* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Point-to-Point Communication
Electrical connector wikipedia , lookup
History of telecommunication wikipedia , lookup
UniPro protocol stack wikipedia , lookup
Standing wave ratio wikipedia , lookup
Cellular repeater wikipedia , lookup
Analog television wikipedia , lookup
405-line television system wikipedia , lookup
Analog-to-digital converter wikipedia , lookup
Valve RF amplifier wikipedia , lookup
Opto-isolator wikipedia , lookup
Immunity-aware programming wikipedia , lookup
Radio transmitter design wikipedia , lookup
Broadcast television systems wikipedia , lookup
Wave interference wikipedia , lookup
Telecommunications engineering wikipedia , lookup
Point-to-Point Communication 2 Terminal-Host Communication  Components     Terminal Host (locus of processing) Transmission line (here, phone line and modem) Telephone line acts as a point-to-point link Host Terminal Phone Line Modem Modem 3 Terminal Emulation  People Already Have PCs  Host operating systems only work with terminals  Do not want to buy a terminal as well  PCs can emulate (act like) terminals  Only requires software (a communication program)  Turns an expensive PC into a cheap terminal 4 VT100 Terminals  VT100 Emulation Only Needs Software   Communications program Terminal emulation software  Most Hosts Support VT100 Terminals  Lowest Common Denominator     Slow: maximum speed of 19 kbps, usually slower Uses inefficient asynchronous ASCII transmission, discussed later No graphics or even multiple fonts: plain text only No color 5 Terminal Emulation Software  File Transfer     Terminal emulation program and host file transfer program must support the same file transfer protocol standard    Transfer whole files with error correction Upload: from PC to host Download: from host to PC Kermit XMODEM, YMODEM IBM 3270 Terminals 6 Analog and Digital Transmission Analog Signal Digital Signal (1101) Modem Modulation Analog Signal Digital Signal (1101) Modem Demodulation 7 Digital and Binary  Digital Transmission  Can have multiple voltage levels, say 4  Change to one at start of each bit cycle  If 4, changes can represent 2 bits each: 00, 01, 10, 11 Voltage Level  11 10 01 00 Time 8 Baud Rate and Bit Rate  Baud Rate      Number of times line changes per second Let baud rate be 4 (4 changes per second) Let bits per line change be 2 Bit rate = 8 bits per second Bit rate = x2 Baud rate in this example 11 10 01 00 One Second 9 Wave Characteristics    Amplitude (power) Frequency (cycles per second, Hertz) Wavelength (meters) Wavelength (meters) Amplitude (power) Frequency (Hz) One Second Wave Characteristics  Phase    0 and rising 10 Highest 0 and falling Lowest Fully cycle is 360 degrees Phase is degrees different from reference wave Human ears cannot hear. Equipment can Reference Wave 0o 180 degrees out of phase 0o 90o 180o 270o 180o 11 Wave Characteristics  Amplitude  Frequency and Wavelength   Not independent  As frequency rises, wavelength falls (Shorter guitar strings produce higher notes)  Their product is constant--the speed of light, sound, etc. Phase 12 Frequency Modulation Vary the frequency (wavelength) to represent 1 and 0 Low Frequency (0) Wavelength Wavelength High Frequency (1) Frequency Modulation (1011) 0 1 1 1 13 Amplitude Modulation Low Amplitude (0) Amplitude (low) Amplitude (high) High Amplitude (1) Amplitude Modulation (1011) 14 Phase Modulation In Phase (0) 180 degrees out of phase (1) Frequency Modulation (1011) 15 Complex Modulation Vary both amplitude and phase Several values (not just two) on each dimension In Phase High Amplitude 90 Degrees Out of Phase, High Amplitude Low Amplitude 180 Degrees Out of Phase 16 Modem Standards  Modems at Two Ends Must Communicate  Must follow same standards  Most modem standards set by ITU-T  Multiple category of standards:  Modem speed (modulation)  Error correction and compression  Facsimile  Etc.  When buying a modem, must check for standard(s) followed in each category 17 Modem Speed Standards  Set by the ITU-T   Govern how modulation is done Standards for speed governs modulation for data transmission  V.92  V.90 56.6 kbps V.34 28.8 kbps/33.6 kbps V.32 bis14.4 kbps   56.6 kbps plus quick connect, modem on hold, PCM upstream 18 Modem Speed Standards  Most data modems are also fax modems   V.14 V.29 14.4 kbps 9,600 bps Error Correction and Compression  ITU-T Standards      V.42 Error detection and correction V.42 bisData compression (up to 4:1) V.44 Data compression (20 to 120% more than V.42 bis) Independent of speed standards (but V.44 only with V.92) Microcom Standards     Microcom Network Protocol (MNP) Both error correction and compression Several levels Independent of speed standards 19 20 Modem Intelligence  Computer Can Send Commands to Modem    Hayes Developed the first Command Set     Dial a number, including how long to wait, etc. Called intelligent modems Most modems follow the same command set We call them “Hayes compatible” Commands start with “AT” Other Standards for Fax Modems  Class 1 and Class 2: extensions to Hayes 21 Telephone Bandwidth is Limited  Telephone Transmission    Cuts off sounds below 300 Hertz Cuts off sounds above about 3,400 Hz Bandwidth is the difference between the highest and lowest frequencies (3400-300): about 3,100 Hz Sound Loudness Bandwidth 3,100 Hz 0 300 3400 Frequency (Hz) 20,000 22 Telephone Bandwidth is Limited  Speed is Limited  Maximum speed is related to bandwidth (Shannon’s Law)  Maximum speed for phone lines for transmission is a little over 30 kbps  So modems can’t get much faster 23 Another Look at Compression  With 4:1 Compression, a V.34 Modem Can Receive Data at 115.2 kbps from the PC  However the ~30 kbps limit of the phone system is not exceeded. Still transmit at 33.6 kbps. ~35 kbps Maximum Compression in Modem 115.2 kbps 33.6 kbps 24 56 kbps Analog Modems  From home, you transmit  Analog-to-Digital Converter (ADC)   Filters your signal to a bandwidth of ~3.1 kHz This limits you to 33.6 kbps PC V.34 modem 33.6 kbps ADC Telephone Network 25 56 kbps Analog Modems  But ISP Can Connect Digitally     PC Signal travels through phone system at 56 kbps At user end, digital-to-analog converter (DAC) Sends signal to analog modem at wide bandwidth Modem can receive at 56 kbps 56 kbps modem DAC Telephone Network 56 kbps Digital Link ISP 56 kbps Modems  What they can do    Problems    Send at 33.6 kbps (V.92 with PCM upstream can go up to 48 kbps) Receive at 56 kbps (V92 with V.44 compression can go up to 120 kbps) past: competing standards from Rockwell, U.S. Robotics (V.90 ended them) present: ISPs must support V.92 (all support V.90) Users and ISPs   Users V.90 analog modem or V.92 ISPs V.90 digital modem or V.92 26 27 56 Kbps Modems  Telephone company  No changes needed, although ...  Many not have an internal ADC conversion between ISP and customer (some do)  May not have long transmission line from last switch to the customer premises (local loop)  Not all phone lines to customer premises will support 56 kbps modems  Even when they do, speeds may only be 40-50 kbps 28 Half-Duplex Transmission  Sender and receiver must take turns sending   Like an old one-lane road No interruption for error handling or flow control A B Time 1 Only one side May communicate A does A B Time 2 Only one side May communicate B does 29 Full-Duplex Transmission  Both Sides May Transmit Simultaneously   Needed for error correction, flow control Now almost universal in modem communication A B Time 1 Both sides may communicate Both do A B Time 2 Both sides may communicate A does 30 Asynchronous Transmission  ASCII Character Set     7-bit is the standard 8-bit extended ASCII is popular Bits transmitted backward Parity for Error Detection  Only for 7-bit ASCII  Start/Stop Bits for Framing  Each frame is exactly 10 bits long 31 Asynchronous Transmission  ASCII Character Set  Created for sending printed American text  Each character is a 7-bit code (e.g., 1010101)  This allows 2^7 or 128 possible characters  Printing characters: A, a, !, <, %, etc.  Control codes: XOFF tells other side to pause 32 Asynchronous Transmission  8-bit ASCII  Used in PCs: 8 bits per character (10101010)  Used for word processing format codes  Used in graphics that stores data in bytes 33 PC Serial Port  Bit Transmission of ASCII Characters  Transmits last bit first  If you wish to send 1111000,  The serial port transmits 0001111 34 Parity  For 7-bit ASCII Only (No Parity = 8-bit ASCII)  Transmit an 8th bit per character  Even parity: sum of data and parity bits is even   To send 1110000 (odd), send 00001111 To send 1111000 (even), send 00011110  Odd parity: sum is odd  If error is detected, the character is simply discarded. No way to ask for retransmission 35 Start and Stop Bits  When the Data Line is at Rest    It is kept in the “1” state So “11110000” would look like 111111100001111 “00001111” would also look like 11111100001111  How can you tell where a character begins?  Solution  Add a start bit (always 0) to change the line state  End with a stop bit (always 1) to guarantee at least a one-bit rest (1) against which to detect the next start bit (0) 36 The Final Asynchronous Frame  Always 10 bits   Start, 7 data bits, parity, stop, or Start, 8 data bits, stop Start Parity 0 1 1 1 0 0 0 1 1 1 7-bit ASCII Character Start 0 1 1 1 0 0 0 1 1 1 8-bit ASCII Character Stop Stop 37 Flow Control  Ask the Other Device to Pause (or Slow Down)  ASCII   In asynch, usually done by sending ASCII control codes  XOFF tells other side to pause  XON tells the other device to resume Serial Port  Signals on the pins control when PC, modem can transmit Signal and Propagation 38 A signal is a disturbance in the media that propagates (travels) down the transmission medium to the receiver If propagation effects are too large, the receiver will not be able to read the received signal 3-38 39 Binary-Encoded Data  Computers store and process data in binary representations    Binary means “two” There are only ones and zeros Called bits 1101010110001110101100111 3-39 40 Binary-Encoded Data  Non-Binary Data Must Be Encoded into Binary        Text Integers (whole numbers) Decimal numbers Alternatives (North, South, East, or West, etc.) Graphics Human voice etc. Hello 11011001… 3-40 41 Layering Perspective  Where is binary data encoding done?   It is done at the application layer, not at the physical layer. Where is signaling done  It is done at the physical layer 3-41 42 Signaling On/Off Signaling 43 On/off signaling is used in optical fiber The light is turned on during a clock cycle for a 1 The light is turned off during a clock cycle for a 0 There are two signaling states—on and off This is called binary signaling This is a simple type of signaling 3-43 Binary Voltage Signaling in 232 Serial Ports44 1 The high state (0) is anything from +3 to +15 volts The low state (1) is anything from -3 to -15 volts 3-44 45 Relative Immunity to Errors in Binary Signaling Binary signaling gives some immunity to errors. This is one of its major attractions. 3-45 46 UTP Propagation Unshielded Twisted Pair wiring Unshielded Twisted Pair (UTP) Wiring 47  UTP Characteristics  Inexpensive and to purchase and install  Dominates media for access links between computers and the nearest switch 3-47 Unshielded Twisted Pair (UTP) Wiring 48  Standards  The TIA/EIA-568 standard governs UTP wiring in the United States  In Europe, the comparable standard is ISO/IEC 11801 3-48 4-Pair UTP Cord with RJ45 Connector49 3. 8-pin RJ-45 Connector 1. UTP cord Industry standard pen 2. 8 Wires organized as 4 twisted pairs UTP cord 3-49 Unshielded Twisted Pair (UTP) Wiring  50 Cord Organization     A length of UTP wiring is a cord Each cord has eight copper wires  Each wire is covered with dielectric (nonconducting) insulation The wires are organized as four pairs  Each pair’s two wires are twisted around each other several times per inch There is an outer plastic jacket that encloses the four pairs 3-50 Unshielded Twisted Pair (UTP) Wiring  51 RJ-45 Jack Connector   RJ-45 connector is the standard connector Plugs into an RJ-45 jack in a NIC, switch, or wall jack RJ-45 Jack 8-pin RJ-45 connectors 3-51 52 Attenuation and Noise Power 1. 4. Signal Noise Spike 5. Error 2. Signalto-Noise Ratio (SNR) 1. 2. 3. 4. 5. 6. 3. Noise Floor (Average Noise level) 2. Noise Distance The signal attenuates (falls in power) as it propagates There is noise (random energy) in the wire that adds to the signal The average noise level is called the noise floor Noise is random. Occasionally, there will be large noise spikes Noise spikes as large as the signal cause errors You want to keep the signal-to-noise ratio high 3-52 53 Limiting UTP Cord Length  Limit UTP cord length to 100 meters  This keeps the signal-to-noise ration (SNR) high  This makes attenuation and noise problems negligible  Note that limiting cord lengths limits BOTH noise and attenuation problems 100 Meters Maximum Cord Length 3-53 54 UTP Wiring  Electromagnetic Interference (EMI)  Electromagnetic interference is electromagnetic energy from outside sources that adds to the signal   From fluorescent lights, electrical motors, microwave ovens, etc. The problem is that UTP cords are like long radio antennas  They pick up EMI energy nicely  When they carry signals, they also send EMI energy out from themselves 3-54 Electromagnetic Interference (EMI)55 and Twisting Electromagnetic Interference (EMI) UTP is twisted specifically to reduce EMI Twisted Wire Interference on the Two Halves of a Twist Cancels Out 3-55 56 Crosstalk Interference and Terminal Crosstalk Interference Untwisted at Ends Signal Crosstalk Interference Terminal crosstalk interference Terminal Crosstalk normally is the biggest EMI problem for UTP Interference 3-56 Interference Hierarchy  57 EMI is any interference  Signals in adjacent pairs interfere with one another (crosstalk interference). This is a specific type of EMI  Crosstalk interference is worst at the ends, where the wires are untwisted. This is terminal crosstalk interference—a specific type of crosstalk EMI EMI Crosstalk Interference Terminal Crosstalk Interference 3-57 58 Terminal Crosstalk Interference  Terminal crosstalk interference dominates interference in UTP  Terminal crosstalk interference is limited to an acceptable level by not untwisting wires more than a half inch (1.25 cm) at each end of the cord to fit into the RJ-45 connector  This reduces terminal crosstalk interference to a negligible level. 1.25 cm or 0.5 inches 3-58 59 Shielded Twisted Pair Wiring (STP)  We have been talking about unshielded twisted pair wiring.  Is there a shielded twisted pair wiring?     Yes. It has a metal mesh shield around each pair to reduce cross-talk interference It also has a metal mesh shield around the four pairs to reduce external EMI It is no longer used extensively because UTP, which is much less expensive, was found to be good enough for normal environments However, we will see that Cat 7 wiring uses STP 3-59 2 60 UTP Limitations  Limit cords to 100 meters   Do not untwist wires more than 1.25 cm (a half inch) when placing them in RJ-45 connectors   Limits BOTH noise AND attenuation problems to an acceptable level Limits terminal crosstalk interference to an acceptable level Neither completely eliminates the problems but they usually reduce the problems to negligible levels 3-60 3-18: Serial Versus Parallel Transmission 61 3-61 62 Optical Fiber Transmission Light through Glass Spans Longer Distances than UTP Optical Fiber Transceiver and Strand 63 An optical fiber strand has a thin glass core This core is 8.3, 50, or 62.5 microns in diameter This glass core is surrounded by a tubular glass cladding The outer diameter of the cladding is 125 microns, regardless of the core’s diameter The transceiver injects laser light into the core 3-63 Optical Fiber Transceiver and Strand 64 When a light wave ray hits the core/cladding boundary, there is perfect internal reflection. There is no signal loss 3-64 Roles of UTP and Optical Fiber in LANs 65 3-65 Two-Strand Full-Duplex Optical Fiber Cord 66 with SC and ST Connectors Cord Two Strands A fiber cord has two-fiber strands for full-duplex (two-way) transmission SC Connectors ST Connectors 3-66 Full-Duplex Optical Fiber Cord with SC and ST 67 Connectors SC Connector (push and click) ST Connector (bayonet connectors: push and click) In contrast to UTP, which always uses RJ-45 connectors, there are several optical fiber connector types SC and ST are the most popular 3-67 68 Optical Fiber Strand In optical fiber transmission, light is expressed in nanometers. The transceiver transmits at 850 nm, 1,310 nm, or 1,550 nm Shorter-wavelength (850 nm) transceivers are less expensive Longer-wavelength (1,310 or 1,550 nm) light travels farther for a given speed For LAN fiber, 850 nm provides sufficient distance and dominates 3-68 69 Multimode Fiber and Single-Mode Fiber Multimode fiber has a thick core (50 or 62.5 microns in diameter) Light can only enter the core at certain angles, called modes Modes traveling straight through arrive faster than modes that bounce against the cladding several times 3-69 70 Radio Propagation Radio Propagation 71 Radio signals also propagate as waves. As noted earlier, radio waves are measured in hertz (Hz), which is a measure of frequency. Radio usually operates in the MHz and GHz range. 3-71 Omnidirectional and Dish Antennas 72 3-72 Wireless Propagation Problems 73 UTP and optical fiber propagation are fairly predictable. However, radio suffers from many propagation effects. This makes radio transmission difficult to manage. 3-73 74 Topology Network topology is the physical arrangement of a network’s computers, switches, routers, and transmission lines It is a physical layer concept:     Point-to-point Star Bus Ring
 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
									 
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                             
                                            