Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Dessin d'enfant wikipedia, lookup
Integer triangle wikipedia, lookup
Euler angles wikipedia, lookup
Trigonometric functions wikipedia, lookup
Anatomical terms of location wikipedia, lookup
Four color theorem wikipedia, lookup
Pythagorean theorem wikipedia, lookup
Tessellation wikipedia, lookup
Regular polytope wikipedia, lookup
Congruent Polygons To name a polygon, start at any vertex and go around the figure, either clockwise or counterclockwise , and name the vertices in order. E M O Example 1: Give two (out of 12) possible names for the hexagon at the right. ____________________ DEMONS MEDSNO ____________________ D S N They have the same size and shape In simple terms, two polygons are congruent if _________________________________________________ _________________________ Their vertices can be paired so that corresponding More formally, two polygons are congruent iff _________________________________________________ angles and sides are congruent _______________________________________________________________________________________ Example 2. List the congruent sides and angles in the quadrilaterals below. πππππ π πππππ πΊ ο __________ __________ E S G Y __________ πππππ π΄ πππππ π ο __________ πππππ π __________ πππππ π ο __________ πππππ π πππππ πΈ ο __________ __________ O N T A πΊπ ππ΄ ο __________ __________ ππ π΄π ο __________ __________ ππΈ ππ ο __________ __________ πΈπΊ ππ ο __________ __________ When naming congruent polygons, you must list the corresponding vertices in order. This is known as a Congruent statement ____________________________________. YATS Example 3: Complete this congruence statement using the figure above: quad GONE ο quad __________ By looking at a congruence statement, you can determine the pairs of corresponding parts. Example 4: Use the statement ο CAT ο ο DOG to fill in the blanks. DO CA ο _____ G οT ο _____ ACT ο ODG ο _____ Example 5: V Given: VA ο VN O is the midpoint of AN VO ο AN VO bisects ο AVN Prove: ο AVO ο ο NVO A N O Statements Reasons 1. ______________________________ given 1. ______________________________ πππππ π΄ β πππππ π 2. ______________________________ Isosceles Triangle Thrm 2. ______________________________ π΄π β ππ 3. ______________________________ Def. of midpoint 3. ______________________________ Def. of perpendicular 4.πππ ______________________________ πππ΄ & πππ πππ = ππ‘. πππππ 4. ______________________________ 5. ______________________________ πππππ πππ΄ β πππππ πππ Right angle Thrm 5. ______________________________ 6. ______________________________ πππππ π΄ππ β πππππ πππ 6. ______________________________ Def. of angle bisector ππ β ππ 7. ______________________________ βπ΄ππ β βπππ 8. ______________________________ Reflexive 7. ______________________________ Def. congruent polygons 8. ______________________________