Download Differential Amplifiers

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Transistor–transistor logic wikipedia , lookup

Regenerative circuit wikipedia , lookup

Amplifier wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Schmitt trigger wikipedia , lookup

Valve RF amplifier wikipedia , lookup

Valve audio amplifier technical specification wikipedia , lookup

Opto-isolator wikipedia , lookup

Rectiverter wikipedia , lookup

Operational amplifier wikipedia , lookup

Transcript
類比電路設計(3349) - 2004
Differential Amplifiers
Ching-Yuan Yang
National Chung-Hsing University
Department of Electrical Engineering
Overview
z Reading
B. Razavi Chapter 4.
z Introduction
Offering many useful properties, differential operation has become the
dominant choice in today’s high-performance analog and mixed-signal
circuits. This lecture deals with the analysis and design of CMOS differential
amplifiers. It contains:
‡ Review of single-ended and differential operation.
‡ Analysis of the large-signal and small-signal behavior.
‡ The common-mode rejection.
‡ Differential pair with diode-connected and current-source loads as well
as differential cascode stages.
Analog-Circuit Design
4-1
Ching-Yuan Yang / EE, NCHU
1
Single-ended and differential operation
z Single-ended and differential signals
z What are “common-mode” (CM) and “differential mode” (DM)?
Analog-Circuit Design
4-2
Ching-Yuan Yang / EE, NCHU
Advantages of differential operation
z Reduction of coupling
z Common-mode rejection occurs with noisy supply voltages
Analog-Circuit Design
4-3
Ching-Yuan Yang / EE, NCHU
2
Advantages of differential operation (cont’d)
z Reduction of coupled noise by differential operation
z Increase in maximum achievable voltage swing
z Simpler biasing
z Higher linearity
Analog-Circuit Design
4-4
Ching-Yuan Yang / EE, NCHU
4-5
Ching-Yuan Yang / EE, NCHU
Simple differential circuit
Analog-Circuit Design
3
Basic differential pair
z Schematic –- source-coupled pair
The differential pair employs a current source ISS to make ID1 + ID2 indepent
of Vin,CM. Thus, if Vin1 = Vin2, the bias current of each transistor equqls ISS /2
and the output common-mode level is VDD − RDISS /2.
Analog-Circuit Design
4-6
Ching-Yuan Yang / EE, NCHU
Basic differential pair (cont’d)
z Qualitative analysis
Input/output characteristics
Analog-Circuit Design
4-7
Ching-Yuan Yang / EE, NCHU
4
Common-mode characteristics
z Common-mode schematic
z Common-mode input/output characteristics
Analog-Circuit Design
Ching-Yuan Yang / EE, NCHU
4-8
Common-mode characteristics
z Input common-mode range – M1, M2 in saturation
I

VGS1 + (VGS 3 − VTH 3 ) ≤ Vin ,CM ≤ minVDD − RD SS + VTH ,
2


VDD 

z The small-signal differential gain of a differential pair vs. the input CM level
M1, M2 sat.
Analog-Circuit Design
4-9
M1, M2 triode
Ching-Yuan Yang / EE, NCHU
5
Output swing of a differential pair
z For M1 and M2 to be saturated, each
output can go as high as VDD but as low as
approximately Vin,CM − VTH. In other words,
the higher the input CM level, the smaller
the allowable output swings. For this
reason, it is desirable to choose a relatively
low Vin,CM.
z An trade-off exists between the maximum
value of Vin,CM and differential gain. Similar
to a simple CS stage, the gain of a
differential pair is a function is a function of
the dc drop across the load resistors. Thus,
if RDISS /2 is large, Vin,CM must remain
close to ground potential.
Analog-Circuit Design
4-10
Ching-Yuan Yang / EE, NCHU
Quantitative analysis
z Differential pair
Ö
Vout1 = VDD − RD1ID1 , Vout2 = VDD − RD2ID2
[RD1 = RD2 = RD]
Vout1 − Vout2 = RD2ID2 − RD1ID1 = RD (ID2 − ID1)
Assuming the circuit is symmetric, M1 and M2
are saturated, and λ = 0,
Vin1 − Vin2 = VGS1 − VGS2
For a square-law device, we have:
Therefore,
Vin1 − Vin 2 =
2I D 2
2I D1
−
W
W
µnCox
µnCox
L
L
Recognizing that ID2 + ID1 = ISS, we obtain
Analog-Circuit Design
4-11
Ching-Yuan Yang / EE, NCHU
6
Quantitative analysis (cont’d)
(Vin1 − Vin 2 )2 =
Ö
2
µnCox
W
L
(I
SS
− 2 I D1I D 2 )
1
W
µnCox (Vin1 − Vin 2 )2 − I SS = −2 I D1I D 2
2
L
Squaring the two sides again and 4ID1ID2 = (ID1 + ID2)2 − (ID1 − ID2)2 = ISS2 − (ID1 − ID2)2 ,
we arrive at I D1 − I D 2 =
W
1
4I SS
2
− (Vin1 − Vin 2 )
µnCox (Vin1 − Vin 2 )
W
L
2
µnCox
L
Denoting ∆ID = ID1 − ID2 and ∆Vin = Vin1 − Vin2 , we can show that
4I SS
− 2∆Vin2
1
∂∆I D
W µnCoxW / L
= µnCox
4I SS
∂∆Vin 2
L
− ∆Vin2
µnCoxW / L
Analog-Circuit Design
4-12
Ching-Yuan Yang / EE, NCHU
Quantitative analysis (cont’d)
‡ For ∆Vin = 0, Gm =
∂∆I D
∂∆Vin V
=
in
µnCox
=0
W
I SS
L
‡ Since ∆Vout = Vout1 − Vout2 = RD ∆ID = RDGM∆Vin,
the small-signal differential gain is given as
Av = Gm RD =
‡ GM = 0 for ∆Vin =
z
µnCox
W
I SS ⋅ RD
L
2I SS
µnCoxW / L
Variation of ID and GM vs. ∆Vin
ISS
Analog-Circuit Design
4-13
Ching-Yuan Yang / EE, NCHU
7
Quantitative analysis (cont’d)
ISS
z
For a zero differential input, ID1 = ID2 = ISS /2, and hence
(VGS
− VTH )1,2 =
I SS
µnCox
W
L
=
∆Vin
2
™ Increasing ∆Vin to make the circuit more linear inevitably increases the
overdrive voltage of M1 and M2. For a given ISS, this is only by reducing
W/L and hence the gm of the transistors.
Analog-Circuit Design
Ching-Yuan Yang / EE, NCHU
4-14
Quantitative analysis (cont’d)
z Input/output characteristic
z
As W/L increases, ∆Vin decreases,
narrowing the input range across which
both devices are on.
Analog-Circuit Design
4-15
z
As ISS increases, both the input range
and the output current swing increase.
Ching-Yuan Yang / EE, NCHU
8
Differential pair with small-signal inputs
z Scheme – M1 and M2 sat., small signals Vin1 and Vin2.
z Analysis
Ö
Differential pair sensing
one input signal.
Analog-Circuit Design
Circuit viewed as a CS
stage degenerated by M2.
4-16
RS = 1/ gm 2
VX
RD
=−
1
1
Vin1
+
g m1 g m 2
Equivalent circuit.
Ching-Yuan Yang / EE, NCHU
Differential pair with small-signal inputs (cont’d)
z Replacing M1 by a Thevenin equivalent
VT = Vin1
RT = 1/gm1
M2 operates as a CG stage, exhibiting a gain equal to
VY
RD
=
1
1
Vin1
+
g m 2 g m1
2R D
V
1
1 in1
+
g m1 g m 2
= gm reduces to is (VX − VY)|Due to Vin1 = − gmRDVin1.
The overall voltage for Vin1 is (VX − VY)|Due to Vin1 = −
which, for gm1 = gm2
Similarly, (VX − VY)|Due to Vin2 = − gmRDVin2. Thus, we have
Analog-Circuit Design
4-17
(VX
− VY )tot
= − gm R D
Vin1 − Vin 2
Ching-Yuan Yang / EE, NCHU
9
Differential and common-mode components
Vin1 − Vin 2 Vin1 + Vin 2
+
2
2
Vin 2 − Vin1 Vin1 + Vin 2
=
+
2
2
Vin1 =
Vin 2
Analog-Circuit Design
4-18
Ching-Yuan Yang / EE, NCHU
Differential and common-mode components (cont’d)
z Superposition for differential and common-mode signals
Vin1 − Vin 2 Vin1 + Vin 2
+
2
2
Vin 2 − Vin1 Vin1 + Vin 2
=
+
2
2
Vin1 =
Vin 2
Analog-Circuit Design
4-19
Ching-Yuan Yang / EE, NCHU
10
Differential and common-mode components (cont’d)
z λ≠0
‡ Common-mode operation
‡ Differential-mode operation
V − Vin 2
V X = −gm (RD ro1 ) in1
2
Vin 2 − Vin1
VY = −gm (RD ro 2 )
2
V X − VY
= −gm (RD ro )
Vin1 − Vin 2
Analog-Circuit Design
If the circuit is fully symmetric and ISS an
ideal current source, the current drawn by
M1 and M2 from RD1 and RD2 is exactly
equal to ISS /2 and independent of Vin,CM .
Thus, VX and VY experience no change as
Vin,CM varies.
Ching-Yuan Yang / EE, NCHU
4-20
Common-mode response
z Differential pair sensing CM input
Av ,CM =
RSS : the output impedance of
current source.
Analog-Circuit Design
4-21
Vout
RD /2
=−
1
Vin ,CM
+ RSS
2gm
(λ=γ=0)
Ching-Yuan Yang / EE, NCHU
11
Common-mode response with mismatch
z Resistor mismatch
∆V X = − ∆Vin ,CM
gm
RD
1 + 2gm RSS
∆VY = − ∆Vin ,CM
gm
(RD + ∆RD )
1 + 2gm RSS
A CM change at the input introduces a
differential component at the output.
• CM response with finite tail cap.
• Effect of CM noise
Analog-Circuit Design
4-22
Ching-Yuan Yang / EE, NCHU
Common-mode response with mismatch (cont’d)
z Mismatch between M1 and M2
 I D1 = gm1 (Vin ,CM − VP )

I D 2 = gm 2 (Vin ,CM − VP )
⇒ (gm1 + gm 2 ) (Vin ,CM − VP ) = VP / RSS
⇒ VP =
(gm1 + gm 2 )RSS V
(gm1 + gm 2 )RSS + 1 in ,CM
gm1

VX = −gm1(Vin,CM −VP )RD = − (g + g )R +1RDVin,CM
gm1 − gm2
m1
m2 SS
RDVin,CM
⇒ VX −VY = −

gm2
g
(
+ gm2 )RSS +1
m
1
VY = −gm2(Vin,CM −VP )RD = −
RDVin,CM

(gm1 + gm2 )RSS +1
∆gm RD
ACM −DM = −
(gm1 + gm 2 )RSS + 1
Thus, the circuit converts input
CM variations to a differential
error by a factor equal to
Analog-Circuit Design
ACM−DM : CM to DM conversion
∆gm = gm1 − gm2
4-23
Ching-Yuan Yang / EE, NCHU
12
Common-mode rejection ratio (CMRR)
z Definition CMRR =
ADM
ACM −DM
z If only gm mismatch is considered
‡ Differential mode (assume Vin1 = −Vin2)
ADM =
RD gm1 + gm 2 + 4gm1gm 2RSS
2
1 + (gm1 + gm 2 )RSS
‡ Common-mode to differential-mode conversion
ACM −DM = −
∆gm RD
(gm1 + gm 2 )RSS
RS = (1/ gm 2 ) RSS
+1
‡ CMRR
CMRR =
≈
gm1 + gm 2 + 4gm1gm 2RSS
2∆gm
gm
[1 + 2gm RSS ]
∆gm
Analog-Circuit Design
4-24
Ching-Yuan Yang / EE, NCHU
Differential pair with MOS loads
z Diode-connected load
z Current-source load
−1
Av = −gmN (gmP
roN roP )
Av = −gmN (roN roP )
g
≈ − mN
gmP
=−
µn (W / L )N
µ p (W / L )P
Analog-Circuit Design
4-25
Ching-Yuan Yang / EE, NCHU
13
Differential pair with MOS loads (cont’d)
z Diode-connected + current source loads
z Cascode differential pair
Av ≈ gm1[(gm 3ro 3ro1 ) (gm 5ro 5ro 7 )]
Half circuit
Analog-Circuit Design
4-26
Ching-Yuan Yang / EE, NCHU
Variable-gain amplifier (VGA)
z
Simple VGA
‡ Av = Vout /Vin varies from zero (if ID3 = 0) to a
maximum value given by voltage headroom limitations
and device dimensions.
‡ VGAs find application in systems where the signal
amplitude may experience large variations and hence
requires inverse change in the gain.
z
Two stages providing variable gain
Consider two differential pairs that
amplify the input by opposite gain.
We now have Vout1/Vin = −gmRD
and , where gm denotes the
transconductance of each transistor
in equilibrium. If I1 and I2 vary in
opposite directions, so do |Vout1/Vin|
and |Vout2/Vin|.
Analog-Circuit Design
4-27
Ching-Yuan Yang / EE, NCHU
14
Gilbert cell
‡Vout = Vout1 + Vout2 = A1Vin + A2Vin
‡If I1 = 0, then Vout = +gmRDVin.
If I2 = 0, then Vout = −gmRDVin.
For I1 = I2, the gain drops to zero.
‡ Vcont1 and Vcont2 vary I1 and I2 in
opposite directions such that the
gain of the amplifier changes
monotonically. For Vcont1 = Vcont2,
the gain is zero.
‡For M5-6 to operate in saturation,
the CM level of Vcont, VCM,cont,
must be such that
VCM,cont ≤ VCM,in − VGS1 + VTH5,6.
Analog-Circuit Design
4-28
Ching-Yuan Yang / EE, NCHU
Gilbert cell (cont’d)
‡ Gilbert cell sensing the input voltage by the bottom differential pair
Analog-Circuit Design
For very positive Vcont,
For very negative Vcont,
Vout = gm5,6RDVin.
Vout = −gm5,6RDVin.
4-29
Ching-Yuan Yang / EE, NCHU
15