTERS_21.pdf
Digital-to-Analog Converter
http://www.maxim-ic.com/ADCDACRef.cfm
Amplifiers
Signal Amplification
vo
 
Voltage_Gain A v
vi
 
Power_Gain  A p 
input_power PI
load_power PL
Distortion
 
Non-Linear Distortion
Current_Gain A i
Symbols
Ap
v o  io
v I iI
io
iI
Av Ai
Gains – Voltage, Power, Current
Decibels
Amplifier Power Supplies
Efficiency




Voltage_gain_in_decibels
20 log A v
Coltage_gain_in_decibels
20 log A i
Power_gain_in_decibels

10 log A p

dB
dB
dB
Amplifiers
Example 1.1
A v 
9
Av  9
1
Ii  0.0001
A v  20 log  9

9
Io 
1000
Io  9  10
A v  19.085
3

A i  20 log A i

PL  40.5
PI  Virms  Iirms
A p 
PL
PI
Pdc  10 9.5  10 9.5
 
PL
Pdc
 100
Virms 
9
2
1
2
W
W
A p  29.085
Pdc  190
Pdissipated  Pdc  PI  PL
Ii
A i  90
mW
A p  810

Io
Vorms 
dB
mW
PI  0.05
A p  10 log  810
A i 
A
A i  39.085
PL  Vorms  Iorms
dB
dB
mW
Pdissipated  149.55
  21.316
%
mW
A
A
Iorms 
9
Iirms 
0.1
2
2
Amplifiers
Saturation
An amplifier transfer characteristic that is linear except for output saturation.
Amplifiers
Non-Linear Transfer Characteristics and Biasing
An amplifier transfer characteristic that shows considerable nonlinearity. (b) To obtain linear operation the amplifier is biased as
shown, and the signal amplitude is kept small.
Amplifiers
Example 1.2
v I  0.6  0.61  0.69
 11 40 vI
 
v o v I  10  10
e
10
 
vo vI
5
0
0.58
0.6
0.62
0.64
vI
0.66
0.68
0.7
Amplifiers
Lminus  0.3
Example 1.2
v o  0.3
v I  0
inital value
given
vo
 11
10  10
e
40 vI
 
v I  Find v I
v I  0.69
v I  0
 
 11
40 vI
v o v I  10  10
e
Lplus  v o ( 0)
Lplus  10
v I  0
v o  5
vo
given
 11
10  10
 
v I  Find v I
e
40 vI
v I  0.673
Amplifiers
Example 1.2
 11 40 vI
10  10
1
2500000000
1
2500000000
highlight equation use symbolics
then differentiate
e


 exp 40 v I
 exp ( 40 0.673)  196.457
Circuit Models For Amplifiers
Voltage Amplifiers
Common Models
Show example on board
Circuit Models For Amplifiers
Example 1.3
Class assignment
Circuit Models For Amplifiers
Other Amplifiers
Current
Transconductance
Transresistance
Circuit Models For Amplifiers
Example 1.4
Large-signal equivalent-circuit models of the npn BJT operating in the active mode.
Frequency Response of Amplifiers
Bandwidth
Frequency Response of Amplifiers
Bandwidth
RC Circuits – Class Exercise
Single-Time Constant Networks
http://www.clarkson.edu/%7Esvoboda/eta/plots/FOC.html
http://www.clarkson.edu/%7Esvoboda/eta/acWorkout/Switched_RCandRL.html
Frequency Response of Amplifiers
Bandwidth
(a) Magnitude and (b) phase response of STC networks of the low-pass type.
Frequency Response of Amplifiers
Frequency Response of Amplifiers
Bandwidth
Frequency Response of Amplifiers
(a) Magnitude and (b) phase response of STC networks of the high-pass type.
Frequency Response of Amplifiers
Example 1.5
Class assignment
Frequency Response of Amplifiers
Classification of Amplifiers
Based on Frequency Response
Frequency Response of Amplifiers
Exercise 1.6
Class assignment
The Digital Logic Inverter
Function
Transfer Characteristics
Noise Margins
The Digital Logic Inverter
Function
Transfer Characteristics
Noise Margins
The Digital Logic Inverter
Inverter Implementation