Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Lecture III: Review of Classic Quadratic Variation Results and Relevance to Statistical Inference in Finance Christopher P. Calderon Rice University / Numerica Corporation Research Scientist Chris Calderon, PASI, Lecture 3 Outline I Refresher on Some Unique Properties of Brownian Motion II Stochastic Integration and Quadratic Variation of SDEs III Demonstration of How Results Help Understand ”Realized Variation” Discretization Error and Idea Behind “Two Scale Realized Volatility Estimator” Chris Calderon, PASI, Lecture 3 Part I Refresher on Some Unique Properties of Brownian Motion Chris Calderon, PASI, Lecture 3 Outline For Items I & II Draw Heavily from: Protter, P. (2004) Stochastic Integration and Differential Equations, Springer-Verlag, Berlin. Steele, J.M. (2001) Stochastic Calculus and Financial Applications, Springer, New York. For Item III Highlight Results from: Barndorff-Nielsen, O. & Shepard, N. (2003) Bernoulli 9 243-265. Zhang, L.. Mykland, P. & Ait-Sahalia,Y. (2005) JASA 100 1394-1411. Chris Calderon, PASI, Lecture 3 Assuming Some Basic Familiarity with Brownian Motion (B.M.) • Stationary Independent Increments • Increments are Gaussian Bt − Bs ∼ N (0, t − s) • Paths are Continuous but “Rough” / “Jittery” (Not Classically Differentiable) • Paths are of Infinite Variation so “Funny” Integrals Used in Stochastic Integration, e.g. Rt 0 Chris Calderon, PASI, Lecture 3 Bs dBs = 12 (Bt2 − t) Assuming Some Basic Familiarity with Brownian Motion (B.M.) The Material in Parts I and II are “Classic” Fundamental & Established Results but Set the Stage to Understand Basics in Part III. The References Listed at the Beginning Provide a Detailed Mathematical Account of the Material I Summarize Briefly Here. Chris Calderon, PASI, Lecture 3 A Classic Result Worth Reflecting On N 2 lim (Bti − Bti−1 ) = T N →∞ i=1 ti = T iN Chris Calderon, PASI, Lecture 3 Implies Something Not Intuitive to Many Unfamiliar with Brownian Motion … Discretely Sampled Brownian Motion Paths 2 1.8 1.6 Fix Terminal Time, “T” and Refine Mesh by Increasing “N”. Zt 1.4 Shift IC to Zero if “Standard Brownian Motion” Desired 1.2 1 0.8 0 Chris Calderon, PASI, Lecture 3 1 t Discretely Sampled Brownian Motion Paths 2 1.8 1.6 Fix Terminal Time, “T” and Refine Mesh by Increasing “N”. T δ≡ N T ti ≡ i N Suppose You are Interested in Limit of: 1.4 Zt k(t) 2 1.2 i=1 1 k(t) = max{i : ti+1 ≤ t} 0.8 0 Chris Calderon, PASI, Lecture 3 (Bti − Bti−1 ) 1 t Different Paths, Same Limit 2 1.8 lim k(t) P N →∞ i=1 (Bti − Bti−1 )2 = t [Proof Sketched on Board] 1.6 Bt (ω1 ) Zt 1.4 1.2 1 θ̂1 Bt (ω2 ) 0.8 0 Chris Calderon, PASI, Lecture 3 1 t Different Paths, Same Limit 2 1.8 lim k(t) P N →∞ i=1 (Bti − Bti−1 )2 = t [Proof Sketched on Board] 1.6 Bt (ω1 ) Zt 1.4 1.2 1 θ̂1 Bt (ω2 ) 0.8 0 Chris Calderon, PASI, Lecture 3 1 t Compare To Central Limit Theorem for “Nice” iid Random Variables. Different Paths, Same Limit lim N P (Bti − Bti−1 )2 ≡ lim N →∞2 i=1 1.8 1.6 Zt 1.4 1.2 N P N →∞ i=1 Yi = T Compare/Contrast to Properly Centered and Scaled Sum of “Nice” iid Random Variables: N P Bt (ω1 ) (θ(ωi )−μ) i=1 √ SN ≡ N 1 θ̂1 Bt (ω2 ) 0.8 0 Chris Calderon, PASI, Lecture 3 1 t L SN → N (0, σ 2 ) lim N P Continuity in Time (Bti − Bti−1 )2 ≡ lim N →∞2 i=1 1.8 1.6 Zt 1.4 1.2 1 N P N →∞ i=1 Yi = T Above is “Degenerate” but Note Time Scaling Used in Our Previous Example Makes Infinite Sum Along a Path Seem Similar to Computing Variance of Independent RV’s N P (θ(ωi )−μ) θ̂1 SN ≡ i=1 √N L 0.8 0 Chris Calderon, PASI, Lecture 3 1 t SN → N (0, σ 2 ) B.M. Paths Do Not Have Finite Variation Let 0 < t ≤ T πn = {0 ≤ t1 ≤ . . . ti ≤ . . . ≤ tn = t} lim max(ti+1 − ti ) = 0 n→∞ i<n P ≡ All Finite Partitionsof [0, t] Chris Calderon, PASI, Lecture 3 B.M. Paths Do Not Have Finite Variation V[0,t] (ω) = sup π∈P ti ∈π Suppose That: Then: t = lim N P ≤ lim P(V[0,t] < ∞) > 0 (Bti − Bti−1 )2 N →∞ i=1 sup |Bti − Bti−1 | N →∞ ti ∈πN Chris Calderon, PASI, Lecture 3 |Bti+1 − Bti | N P i=1 |Bti − Bti−1 | B.M. Paths Do Not Have Finite Variation t = lim N P (Bti − Bti−1 )2 N →∞ i=1 ≤ lim sup |Bti − Bti−1 | N →∞ ti ∈πN N P i=1 |Bti − Bti−1 | ≤ lim sup |Bti − Bti−1 |V[0,t] =0 Tends to Zero Due to a.s. uniform continuity of B.M. Paths N →∞ ti ∈πN Chris Calderon, PASI, Lecture 3 t > 0, so Probability of Finite Variation Must be Zero Part II Stochastic Integration and Quadratic Variation of SDEs Chris Calderon, PASI, Lecture 3 Stochastic Integration P(V[0,t] < ∞) = 0 t X(ω, t) = t b(ω, s)ds + 0 “Finite Variation Term” Chris Calderon, PASI, Lecture 3 σ(ω, s)dBs 0 “Infinite Variation Term” Stochastic Integration P(V[0,t] < ∞) = 0 t X(ω, t) = t b(ω, s)ds + 0 σ(ω, s)dBs 0 “Infinite Variation Term” Complicates Interpretting Limit as Lebesgue Integral σ Xti (Bti ) |Bti+1 − Bti | Chris Calderon, PASI, Lecture 3 Stochastic Differential Equations (SDEs) t X(ω, t) = t b(ω, s)ds + 0 σ(ω, s)dBs 0 Written in Abbreviated Form: dX(ω, t) = b(ω, t)dt + σ(ω, t)dBt Chris Calderon, PASI, Lecture 3 Stochastic Differential Equations Driven by B.M. dX(ω, t) = b(ω, t)dt + σ(ω, t)dBt Adapted and Measurable Processes dXt = bt dt + σt dBt I will use this shorthand for the above (which is itself shorthand for stochastic integrals…) Chris Calderon, PASI, Lecture 3 Stochastic Differential Equations Driven by B.M. dXt = bt dt + σt dBt General Ito Process dXt = b(Xt , t)dt + σ(Xt , t)dBt Diffusion Process dXt = 0dt + 1dBt Repackaging Brownian Motion Chris Calderon, PASI, Lecture 3 Quadratic Variation for General SDEs (Jump Processes Readily Handled) RVπN (t) ≡ N P (Xti − Xti−1 )2 i=1 “Realized Variation” Quadratic Variation: Defined if the limit taken over any partition exists with the mesh going to zero. :={ Vt } Chris Calderon, PASI, Lecture 3 Stochastic Integration t t 0 Y (ω, t) = 0 b (ω, s)ds + 0 “Finite Variation Term” σ (ω, s)dXs 0 “Infinite Variation Term” Quadratic Variation of “X” Can Be Used to Define Other SDEs (A “Good Stochastic Integrator”) Chris Calderon, PASI, Lecture 3 Quadratic Variation Comes Entirely From Stochastic Integral t X(ω, t) = t b(ω, s)ds + 0 σ(ω, s)dBs 0 i.e. the drift (or term in front of “ds” makes) no contribution to the quadratic variation [quick sketch of proof on board] Chris Calderon, PASI, Lecture 3 Stochastic Integration P(V[0,t] < ∞) = 0 t X(ω, t) = t b(ω, s)ds + 0 σ(ω, s)dBs 0 “Infinite Variation Term” Can Now Be Dealt With If One Uses Q.V. σ Xti (Bti ) |Bti+1 − Bti | Chris Calderon, PASI, Lecture 3 Quadratic Variation and “Volatility” t Xt = t bs ds + 0 σs dBs 0 t Typical Notation for QV 2 σs dt [X, X]t ≡ Vt = 0 Chris Calderon, PASI, Lecture 3 Quadratic Variation and “Volatility” For Diffusions t 2 σs dt [X, X]t ≡ Vt = 0 More Generally for Semimartingales (Includes Jump Processes) [X, X]t := 2 Xt t −2 Xs− dXs 0 Chris Calderon, PASI, Lecture 3 Part III Demonstration of How Results Help Understand ”Realized Variation” Discretization Error and Idea Behind “Two Scale Realized Volatility Estimator” Chris Calderon, PASI, Lecture 3 Most People and Institutions Don’t Sample Functions (Discrete Observations) RVπN (t) ≡ N P (Xti − Xti−1 )2 i=1 Assuming Process is a Genuine Diffusion, How Far is Finite N Approximation From Limit? [X, X]t Chris Calderon, PASI, Lecture 3 Discretization Errors and Their Limit Distributions N ¡ 1/2 ¢ L RVπN (t) − [X, X]t |σt → N (0, C Rt σs4 ds) 0 Paper Below Derived Explicit Expressions for Variance for Fairly General SDEs Driven by B.M. Barndorff-Nielsen, O. & Shepard, N. (2003) Bernoulli 9 243-265. Chris Calderon, PASI, Lecture 3 Discretization Errors and Their Limit Distributions N ¡ 1/2 ¢ L RVπN (t) − [X, X]t |σt → N (0, C Rt σs4 ds) 0 Their paper goes over some nice classic moment generating function results for wide class of spot volatility processes (and proves things beyond QV) Barndorff-Nielsen, O. & Shepard, N. (2003) Bernoulli 9 243-265. Chris Calderon, PASI, Lecture 3 Discretization Errors and Their Limit Distributions One Condition That They Assume: lim δ N →0 N 1/2 i=1 2 |σti +δ − δ≡ 2 σt i | t N =0 Barndorff-Nielsen, O. & Shepard, N. (2003) Bernoulli 9 243-265. Chris Calderon, PASI, Lecture 3 Discretization Errors and Their Limit Distributions δ≡ Good for Many Stochastic Volatility Models … BUT Some Exceptions are Easy to Find (See Board) lim δ N →0 N 1/2 i=1 2 |σti +δ − 2 σt i | t N =0 Barndorff-Nielsen, O. & Shepard, N. (2003) Bernoulli 9 243-265. Chris Calderon, PASI, Lecture 3 What Happens When One Has to Deal with “Imperfect” Data? Suppose “Price” Process Is Not Directly Observed But Instead One Has: y ti = X t1 + ² i Zhang, L.. Mykland, P. & Ait-Sahalia,Y. (2005) JASA 100 1394-1411. Chris Calderon, PASI, Lecture 3 What Happens When One Has to Deal with “Imperfect” Data? Due to Fact that Real World Data Does Not Adhere to Strict Mathematical Definition of a Diffusion y ti = X t1 + ² i Zhang, L.. Mykland, P. & Ait-Sahalia,Y. (2005) JASA 100 1394-1411. Chris Calderon, PASI, Lecture 3 What Happens When One Has to Deal with “Imperfect” Data? y ti = X t1 + ² i If “observation noise” sequence is i.i.d. (and independent of X) and it is very easy to see problem of estimating quadratic variation (see demostration on board). Zhang, L.. Mykland, P. & Ait-Sahalia,Y. (2005) JASA 100 1394-1411. Chris Calderon, PASI, Lecture 3 What Happens When One Has to Deal with “Imperfect” Data? y ti = X t1 + ² i If “observation noise” sequence is i.i.d. (and independent of X) and it is very easy to see problem of estimating quadratic variation (see demostration on board). Surprisingly These Stringent Assumption Model Many Real World Data Sets (e.g. See Results from Lecture 1) Zhang, L.. Mykland, P. & Ait-Sahalia,Y. (2005) JASA 100 1394-1411. Chris Calderon, PASI, Lecture 3 Simple Case “Bias” Estimate Compute Realized Variation of Y and Divide by 2N Then Obtain (Biased) Estimate by Subsampling Finally Aggregate Subsample Estimates and Remove Bias Zhang, L.. Mykland, P. & Ait-Sahalia,Y. (2005) JASA 100 1394-1411. Chris Calderon, PASI, Lecture 3 Simple Case “Bias Corrected” Estimate \[X, X] = [Y, Y ](avg) − T T (all) Ns [Y, Y ] T N Result Based on “Subsampling” Zhang, L.. Mykland, P. & Ait-Sahalia,Y. (2005) JASA 100 1394-1411. Chris Calderon, PASI, Lecture 3 Chasing A (Time Series) Dream Obtaining a “Consistent” Estimate with Asymptotic Error Bounds \ X] N 1/6 ([X, T ³ ´ T R L [X, X]T )|σt → N 0, C1 (VAR(²))2 + C2 σs4 ds 0 Result Above Valid for Simple Observation Noise but Results (by Authors Below) Have Been Extended to Situations More General Than iid Case. Zhang, L.. Mykland, P. & Ait-Sahalia,Y. (2005) JASA 100 1394-1411. Chris Calderon, PASI, Lecture 3 DNA Melting Force Force Tensions Important in Fundamental Life Processes Such As: DNA Repair and DNA Transcription Single-Molecule Experiments Not Just a Neat Toy: They Have Provided Insights Bulk Methods Cannot Chris Calderon, PASI, Lecture 3 Time Dependent Diffusions Stochastic Differential Equation (SDE): dzt = b(zt , t; Θ)dt + σ(zt ; Θ)dWt yti = zti + ²ti “Measurement” Noise For Frequently Sampled Single-Molecule Experimental Data, “Physically Uninteresting Measurement Noise” Can Be Large Component of Signal. Find/Approximate: Chris Calderon, PASI, Lecture 3 p(zt , |ys ; Θ) “Transition Density” / Conditional Probability Density A Word from the Wise (Lucien Le Cam) • Basic Principle 0: Don’t trust any principle • Principle 1: Have clear in your mind what it is you want to estimate … • Principle 4: If satisfied that everything is in order, try first a crude but reliable procedure to locate the general area your parameters lie. • Principle 5: Having localized yourself by (4), refine the estimate using some of your theoretical assumptions, being careful all the while not to undo what you did in (4). … Le Cam L.. (1990) International Statistics Review 58 153-171. Chris Calderon, PASI, Lecture 3 Example of Relevance of Going Beyond iid Setting Watching Process at Too Fine of Resolution Allows “Messy” Details to Be Statistically Detectable Calderon, J. Chem. Phys. (2007). Chris Calderon, PASI, Lecture 3 Example of Relevance of Going Beyond iid Setting Xt+dt-E[Xt+dt|Xt] r ≡ Xn − EPθi [Xn |Xn−1 ] r Calderon, J. Chem. Phys. (2007). Chris Calderon, PASI, Lecture 3 Lecture IV: A Selected Review of Some Recent Goodness-of-Fit Tests Applicable to Levy Processes Christopher P. Calderon Rice University / Numerica Corporation Research Scientist Chris Calderon, PASI, Lecture 3 Outline I Compare iid Goodness of Fit Problem to Time Series Case II Review a Classic Result Often Attributed to Rosenblatt (The Probability Integral Transform) III Highlight Hong and Li’s “Omnibus” Test IV Demonstrate Utility and Discuss Some Other Recent Approaches and Open Problems Chris Calderon, PASI, Lecture 3 Outline Primary References (Item II & III): Diebold, F. Hahn J., & Tay, A. (1999) Review of Economics and Statistics 81 661-663. Hong, Y. and Li, H. (2005) Review of Financial Studies 18 37-84. Chris Calderon, PASI, Lecture 3 Goodness-of-Fit Issues . 0.4 0.35 0.3 p(x) 0.25 0.2 0.15 True and Parametric Density 0.1 0.05 0 −5 Chris Calderon, PASI, Lecture 3 0 x 5 Goodness-of-Fit in Random Variable Case (No Time Evolution) 1 0.9 0.8 0.7 0.4 0.35 0.6 0.5 0.25 p(x) P(x) 0.3 0.4 0.2 0.15 0.3 0.1 0.05 0.2 0 −5 0 x 0.1 0 −5 Chris Calderon, PASI, Lecture 3 0 x 5 5 Goodness-of-Fit Issues 0.4 0.4 0.35 0.35 0.3 0.3 0.25 0.2 p(x) p(x) 0.25 0.15 0.2 0.15 0.1 0.1 0.05 0.05 0 −5 0 x Chris Calderon, PASI, Lecture 3 5 0 −5 0 5 x 10 15 Goodness-of-Fit in Random Variable Case (No Time Evolution) 0.35 0.35 0.3 0.3 0.25 0.25 p(x) 0.4 p(x) 0.4 0.2 0.2 0.15 0.15 0.1 0.1 0.05 0.05 0 −5 0 x 0 −5 5 10 15 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.6 P(x) P(x) 5 x 1 1 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0 −5 0 0 x Chris Calderon, PASI, Lecture 3 5 0 −5 0 5 x 10 15 Goodness-of-Fit in Time Series 1 Note: 0.9 0.8 0.7 P1 P(x) 0.6 F1 P2 0.5 Truth and approximate distribution changing with (known) time index F2 0.4 0.3 Time series only get “one” sample from each evolving distribution 0.2 0.1 0 −5 0 5 x Chris Calderon, PASI, Lecture 3 10 15 Time Series: Residual and Extensions ri ≡ Xi − Eθ̂ [Xi |Xi−1 ] Problem with Using Low Order Correlation Shown In Lecture 2. Can we Make Use of All Moments? Chris Calderon, PASI, Lecture 3 Time Series: Residual and Extensions ri ≡ Xi − Eθ̂ [Xi |Xi−1 ] Problem with Using Low Order Correlation Shown In Lecture 2. Can we Make Use of All Moments? YES. With the Probability Integral X Ri Transform (PIT) Zi = Also Called Generalized Residuals Chris Calderon, PASI, Lecture 3 −∞ p(X|Xi−1 ; θ0 )dX Test the Model Against Observed Data: {X1 , X2 , . . . XN } θ̂ Time Series (Noisy, Correlated, and Possibly Nonstationary) Zi = G(Xi ; Xi−1 , θ̂) Probability Integral Transform / Rosenblatt Transform /“Generalized Residual” If Assumed Model Correct, Residuals i.i.d. with Known Distribution:: Formulate Test Statistic:: Zi ∼ U [0, 1] Chris Calderon, PASI, Lecture 3 Q = H({Z1 , Z2 , . . . ZT }) Simple Illustration of PIT [Specialized to Markov Dynamics] Start time series random variables characterized by : Xn ∼ P(Xn |Xn−1 ) Introduce (strictly increasing) transformation: Zn = h(Xn ; θ) Transformation introduces “new” R.V. => New distribution Zn ∼ F(Zn |Zn−1 ; θ) p(Xn |Xn−1 ) ≡ “Truth” density in “X” (NOTE: no parameter) X Rn PIT transformation: Zn ≡ h(Xn ) := f (X 0 |Xn−1 ; θ)dX 0 dP (Xn |Xn−1 ) dXn −∞ Want expression for “new” density in terms of “Z” dF (Zn |Zn−1 ;θ) dZn = dP(Xn |Xn−1 ) dXn = 1 dZn dXn Chris Calderon, PASI, Lecture 3 dP(Xn |Xn−1 ) dXn dXn dZn = Monotone Function of X ? 1 p(Xn |Xn−1 ) f (Xn |Xn−1 ;θ) = 1 ³ ´ 1 2 Q̂(j) ≡ h(N − j)M̂1 (j) − hA0 /V0 Location (Depends on Bandwidth) Scale Z1 Z1 ³ ´2 M̂1 (j) ≡ gˆj (z1 , z2 ) − 1 dz1 dz2 . 0 0 1 gˆj (z1 , z2 ) ≡ N −j Chris Calderon, PASI, Lecture 3 N X τ =j+1 Kh (z1 , Ẑτ )Kh (z2 , Ẑτ −j ). ³ ´ 1 2 Q̂(j) ≡ h(N − j)M̂1 (j) − hA0 /V0 Z1 Z1 ³ ´2 M̂1 (j) ≡ gˆj (z1 , z2 ) − 1 dz1 dz2 . 0 0 1 gˆj (z1 , z2 ) ≡ N −j Chris Calderon, PASI, Lecture 3 N X τ =j+1 Kh (z1 , Ẑτ )Kh (z2 , Ẑτ −j ). Stationary Time Series [No Time Dependent Forcing] −0.8 −0.9 −1 y −1.1 −1.2 −1.3 −1.4 −1.5 −1.6 −1.7 0 0.2 Chris Calderon, PASI, Lecture 3 0.4 0.6 Time [ns] 0.8 1 Stationary Time Series? −0.8 −0.9 −1 y −1.1 −1.2 −1.3 −1.4 −1.5 −1.6 −1.7 0 0.2 Chris Calderon, PASI, Lecture 3 0.4 0.6 Time [ns] 0.8 1 Stationary Time Series? −0.8 −0.9 −1 y −1.1 −1.2 −1.3 −1.4 −1.5 −1.6 −1.7 0 0.2 Chris Calderon, PASI, Lecture 3 0.4 0.6 Time [ns] 0.8 1 Dynamic Rules “Changing” Over Time −0.8 (Simple 1D SDE Parameters “Evolving” ) −0.9 −1 y −1.1 −1.2 −1.3 −1.4 −1.5 −1.6 −1.7 0 0.2 Chris Calderon, PASI, Lecture 3 0.4 0.6 Time [ns] 0.8 1 “Subtle” Coupling Calderon, J. Phys. Chem. B (2010). Chris Calderon, PASI, Lecture 3 Estimate “Simple” SDE in Local Time Window. Then Apply Hypothesis Tests To Quantify Time of Validity −0.8 −0.9 −1 y −1.1 −1.2 −1.3 −1.4 −1.5 −1.6 −1.7 0 dΦt = (A + BΦt )dt + (C + DΦt )dWt 0.2 Chris Calderon, PASI, Lecture 3 0.4 0.6 Time [ns] 0.8 1 Estimate Model in Window “0”; Keep Fixed and Apply to Other Windows Chris Calderon, PASI, Lecture 3 Window 0 Window 2 Window 6 Window 8 −0.8 −0.9 −1 y −1.1 −1.2 −1.3 −1.4 −1.5 −1.6 −1.7 0 0.2 Chris Calderon, PASI, Lecture 3 0.4 0.6 Time [ns] 0.8 1 Each Test Statistic Uses ONE Short Path Calderon, J. Phys. Chem. B (2010). Chris Calderon, PASI, Lecture 3 Stationary Time Series? Subtle Noise Magnitude Changes due Unresolved Degrees of Freedom (Check Validity of a “Born-Oppenheimer” Type Proxy) dΦt = (A + BΦt )dt + (C + DΦt )dWt Chris Calderon, PASI, Lecture 3 Stationary Time Series? Subtle Noise Magnitude Changes due Unresolved Degrees of Freedom (Check Validity of a “Born-Oppenheimer” Type Proxy) Evolving “X” Influences Higher Order Moments of “Y” Chris Calderon, PASI, Lecture 3 Stationary Time Series? Subtle Noise Magnitude Changes due Unresolved Degrees of Freedom (Check Validity of a “Born-Oppenheimer” Type Proxy) Chris Calderon, PASI, Lecture 3 Estimate “Simple” SDE in Local Time Window. Then Apply Hypothesis Tests To Quantify Time of Validity Chris Calderon, PASI, Lecture 3 Window 0 Chris Calderon, PASI, Lecture 3 Window 2 Window 6 Window 8 “Subtle” Noise Magnitude Changes Calderon, J. Phys. Chem. B (2010). Chris Calderon, PASI, Lecture 3 Frequentist vs. Bayesian Approaches • Concept of “Residual” Unnatural in Bayesian Setting. All Information Condensed into Posterior (Time Residual Can Help in Non-ergodic Settings) • Uncertainty Information Available in Both Under Ideal Models with Heavy Computation (Bayesian Methods Need “Prior” Specification) • Test Against Many Alternatives in a Frequentist Setting (Instead of a Handful of Candidate Models as is Done in Bayesian Methods) Chris Calderon, PASI, Lecture 3 Several Issues Evaluate Z at Estimated Parameter (Their Limit Distribution Requires Root N Consistent Estimator to Get [Asymptotic ] Critical Values) Asymptopia is a Strange Place [Multiplying by Infinity Can Be Dangerous When Numerical Proxies are Involved] In Nonstationary Case, Initial Condition Distribution May Be Important but Often Unknown. Chris Calderon, PASI, Lecture 3 Testing Surrogate Models Hong & Li, Rev. Financial Studies, 18 (2005). Chen, S, Leung, D. & Qin,J., Annals of Statistics, 36 (2008). Ait-Sahalia, Fan, Peng, JASA (in press) Calderon & Arora, J. Chemical Theory & Computation 5 (2009). (a) 1 0.9 0.45 ps ∆t = 0.30ps 0.8 0.7 F(Q) 0.6 0.5 ∆t = 0.15ps 0.4 OD Δ OD Δ OD Δ OU Δ OU Δ OU Δ Null 0.3 0.2 0.1 0 −4 −2 0 2 4 Q 6 t=0.15 t=0.30 t=0.45 t=0.15 t=0.30 t=0.45 8 ps ps ps ps ps ps 10 One Times Series Reduces to One Test Statistic. Empirical CDF Summarizes Results from 100 Time Series Chris Calderon, PASI, Lecture 3 A Sketch of Local to Global or Fitting Nonlinear SDEs Without A Priori Knolwedge of Global Parametric Model Chris Calderon, PASI, Lecture 3 Local Time Dependent Diffusion Models Calderon, J. Chem. Phys. 126 (2007). dzt = b(zt , t; Θ)dt + σ(zt ; Θ)dWt Approximate Locally by Low Order Polynomials, e.g. b(z) ≈A + Bz + f (t) σ(z) ≈C + Dz Can use Physics-based Proxies e.g. Overdamped Langevin Dynamics σ(z) ≈C + Dz b(z) ≈(C + Dz)2 /(2kB T )(A + Bz + f (t)) Chris Calderon, PASI, Lecture 3 Maximum Likelihood For given model & discrete observations, find the maximum likelihood estimate: θ̂ ≡ maxθ p(z0 , . . . , zT ; θ) Special case of Markovian Dynamics: θ̂ ≡ maxθ p(z0 ; Θ)p(z1 |z0 ; θ) . . . p(zT |zT −1 ; θ) “Transition Density” (aka Conditional Probability Density) Chris Calderon, PASI, Lecture 3 After Estimating Acceptable (Not Rejected) Local Models, What’s Next? • Quality of Data: “Variance” (MC Simulation in Local Windows) • Then Global Fit (Nonlinear Regression) Chris Calderon, PASI, Lecture 3 Note: Noise Magnitude Depends on State Z (State Space) And the State is Evolving in a Non-Stationary Fashion 2 State Dependent Noise Would “Fool” Wavelet Type Methods 1.5 1 0.5 0 0 0.25 0.5 Time 0.75 1 dZt = k(vpull t − Zt )dt + σ(Zt )dWt Chris Calderon, PASI, Lecture 3 Note: Noise Magnitude Depends on State And the State is Evolving in a Non-Stationary Fashion 2 1.5 σ(Z) Z (State Space) 2 1.5 1 0.5 0.5 0 0 1 0.25 0.5 Time Chris Calderon, PASI, Lecture 3 0.75 1 0 0 0.5 1 1.5 Z (State Space) 2 Note: Noise Magnitude Depends on State And the State is Evolving in a Non-Stationary Fashion 2 1.5 σ(Z) Z (State Space) 2 1.5 1 0.5 0.5 0 0 1 0.25 0.5 Time Chris Calderon, PASI, Lecture 3 0.75 1 0 0 0.5 1 1.5 Z (State Space) Local Time Window 2 Z (State Space) Corresponding State Window 2 2 1.5 1.5 1 1 0.5 0.5 0 0 0.25 0.5 Time Chris Calderon, PASI, Lecture 3 0.75 1 0 2 1.5 Local Time Window 1 σ(Z) 0.5 0 Z (State Space) Global Nonlinear Function of Interest (the “truth”) 2 2 1.5 1.5 1 1 0.5 0.5 0 0 0.25 0.5 Time Chris Calderon, PASI, Lecture 3 0.75 1 0 2 1.5 1 σ(Z) 0.5 0 Z (State Space) Point Estimate Comes From Local Parametric Model (Parametric Likelihood Inference Tools Available) 2 2 1.5 1.5 1 1 0.5 0.5 0 0 0.25 0.5 Time Chris Calderon, PASI, Lecture 3 0.75 1 0 2 1.5 1 σ(Z) 0.5 0 Point Estimate Comes From Local Parametric Model (Parametric Likelihood Inference Tools Available) σ(z) ≈ C + D(z − z ) 2 Z (State Space) 2 1.5 1.5 1 1 0.5 0.5 0 0 0 0.25 0.5 Time Chris Calderon, PASI, Lecture 3 0.75 1 0 2 Ĉ 1.5 1 σ(Z) 0.5 0 Maximum Likelihood For given model & discrete observations, find the maximum likelihood estimate: θ̂ ≡ maxθ p(z0 , . . . , zT ; θ) Special case of Markovian Dynamics: θ̂ ≡ maxθ p(z0 ; Θ)p(z1 |z0 ; θ) . . . p(zT |zT −1 ; θ) “Transition Density” (aka Conditional Probability Density) Chris Calderon, PASI, Lecture 3 Noisy Point Estimates (finite discrete time series sample uncertainty) 0 Z (State Space) σ(z) ≈ C + D(z − z ) 2 2 2 1.5 1.5 1.5 1 o Z 0.5 0 0 Ĉ 1 0.5 0.5 0.25 0.5 Time 0.75 1 0 2 D̂ 1 1.5 1 0.5 σ(Z) 0 0 3 2.5 2 1.5 1 0 ∂σ(Z)/∂Z Spatial Derivative of Function of Interest Chris Calderon, PASI, Lecture 3 0.5 Z (State Space) Idea Similar in spirit to J. Fan, Y. Fan, J. Jiang, JASA 102 (2007) except uses fully parametric MLE (no local kernels) in discrete local state windows 2 2 1.5 1.5 From Path to Point 1 1 0.5 0.5 0 0 0.25 0.5 Time Chris Calderon, PASI, Lecture 3 0.75 1 0 2 1.5 Ĉ 1 σ(Z) 0.5 0 Z (State Space) HOWEVER: Not Willing To Assume Stationarity in Windows. (Completely Nonparametric and Fourier Analysis Problematic). “Subject Specific Function Variability” of Interest 2 2 1.5 1.5 1 1 0.5 0.5 0 0 0.25 0.5 0.75 1 0 2 1.5 1 Validity of Local Models Can Be Tested Using Generalized Residuals Available Using Transition Density with Local Parametric Approach Chris Calderon, PASI, Lecture 3 0.5 σ(Z) 0 2.5 Function of Interest Noisy Point σ(Z) 2 Estimates 1.5 (Obtained Using Local Maximum Likelihood) 1 0.5 0 0 Transform 0.5 1 1.5 2 0 “X vs Y=F(X)” Time 0.25 0.5 0.75 1 0 “X vs t” Data to 0.5 1 Zo 1.5 Z (State Space) Chris Calderon, PASI, Lecture 3 2 Estimate Nonlinear Function via Regression ∂σ(Z)/∂Z 3 Spatial Derivative of Function of Noisy Point Interest 2.5 Estimates 2 (Obtained Using Local Maximum Likelihood) 1.5 1 Transform 0.5 0 0 0.5 1 1.5 2 0 “X vs Y’=G(X)” Time 0.25 0.5 0.75 1 0 “X vs t” Data to 0.5 1 Zo 1.5 Z (State Space) Chris Calderon, PASI, Lecture 3 2 Estimate Nonlinear Function via Regression 2.5 σ(Z) 2 1.5 M {zm , Ĉ, D̂}m=1 (3) 1 (2) 0.5 0 0 0.5 1 1.5 2 1.5 2 0 Time 0.25 (1) 0.5 0.75 1 0 0.5 1 Z (State Space) Chris Calderon, PASI, Lecture 3 Use Noisy Diffusive Path to Infer Regression Data Same Ideas Apply to Drift Function: M {zm , Â, B̂}m=1 Can Also Entertain Simultaneous Regression: M {zm , Â, B̂, Ĉ, D̂}m=1 Chris Calderon, PASI, Lecture 3 2.5 σ (Z ) 2 Spline Function Estimate Function of Interest 1.5 1 {zm , σ(zm ), 0.5 0 0 0.5 1 1.5 2 1 1.5 2 0 Time 0.25 0.5 0.75 1 0 0.5 Z (State Space) Chris Calderon, PASI, Lecture 3 dσ(z) M | } dz zm m=1 Variability of Between Different Functions Gives Information About Unresolved Degrees of Freedom Reliable Means for Patching Windowed Estimates Together is Desirable Open Mathematical Questions for Local SDE Inference How Can One Efficiently Choose “Optimal” Local Window Sizes” ? Hypothesis Tests Checking Markovian Assumption with Non-Stationary Data? (“Omnibus” goodness-of-fit tests of Hong and Li [2005] based on probability integral transform currently employed) Chris Calderon, PASI, Lecture 3 Gramicidin A: Commonly Studied Benchmark 36,727 Atom Molecular Dynamics Simulation Potassium Ion Explicitly Modeled Lipid Molecules Explicitly Modeled Water Molecules Gramicidin A Protein Compute Work: Integralz of “Force time Distance” Chris Calderon, PASI, Lecture 3 PMF and Non-equilibrium Work 50 40 Molecular Dynamics Trajectory “i” SDE Trajectory “Tube i” Nonergodic Sampling: Pulling “Too Fast” Variability Induced by Conformation Initial Condition (variability W [kT] 30 20 between curves) and 10 “Thermal” Noise (Solvent 0 −10 0 Bombardment, Vibrational Motion, etc. quantified by tube width) 0.2 0.4 τ [ns] Chris Calderon, PASI, Lecture 3 0.6 0.8 1 PMF and Non-equilibrium Work 50 40 Molecular Dynamics Trajectory “i” SDE Trajectory “Tube i” Distribution at Final Time is non-Gaussian and can be viewed as MIXTURE of distributions W [kT] 30 20 10 0 −10 0 0.2 0.4 τ [ns] Chris Calderon, PASI, Lecture 3 0.6 0.8 1 Importance of Tube Variability Mixture of Distributions Conformational Noise Thermal Noise Chris Calderon, PASI, Lecture 3 Other Kinetic Issues Diffusion Coefficient / Effective Friction State Dependent NOTE: Noise Intensity Differs in the Two Sets of Trajectories Chris Calderon, PASI, Lecture 3 PMF and Non-equilibrium Work Molecular Dynamics Trajectory “Tube i” [each tube starts with same q’s but different p’s] 60 50 50 40 40 W[kT] W[kT] 60 Molecular Dynamics Trajectory “j” 30 30 20 20 10 3.00 10 3.00 2.25 1.50 λ[Å] Chris Calderon, PASI, Lecture 3 0.75 0.00 2.25 SDE Trajectory “Tube j” 1.50 λ[Å] 0.75 0 2 Pathwise View Use one path, discretely sampled Ensemble Averaging at many time points, to obtain a Due to collectionProblematic of θ̂s (one for each path) 1.8 θ̂3 θ̂5 θ̂2 θ̂4 θ̂1 1.6 Zt 1.4 1.2 1 Collection of Models Another Way of Accounting for “Memory” θ̂i Vertical lines reprent observation times 0.8 0 Nonergodic / Nonstationary Sampling 0.2 0.4 0.6 0.8 1 t Chris Calderon, PASI, Lecture 3 Potential of Mean Force Surface Hummer & Szabo, PNAS 98 (2001). Minh & Adib, PRL 100 (2008). Several issues arise when one attempts to use this surface to approximate dynamics in complex systems. Chris Calderon, PASI, Lecture 3 PMF and Non-equilibrium Work 50 40 Molecular Dynamics Trajectory “i” SDE Trajectory “Tube i” Distribution at Final Time is non-Gaussian and can be viewed as MIXTURE of distributions W [kT] 30 20 10 0 −10 0 0.2 0.4 τ [ns] Chris Calderon, PASI, Lecture 3 0.6 0.8 1 PMF of a “Good” Coordinate Calderon, Janosi & Kosztin, J. Chem. Phys. 130 (2009). 25 U[kT] 20 15 10 Allen et al. (Ref. 27) Bastug et al. (Ref. 28) FR (Ref. 16) FR (w/ SPA Data) SPA PMF and Confidence Band Computed Using 10 Stretching & Relaxing Noneq all-atom MD Paths PMFs Computed Using Umbrella Sampling 5 0 −15 −10 −5 0 z[Å] Chris Calderon, PASI, Lecture 3 5 10 15 Penalized Splines (See Ruppert, Wand, Carroll’s Text: Semiparametric Regression, Cambridge University Press, 2003.) y = {f (x1 ), . . . , f (xm ), ∂f (x1 ), . . . , ∂f (xm )} + ², Observed or Inferred Data yi = η0 + η1 xi . . . ηp xpi + K X Observation Error ζj Bj (xi ), j=1 Spline Basis with K<<m (tall and skinny design matrix) “Fixed Effects” where β ≡ (η, ζ) “Random Effects” Chris Calderon, PASI, Lecture 3 Penalized Splines (See Ruppert, Wand, Carroll’s Text: Semiparametric Regression, Cambridge University Press, 2003.) y = {f (x1 ), . . . , f (xm ), ∂f (x1 ), . . . , ∂f (xm )} + ², Observed or Inferred Data yi = η0 + η1 xi . . . ηp xpi + K X ζj Bj (xi ), j=1 Spline Basis with K<<m (tall and skinny design matrix) ky − 2 Cβk2 + Chris Calderon, PASI, Lecture 3 2 αkDβk2 P-Spline Problem (Flexible Penalty) where β ≡ (η, ζ) Penalized Splines Using Derivative Information ⎛ C PuDI := 1 ⎜ .. ⎜. ⎜ ⎜1 ⎜ ⎜0 ⎜ ⎜. ⎝ .. 0 x1 . . . xp1 (κ1 − x1 )p+ . . . (κK − x1 )p+ .. . xm . . . xpm 1 . . . pxp−1 1 .. . .. . (κ1 − xm )p+ . . . (κK − xm)p+ p−1 p(κ1 − x1 )p−1 . . . p(κ − x ) K 1 + + .. . 1 . . . pxp−1 m p−1 p(κ1 − xm)p−1 . . . p(κ − x ) K m + + Poorly Conditioned Design Matrix Chris Calderon, PASI, Lecture 3 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟. ⎟ ⎟ ⎟ ⎠ Pick Smoothness: Solve Many Least Squares Problems ky − 2 Cβk2 α + 2 αkDβk2 P-Spline Problem (Flexible Penalty) Choose with Cost Function (GCV). This object has nice “mixed model” interpretation as ratio of observation variance / random effects variance α Selection Requires Traces and Residuals for Each Candidate Chris Calderon, PASI, Lecture 3 PSQR Penalized Splines using QR (Calderon, Martinez, Carroll, Sorensen) Allows Fast and Numerically Stable P-spline Results. Exactly Rank Deficient “C” Can Be Treated Can Process Many Batches of Curves (Facilitates Solving Many GCV Type Optimization Problems). Data Mining without User Intervention (e.g. Closely Spaced and/or Overlapping Knots Are Not Problematic) Let Regularization Be Handled By Built In Smoothness Penalty (Do Not Introduce Extra Numerical Regularization Steps). Chris Calderon, PASI, Lecture 3 Demmler Reinsch Basis Approach (Popular Method For Efficiently Computing Smoothing Splines) Forms Eigenbasis using Cholesky Factor of CT C α Traces and Residuals for Each Candidate Can Easily be Obtained in Vectorized Fashion Squaring a Matrix is Not a Good Idea (Subtle and Dramatic Consequences) Chris Calderon, PASI, Lecture 3 Avoid ad hoc Regularization Analogous Existing Methods Do Not Use Good Numerics e.g. if C T C Cannot be Cholesky Factored, ad hoc solution: Find Factor of C T C + ηD Instead and Solving that Penalized Regression Problem Originally Posed Others use SVD truncation in Combination with Regularization (Again Not Problem Posed) Chris Calderon, PASI, Lecture 3 Basic Sketch of Our Approach (1) Factor C via QR (Done Only Once) (2) Then Do SVD on Penalized Columns α (3) For Given Find (Lower Dimensional) QR and Exploit Banded Matrix Structure. Solve Original Penalized Least Squares Problem with CHEAP QR (4) Repeat (3) and Choose α Banded “R” Like Matrix Chris Calderon, PASI, Lecture 3 µ S √ αI ¶ QR and Least Squares °µ ¶ µ ¶° ° °2 y ° ° √C β− ° ° . αD 0 ° ° Efficient QR Treatment? 2 Exploit P-Spline Problem Structure Minimizing Vector Equivalent to Solution of (C T C + αD T D)β = C T y AT Aβ = AT (y T , 0)T ¶ µ C A≡ √ αD Chris Calderon, PASI, Lecture 3 Some in Statistics use QR, but Combine Penalized Regression with SVD Truncation PSQR (Factor Steps) 1. Obtain the QR decomposition of C = QR. µ F R11 2. Partition result above as: QR = (QF , QP ) 0 P 3. Obtain the SVD of R22 = U SV T . 4. Form the following: µ ¶ I 0 Q̃ = (QF , QP U ), Ṽ = , 0 VT µ F ¶ µ ¶ R̃11 R̃12 R11 R12 V R̃ = ≡ , 0 S 0 R̃22 ⎡µ F ¶⎤ µ T ¶ b Q̃ y b= ≡ ⎣ bP ⎦. 0 0 Chris Calderon, PASI, Lecture 3 ¶ R12 . P R22 PSQR (Solution Steps) √ P P e fα = 5. For each given α (and/or D ) form: Dα = αD V and W fα = Q0 R0 . 6. Obtain the QR decomposition W µ P¶ b . 7. Form c = (R0 )−1 (Q0 )T 0 ¶ µ −1 F R̃11 (b − R̃12 c) . 8. Solve β̂αa = Vc Chris Calderon, PASI, Lecture 3 ¶ S eα . D µ PSQR (Efficiency) ¶ µ T¶ µ ¶ µ SV S R̃22 T T ≡ V = V , P DP DP V D V So if D = diag(0, . . . , 0, 1, . . . 1) D P = diag(1, . . . 1) Then problem reduces to finding x minimizing °µ ° ¶ µ P¶° ¶ µ P¶° ¶µ ° °2 ° µ °2 b b ° √S ° ° ° I, 0 √S x− x− ° ° =° ° . αV 0 ° αI 0 ° ° ° 0, V 2 Orthogonal Matrix Chris Calderon, PASI, Lecture 3 2 Close to “R” PSQR and Givens Rotations D P = diag(1, . . . 1) ° °µ ¶ µ P¶° ¶ µ P¶° ¶µ ° °2 ° µ °2 b b ° I, 0 ° √S ° ° √S x− x− ° ° =° ° . αV 0 ° αI 0 ° ° 0, V ° 2 Orthogonal Matrix Close to “R” Givens Rotations to Finalize QR Applying Rotations to RHS Yields: √ −1 P ( Λ) Sb √ Where R = Λ Chris Calderon, PASI, Lecture 3 2 Subtle Errors Chris Calderon, PASI, Lecture 3 PuDI Design Matrix (One Curve at a Time) Sparsity Pattern of TPF Basis QR Needed in Step 1 (Before Penalty Added) Chris Calderon, PASI, Lecture 3 TPF: Free and Penalized Blocks ⎛ C PuDI := 1 x1 . . . xp1 .. ⎜ .. ⎜. . ⎜ ⎜1 xm . . . xpm ⎜ ⎜0 1 . . . pxp−1 1 ⎜ ⎜. .. ⎝ .. . 0 1 . . . pxp−1 m (κ1 − x1 )p+ . . . (κK − x1 )p+ .. . (κ1 − xm )p+ . . . (κK − xm )p+ p−1 p(κ1 − x1 )p−1 . . . p(κ − x ) K 1 + + .. . p−1 p(κ1 − xm )p−1 . . . p(κ − x ) K m + + Last K Columns Chris Calderon, PASI, Lecture 3 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟. ⎟ ⎟ ⎟ ⎠ PuDI Design Matrix (Batches of Curves) Sparsity Pattern of TPF Basis QR Needed in Step 1 (Before Penalty Added) Chris Calderon, PASI, Lecture 3 Screened Spectrum Chris Calderon, PASI, Lecture 3 Simple Basis Readily Allows For Useful Extensions (e.g. Generalized Least Squares) Chris Calderon, PASI, Lecture 3 Function of Interest (the “truth”) Z (State Space) Noisy Point Estimates (finite discrete time series sample uncertainty) 2 2 1.5 1.5 1 Z 0.5 0 2 ²i o 1.5 1 σ(Z) 1 0.5 0.5 0 0 3 2.5 ²i 2 1.5 1 0.5 0 ∂σ(Z)/∂Z Spatial Derivative of Function of Interest Chris Calderon, PASI, Lecture 3 Z (State Space) Point Estimates Noise Distribution Depends on Window and Function Estimated (Quantifying and Balancing These Can Be Important); Especially for Resolving “Spiky” Features. 2 2 1.5 1.5 1 Z 0.5 0 2 ²i o 1.5 1 σ(Z) 1 0.5 0.5 0 0 3 2.5 ²i 2 1.5 1 0.5 0 ∂σ(Z)/∂Z Spatial Derivative of Function of Interest Chris Calderon, PASI, Lecture 3