Download High Power DC/DC Converter Topologies

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Audio power wikipedia , lookup

Wireless power transfer wikipedia , lookup

Heterodyne wikipedia , lookup

Power factor wikipedia , lookup

Spark-gap transmitter wikipedia , lookup

Ohm's law wikipedia , lookup

Electrification wikipedia , lookup

Immunity-aware programming wikipedia , lookup

Electric power system wikipedia , lookup

Utility frequency wikipedia , lookup

Electrical ballast wikipedia , lookup

Stepper motor wikipedia , lookup

Current source wikipedia , lookup

Power engineering wikipedia , lookup

Islanding wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Stray voltage wikipedia , lookup

Mercury-arc valve wikipedia , lookup

Surge protector wikipedia , lookup

TRIAC wikipedia , lookup

History of electric power transmission wikipedia , lookup

Transformer wikipedia , lookup

Voltage regulator wikipedia , lookup

Electrical substation wikipedia , lookup

Power inverter wikipedia , lookup

Integrating ADC wikipedia , lookup

Opto-isolator wikipedia , lookup

Voltage optimisation wikipedia , lookup

Three-phase electric power wikipedia , lookup

Amtrak's 25 Hz traction power system wikipedia , lookup

Transformer types wikipedia , lookup

Rectifier wikipedia , lookup

Metadyne wikipedia , lookup

Mains electricity wikipedia , lookup

Resonant inductive coupling wikipedia , lookup

Power MOSFET wikipedia , lookup

Pulse-width modulation wikipedia , lookup

Variable-frequency drive wikipedia , lookup

Alternating current wikipedia , lookup

HVDC converter wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Buck converter wikipedia , lookup

Transcript
The Power to Amaze.
POWER CONVERTER TOPOLOGY
TRENDS
Name:
Steve Mappus
Systems Engineer
Date:
October 02, 2014
www.psma.com, [email protected]
Agenda




Topology Overview
Non Isolated Topologies
Isolated DC-DC Derivatives
Single Ended Topologies
 Transformer Reset Techniques
 Flyback Converter
 Forward Converter
 Double Ended Topologies
 Push Pull
 Half Bridge
 Full Bridge
 Summary
2
Isolated Power Topology Derivatives
BOOST
VO
1
=
Vi 1 − D
BUCK-BOOST
VO
D
=−
Vi
1− D
VO
=D
Vi
BUCK
NON-ISOLATED
ISOLATED
SINGLE-ENDED
SINGLE-ENDED
LOW POWER (< 100 W)
FLYBACK
MID-POWER (100 W - 500 W)
HIGH-POWER (> 500 W)
Power levels numbers for general
discussion only. Exceptions aplenty.
DOUBLE-ENDED
PUSH-PULL
FORWARD
2-SWITCH
2-SWITCH
ACTIVE CLAMP
ACTIVE CLAMP
HALF BRIDGE
LLC
FULL BRIDGE
 8 “Mainstream” Converter Topologies

Non-Isolated
1. Boost
2. Buck-Boost
3. Buck

Isolated
4. Flyback
5. Forward
6. Push-Pull
7. Half Bridge
8. Full Bridge
ZVT/PHASE SHIFT
HARD SWITCHED
3
Other Topologies?
 Numerous Variations Exist







Sepic
Cuk
Current Fed Buck
Tapped Inductors
Multiple Outputs
Interleaving
More?
 Different Ways to Operate Them








Voltage Mode Control
Current Mode Control
Digital Control
Variable Frequency
CCM, DCM, BCM
ZVS
ZCS
Synchronous Rectification
 Some Practical Converter Topology Advice
 Most power conversion requirements can be met using one or more of the 8
mainstream topologies
 Save more difficult topologies for unique application requirements
 Beware of publications proclaiming the “best” topology
4
Multi-Stage Topology
Typical Distributed Power System
AC Line
85 V < VAC < 265 V
48 V to 12 V IBC (Intermediate Bus Converter)
VDC = 400 V
400 V to 48 V Bus Converter
Telecom Rectifier
VPOL_1 < 5 V
PFC Boost
High Power DC-DC
 Scalable, efficient, complex protection functions,
sequencing, redundancy, digital control, etc
 Efficiency example
VPOL_N < 5 V
η SYS = η PFC ×η DC ×η DC ×η POL
POL DC-DC
η SYS = 98% × 95% × 95% × 96% = 84.9%
5
Single-Stage Topology
PFC Flyback
AC-DC
AC
EMI
PFC
FL7733A
 Difficult to meet: Low cost, high PF, low THD, high efficiency, wide VIN with single-stage
η = 84.9%
6
Non-Isolated Converter Topologies
7
Boost Converter (Step Up)
VIN(t)
L
VOUT
VGS(Q)
VOUT
VL
D
COUT
CBYP
VAC
Q
VDS(Q)
IL
BCM
IL
IDS(Q)
VIN(t)
L
VOUT
VL
ID
D
COUT
CBYP
VAC
Q
IL
Inductor volt-second balance:
〈𝑉𝑉𝐿𝐿 〉 𝑇𝑇𝑆𝑆 = 𝑉𝑉𝐼𝐼𝐼𝐼(𝑡𝑡) × 𝑡𝑡𝑂𝑂𝑁𝑁 + ��𝑉𝑉𝐼𝐼𝐼𝐼(𝑡𝑡) − 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 � × 𝑡𝑡𝑂𝑂𝐹𝐹𝐹𝐹 � = 0
𝑉𝑉𝐼𝐼𝐼𝐼(𝑡𝑡) × (𝑡𝑡𝑂𝑂𝑂𝑂 + 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 ) = 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂
𝑉𝑉𝐼𝐼𝐼𝐼(𝑡𝑡) × 𝑇𝑇𝑆𝑆 = 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂
tON
tOFF
TS
Boost CCM transfer function:
1
𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂
𝑇𝑇𝑆𝑆
=
=
𝑉𝑉𝐼𝐼𝐼𝐼(𝑡𝑡) 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 1 − 𝐷𝐷




VIN < VOUT
Most efficient at lower D
Continuous input current
CCM, BCM, DCM modes
8
L
VIN(t)
Operating Mode
VOUT
D
IL
CBYP
COUT
VAC
CCM, BCM or DCM
Q
VDS
VGS
IL(PK)
IL(PK)
IL(PK)
∆IL
IL(MIN)
∆IL
IL
∆IL
IL
0A
0A
0A
VOUT
VOUT
VDS
VDS
VDS
VIN
2x(VIN – VOUT)
0V
VGS
0V
VGS
0V
VGS
0V
0V
tON
tOFF
t
0V
tON
tOFF
tRES
t
tON
tOFF
t
tD
TS
TS
TS
CCM
(Fixed Freq)
BCM
(Variable Freq)
DCM
(Fixed Freq)
9
Buck Converter (Step Down)
L
VIN
CIN
VOUT
VIN+VF
VL
Q
VGS(Q)
COUT
VDS(Q)
D
VIN
IL
VD
VIN-VOUT
VL
L
VIN
CIN
-VOUT
VOUT
VL
Q
VF
D
IL
COUT
IDS(Q)
ID
tON
tOFF
TS
Inductor volt-second balance:
〈𝑉𝑉𝐿𝐿 〉 𝑇𝑇𝑆𝑆 = [(𝑉𝑉𝐼𝐼𝐼𝐼 − 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 ) × 𝑡𝑡𝑂𝑂𝑂𝑂 ] − 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 = 0
𝑉𝑉𝐼𝐼𝐼𝐼 × 𝑡𝑡𝑂𝑂𝑂𝑂 = 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × (𝑡𝑡𝑂𝑂𝑂𝑂 + 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 )
𝑉𝑉𝐼𝐼𝐼𝐼 × 𝑡𝑡𝑂𝑂𝑂𝑂 = 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑇𝑇𝑆𝑆
Buck CCM transfer function:
𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 𝑡𝑡𝑂𝑂𝑂𝑂
=
= 𝐷𝐷
𝑉𝑉𝐼𝐼𝐼𝐼
𝑇𝑇𝑆𝑆
 VIN > VOUT
 Most efficient at higher D
10
Buck-Boost Converter (Inverting)
D
-VOUT
VGS(Q)
VIN
VIN
CIN
Q
L
VIN
VL
D
CIN
Q
-VOUT
COUT
L
-VOUT
VDS(Q)
VL
IL
VIN
VIN+|-VOUT|
COUT
VOUT-VF
IL
IDS(Q)
VL
ID
IL
Inductor volt-second balance:
〈𝑉𝑉𝐿𝐿 〉 𝑇𝑇𝑆𝑆 = 𝑉𝑉𝐼𝐼𝐼𝐼 × 𝑡𝑡𝑂𝑂𝑂𝑂 + 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 = 0
𝑉𝑉𝐼𝐼𝐼𝐼 × 𝑡𝑡𝑂𝑂𝑂𝑂 = −(𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 × 𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 )
𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂
𝑡𝑡𝑂𝑂𝑂𝑂 /𝑇𝑇𝑆𝑆
𝑡𝑡𝑂𝑂𝑂𝑂 /𝑇𝑇𝑆𝑆
= −�
� = −�
�
(𝑇𝑇𝑆𝑆 − 𝑡𝑡𝑂𝑂𝑂𝑂 )/𝑇𝑇𝑆𝑆
𝑉𝑉𝐼𝐼𝐼𝐼
𝑡𝑡𝑂𝑂𝑂𝑂𝑂𝑂 /𝑇𝑇𝑆𝑆
tON
tOFF
TS
Buck-Boost CCM transfer function:
𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂
𝐷𝐷
= −�
�
𝑉𝑉𝐼𝐼𝐼𝐼
1 − 𝐷𝐷
 VIN < VOUT or VIN > VOUT
 Used for negative VOUT
11
Single Ended Converter Topologies
12
Benefits of a Transformer
1. Provides primary to secondary safety isolation – subject to regulatory standards
DC
Output
AC
AC
Load
(or DC)
2. Voltage conversion resolution
L
VIN
Q1
CIN
D1
D1
VO
CO
VO
=D
VIN
NP
VIN
NS
L
D2
CO
CIN
VO
N
VO
= S D
VIN N P
Q1
Ex: For FSW=300kHz (TSW=3.33µs), NP:NS=4:1, 36V<VIN<75 and VO=5V
Buck Converter
Isolated Buck (Forward) Converter
6% < D < 14%
200 ns < tON < 467 ns
27% < D < 55%
900 ns < tON < 1.8 µs
3. Potential ground differences between primary and secondary
4. Multiple outputs can be regulated/quasi-regulated
13
Transformer Characteristics
NP
NS
CP-S(MUTUAL)
VOUT
VIN
LP(LEAK)
RP
NP
RCORE
 Perfect coupling between Np:Ns
 No energy storage
VIN
NS
RS
NS
LMAG
CS(W)
CP(W)
 Ideal transformer
NP
LS(LEAK)
Parasitic Transformer Model
VGS
VOUT
Overshoot/ringing due to
Leakage Inductance
 Flyback “transformer”
 Really a coupled inductor
 Primary energy stored during tON
 Power transferred during tOFF
VDS
CCM Flyback (VDS = 32 V, VLK = 12 V)
14
Single Ended Topologies Defined
Single Ended – Transformer operation limited to first quadrant
B ∝ Vt
B ∝ Vt
+BSAT
B2
+BSAT
B2
∆B
∆B
B1
UNGAPPED
H ∝ NI
-BSAT
-BSAT
(a) Forward Converter Transformer Hysteresis
Reset
Circuit
NP
NS
D2
D
NP
CO
VIN
CIN
Q1
(b) Forward Converter
H ∝ NI
(c) Gapped Flyback “Transformer”
L
D1
GAPPED
B1
RESET CIRCUIT:
1. Third winding
2. RCD reset
3. Resonant reset
4. Active clamp reset
NS
CO
VO
CIN
Q1
(b) Flyback Converter
15
Flyback Converter Derivation
D
VIN
CIN
Q
-VOUT
D
n:1
COUT
VIN
L
VOUT
COUT
CIN
LM
Q
(a)
(d)
D
VIN
CIN
1:1
Q
-VOUT
VOUT
n:1
COUT
VIN
L
COUT
CIN
LM
Q
(b)
D
VIN
CIN
1:1
Q
LM
(e)
-VOUT
COUT
D
a)
b)
c)
d)
e)
Non-isolated buck-boost
Coupled inductor buck-boost
Isolated buck-boost
Isolated flyback converter
D can be in return path
(c)
16
Flyback Converter
CCM Operation
VOUT
PWM
NP n:1 NS
VIN
COUT
CIN
LM
Q
0
VIN+(NP/NS)VOUT
VDS
D
0
(a) Flyback Converter
 CCM Transfer Function
VO N S
D
=
×
VIN N P 1 − D
 Limitations






Q1 switching loss (hard switched)
D2 conduction loss
Q1(VDS) > VIN
50% duty cycle limit
Right half plane zero in CCM
Output rectifier reverse recovery
VOUT
0
VS
-(NS/NP)VIN
IQ1
0
ID1
0
IL
0
(b) CCM Waveforms
17
Quasi-Resonant Flyback
Conventional Valley Switching
Wide frequency variation depends on output load condition
iD
T1
t
Output load decreases
vDS
Operating frequency
increases
t
fS [Hz]
iD
PSwitching Loss ∝ COSSV DS2 f S
T2
t
vDS
t
Output Power [W]
18
Quasi-Resonant Flyback
Window Valley Switching
Tsmax=10.8us
Light Load
 Frequency variation depends
on output load conditions
tB=7.8us
tW=3.0us
(a)
fs_A=110kHz
 Operating frequency is within
narrow variation (127.5 kHz
~ 92.6 kHz)
(b)
fs_B=122kHz
vDS (100V/div)
(c)
fs_C=127.5kHz
iD (100mA/div)
(d)
Time scale 2usec/div
fs_D=92.6kHz
Heavy Load
19
Two-Switch, Quasi-Resonant Flyback
VIN
(FROM PFC)
PBIAS
C3
D5
D4
FAN7382
Q1
1
VCC
VB
8
2
HIN
HO
7
3
LIN
VS
6
VHS
C2
VLED
D1
D2
4
COM
LO
Q2
5
VA
R2
FAN6300H
DET
HV
8
2
FB
NC
7
3
CS
VDD
6
4
GND
GATE
5
C1
R1
R3
1
D3
CC
FB CV
R4
ACIN
PBIAS
RDY
(FROM PFC)
20
Two-Switch Quasi-Resonant Flyback
Switching Waveforms
VIN+VHS
VGS(HS)




VIN
PBIAS
VGS(LS)
0V
IDET(SOURCE)>30µA
tDELAY=200ns
0V
VA
VA
5µs



VO
OVP
2.5V
0.7V
VDET
Quasi-resonant, variable frequency
HS and LS MOSFETs switch synchronously
Switching period, TS = tOFF + tf + tON
Inductor current switches from 0 A (ZCS)
every switching cycle
 VDS
0V
ZVS → VOUT > 2×VIN
Valley switch → otherwise
Window valley switching
IDS
0A
ID
0A
VRO
2
VIN
2
VDS
VRO
2
VIN
2
0V
tOFF
tf
tON
TS
21
Two-Switch Quasi-Resonant Flyback
Measured Waveforms
 VDS Valley Switching on First Valley




VOUT < ½ VIN
D = 42%
FS = 63 kHz
POUT = 85 W
 Extended Window Valley Switching




VOUT < ½ VIN
D = 11%
FS = 68 kHz
POUT = 24 W
22
Forward Converter Basics
L
D1
PWM
VIN
CIN
D3
NR
NP
NS
D2
CO
VO
0
VR+VIN
VDS(Q1)
VIN
Q1
0
VIN
(a) Forward Converter with Reset Winding
VP
0
VR = −VIN
N
× P
NR
0
IMAG
0
IQ1
VO
N
= S ×D
V IN N P
0
IL
0
ID1
 Limitations
0
ID2
 Really a Transformer Coupled Buck
 CCM Transfer Function




Q1 switching loss (hard switched)
D2 conduction loss
Q1(VDS) > 2 VIN
50% duty cycle limit (NP:NR = 1:1)
(b) DCM Waveforms (D<0.5)
23
Problems with Duty Cycle > 50%
VP
VIN
Equal Vxt Area
 Common practice is to use 1:1 bifilar
transformer winding for NP:NR
0
t
− VIN ×
IMAG
DTS
 D = 40%
NP
NR
D2TS


D 3T S
t
TS
VP
Unequal Vxt Area
VIN
 D = 67%
t
D=40%
− VIN ×
D=67%
NP
NR





IMAG
DTS
D2TS
TS
Converter operates in DCM
Transformer is completely reset on every
switching cycle
2TS
3TS
Converter wants to operate in CCM
Transformer can NOT reset on every
switching cycle
IMAG increases due to volt second product
imbalance
Transformer saturation will result
Operation beyond D = 50% requires
additional reset voltage
t
24
Duty Cycle Greater Than 50%
NP NR NS
 For NP:NR = 1:2
VDS (V)
VDS vs Vin
Third Winding Reset
 VDS=3VIN
216
204
192
180
168
156
144
132
120
108
96
84
72
Q1
VP
36
42
48
54
60
66
72
VIN
Equal Vxt Area
}
}
D=67%
Vin (V)
− VIN ×
Np:NR=1:1
VDS
Np:NR=1:2
t
NP:NR=1:1
NP:NR=1:2
NP
NR
IMAG
DTS
D2TS
TS
2TS
3TS
t
Conclusion: Reset winding technique, D > 50% not practical for high VIN applications
due to additional MOSFET VDS stress
25
Active Clamp Forward Converter
L
D1
CCL
NP
NS
 Advantages
CO
D2
Q2
CIN
Q1
PWM
0
Q2 VGS
0
VIN+VCL
Q1 VDS
0
IMAG
ICL
0
IQ1
0
IP





Reduced MOSFET VDS voltage stress
Higher efficiency through ZVS
Use of parasitic elements
Higher frequency operation
Suitable for off-line (HS clamp) or DC-DC (LS
clamp)
 Disadvantages
 Conditional ZVS only
 Dual primary side gate drive with accurate deadtime control and max duty cycle clamp required
 Poor transient response due to CCL
 Transfer Function
VO
N
= S ×D
V IN N P
VIN
0
VP
VRESET
26
Active Clamp Forward Converter
Two Versions
D1
CCL
NP
NS
L
D2
D1
NP
CO
NS
L
D2
CO
CCL
Q2
CIN
CIN
Q2
Q1
PARAMETER
VDS
VRESET
VCL
(a)
Q1
High-Side Active Clamp
(Flyback Clamp)
HIGH-SIDE ACTIVE CLAMP (off-line)
(b) Low-Side Active Clamp
(Boost Clamp)
LOW-SIDE ACTIVE CLAMP (telecom)
 1 

 × V IN
1− D 
 D 

 × V IN
1− D 
 1 

 × V IN
1− D 
 D 

 × V IN
1− D 
 D 

 × V IN
1− D 
 1 

 × V IN
1− D 
CCL
(applied voltage)
Lower voltage by VIN volts
Highest VCL occurs at DMAX
Higher voltage by VIN volts
Not practical for off-line
CCL
(cap value)
Same value as low-side for given ripple
voltage
Same value as high-side for given ripple
voltage
Clamp MOSFET
(Q2)
N-Channel
Can be used for > 500 V
P-Channel
Can be used up to 500 V
Gate Drive
Gate drive transformer required
Level shifting gate drive required
27
Active Clamp Forward Converter
Zero Voltage Switching (ZVS)
 ZVS occurs when the voltage across the MOSFET, VDS, is positioned to “zero
volts” prior to the start of the next switching cycle.
 Benefits of ZVS





Reduced switching losses
Higher operating frequency possible (smaller passive component size)
Higher converter efficiency
Increased reliability
Reduced radiated emissions (EMI)
VDS
ID
PSW=VDS x ID x FSW
(a) Hard Switching
(b) “Ideal” ZVS
28
Active Clamp Forward Converter
Zero Voltage Switching (ZVS)
 Parasitic elements can be used to benefit ZVS
CD1
CP-S(MUTUAL)
RP
CCL
Q2
CDS
LP(LEAK)
NP
RCORE
CP(W)
D2
LS(LEAK)
NS
RS
D1
LMAG
CS(W)
L
D2
CD2
CO
CDS
Q1
D1
VDS
 Active Clamp Forward converter uses fixed frequency resonant transitions
to achieve ZVS when specific operating conditions are met
29
Single Ended (<500W)
2 Switch Forward Converter
 Advantages
Q2
D4
D1
D3
CIN
NP
L
NS
D2
Q1
0
VIN
VIN/2
0
VIN/NP
0
-VIN/NP
PWM
(Q1, Q2)
VDS
(Q1, Q2)
VS
ID3, ID4
0
IQ1, IQ2
0
0
 Disadvantages
 Limited to less than 50% duty cycle
 High side gate drive required for Q2
 Hard switching
 Transfer Function
IMAG
0
0
IO
CO
 Ruggedness
 MOSFET voltage stress limited to VIN
 Magnetizing energy recycled by D3,
D4
 Universal input, 150 W < P < 500 W
VO
N
= S ×D
V IN N P
IL
ID1
ID2
30
Single Ended (>1kW)
Interleaved 2 Switch Forward Converter
 Advantages
 Can operate multiple power stages out of
phase
 Ripple current cancellation at output
capacitor
 Reduced RMS current at input capacitor
 Multiple stages can add up to kW of power
 Smaller output inductors can improve
transient response
Q2
D4
D1
D3
CIN
NP
NS
L
CO
D2
Q1
Q4
D8
D5
D7
NP
NS
L
D6
Q3
 Disadvantages
 Design complexity
 PCB layout can be challenging
Qn
Dn
Dn
Dn
NP
NS
L
Dn
Qn
31
Double Ended Converter Topologies
32
Double Ended Topologies Defined
Double Ended – Transformer operation occurs in first and third quadrants
B ∝ Vt
B ∝ Vt
+BSAT
B2
B2
(RCD Reset) ∆ B
B1
H ∝ NI
∆B
+BSAT
B2
∆ B (Active Clamp)
H ∝ NI
B1
B1
-BSAT
-BSAT
Half-Bridge, Full-Bridge
Active Clamp Forward
 Symmetrical operation between first
and third quadrants
 No transformer reset circuitry required
 “Single ended” but operates slightly into
the third quadrant
Normal
Flux Imbalance
Saturation
Primary Current
33
Double Ended (<500 W)
Half Bridge Converter (Symmetrical)
D1
Q2
C1
 Advantages
L
NP
NS
CO
VP
CIN
C2
NS
Q1
D2
PWM, Q1
PWM, Q2
VIN/2
-VIN/2
VIN
VDS(Q1, Q3)
VIN
VDS(Q2, Q4)
VP
IP
ID1
ID2
IO
IL
 Better transformer utilization
 MOSFET voltage stress limited to VIN
 Best for high VIN off line applications up to
500W
 Single winding primary
 Transformer balanced by C1 and C2
 Asymmetric and resonant versions can ZVS
 Disadvantages
 Totem pole primary gate drive
 High primary current
 Possible cross conduction between Q1 and
Q2
 Hard switching
 Transfer Function
VO
N
= 2× S × D
VIN
NP
34
Asymmetrical Half Bridge Converter
Vd
0
Symmetric square waveform
+
Vd
+
Vp
+
Vp
-
-
-
Vd
0
Asymmetric square waveform
1:1
What if an asymmetric square wave is introduced to the transformer?
 Transformer will be saturated
What if an asymmetric square wave is introduced to the transformer in series
with a DC blocking capacitor?
 Not saturated due to the voltage of the blocking capacitor, CB
+ VCB +
Vd
0
-
CB
+
Vp
+
Vp
-
1:1
Same area
0
VCB
35
Asymmetrical Half Bridge Converter
D=0.46
D=0.23
D1
Q2
Q2 (D)
NP
NS
Q1 (D)
VIN/2
NS
VP
Q1
-VIN/2
CO
VP
CIN
VIN/2
L
D2
-VIN/2
IP
CB
VO
N
= 2 × S × D × (1 − D )
V IN
NP
 Asymmetrical Gate Drive
(a) Symmetrical HB waveforms
D=0.46
D=0.23
Q2 (D)
Q1 (1-D)
VIN-VCB
VIN-VCB
Equal
Area
VP
VCB
VCB
IP
(b) Asymmetrical HB waveforms




Q2 modulated by D
Q1 driven by 1-D
Fixed dead time between Q1 and Q2
Dead time optimized for ZVS and anti cross
conduction
 Fixed frequency ZVS PWM operation
 Near D=0.5, operation is same as symmetrical HB
 BUT, excessive voltage stress is applied to
secondary rectifier at VIN(MAX)
36
Asymmetrical Half Bridge Converter
 Secondary rectifier voltage stress:
VD 2 = VO × (1 − D )
 Reverse recovery and parasitic
ringing
 Wide ∆D range requires use of high
voltage rectifiers
 Converter operates best near D = 0.5
40
Diode Voltage Stress (V)
VD1 = D × VO
Asymmetrical Half Bridge
VD vs D, VO=50 V
35
30
25
20
15
10
5
0
0.20 0.23 0.26 0.29 0.32 0.35 0.38 0.41 0.44 0.47 0.50
 Advantages
Duty Cycle
VD1
 Fixed frequency ZVS
 Constant power transfer (D and 1-D) reduces output ripple
 Power stage can be controlled using any active clamp PWM controller
VD2
 Disadvantages
 High voltage stress on secondary rectifier
 Poor transient response due to blocking capacitor, CB
37
LLC Resonant Half Bridge Converter
 Square wave generator: produces a square wave voltage, Vd by driving
switches, Q1 and Q2 with alternating 50% duty cycle for each switch.
 Resonant network: consists of Llkp, Llks, Lm and Cr. The current lags the voltage
(inductive) applied to the resonant network which allows the MOSFET’s to be
turned on with zero voltage.
 Rectifier network: produces DC voltage by rectifying AC current
Ip
Im
Square wave generator
Ids2
resonant network
Q1
Ip
Vin
Vd
Q2
Llks
Ro
Im
ID
+
VO
Lm
Ids2
Io
ID
n:1
Llkp
Rectifier network
Vd
(Vds2)
Vin
Cr
Vgs1
Vgs2
38
LLC Converter Characteristics
fP =
 Two resonant frequencies
(fo and fp) exist
 The gain is fixed at resonant
frequency (fo) regardless of the load
variation
fO =
1
2π Lr Cr
LLC Resonant Converter
fp
fo
1.8
Q=
Q=0.2
1.6
M @ f = fo = 1
Lr / Cr
Rac
Q= 1
Q= 0.8
1.4
Q= 0.6
Q= 0.4
1.2
Gain
 Peak gain frequency exists between
fo and fp
 As Q decreases (load current
decreases), the peak gain frequency
moves to fp and higher peak gain is
obtained
 As Q increases (load current
increases), peak gain frequency
moves to fo and the peak gain drops
1
2π (LM + Lr )Cr
Q= 0.2
1.0
Q=1
0.8
=
M 1=
when f s f o
0.6
M=
2nVO
Vin
0.4
40
50
60
70
80
90
100
110
120
130
140
Freq (kHz)
39
LLC Topology Variations
Primary Side Variation
Lr
Q1
Q1
Secondary Side Variation
½ Cr
Lr
Lm
Ro
Cr
+
Ro
+
VO
VO
-
-
Lm
VIN
VIN
Q2
Q2
½ Cr
Transformer across the
high side MOSFET
Split resonant capacitor
Q1
Q1
Full bridge rectifier with
single winding
2 Rectifier diode with center
tab winding
Ro
Ro
Lr
VO
VO
-
-
Lm
Q2
Lm
Cr
Transformer across the low
side MOSFET
VIN
+
½ Cr
Lr
VIN
+
Q2
½ Cr
Voltage doubler rectifier
with single winding
Synchronous rectifier with
center tab winding
Split resonant capacitor with
clamping diode
40
LLC Resonant Half Bridge Converter
 Advantages of the LLC resonant converter




Narrow frequency variation range over wide load range
Zero voltage switching even at no load condition
Reduced switching loss through ZVS  Improved efficiency and EMI
When the two magnetic components are implemented with a single core (use
the leakage inductance as the resonant inductor), one component can be
saved
 Disadvantages of the LLC resonant converter





Can optimize performance at one operating point, but not with wide range of
input voltage and load variations (too wide frequency range)
Difficult to regulate the output at no load condition
Significant current may circulate through the resonant network, even at the no
load condition
Quasi-sinusoidal waveforms exhibit higher peak values than equivalent
rectangular waveforms
High output current ripple
41
Double Ended (<500W)
Push Pull Converter
D1
NP
NS
NP
NS
L
 Advantages
CO
CIN
Q2
Q1
D2
PWM, Q1
PWM, Q2
IQ1
IQ2
2VIN
VDS(Q1)
2VIN
VDS(Q2)
ID1
 Lower primary current compared to HB
 Best for lower VIN, such as telecom DCDC of US Line Voltage
 Simple low-side gate drive
 Low output current ripple
 Disadvantages
 High voltage (2xVIN) on primary
MOSFETs
 Transformer flux walking (VMC only)
 Center tapped transformer structure
 Hard switching
 Transfer Function
VO
N
= 2× S × D
V IN
NP
ID2
IO
IL
42
Double Ended (>500W)
Full Bridge Converter (PWM)
D1
Q1
L
NS
CO
NP
CIN
NS
Q2
 Advantages
Q3
Q4
D2
Gate, Q1
Gate, Q2
Gate, Q3
Gate, Q4
VIN
-VIN
VIN
VDS(Q1, Q4)
VIN
VDS(Q2, Q3)
VP
 MOSFET voltage stress limited to VIN
 Twice the power compared to half
bridge
 Single winding primary
 Disadvantages




Dual, totem pole primary gate drive
Hard switching (Non-ZVT)
Parasitics degrade circuit performance
Circuit complexity
 Transfer Function
VO
N
= 2× S × D
VIN
NP
IP
ID1
ID2
IO
IL
43
Double Ended (>500W)
Phase Shifted Full Bridge Converter
D1
Q1
 Advantages
L
Q3
NS
CO
NP
CIN
NS
Q2
Q4
D2
Gate, Q1
Gate, Q2
Gate, Q3







Gate, Q4
VIN
VP
-VIN
VIN
VDS(Q1, Q4)
VIN
VDS(Q2, Q3)
IP
ID1
IO
Power
Freewheel
Power
Freewheel
ID2
IL
High Efficiency ZVS
Highest single stage processing power
MOSFET voltage stress limited to VIN
Twice the power compared to half bridge
Full wave rectified secondary
Single winding primary
Excellent choice for EU line voltage (PFC preregulator) with output power >1kW
 Disadvantages




Dual, high side primary gate drive
Circuit complexity
High circulating primary current for ZVS
Loss of ZVS at light load current
 Transfer Function
VO
N
= 2× S × D
VIN
NP
44
Phase Shifted Full Bridge Converter
ZVS Waveforms
Q1
Q3
Q2
Q4
Q2 (P→A)
VDS, VGS
Q1
Q3
Q2
Q4
Q4 (A→P)
VDS, VGS
(a) IO = 100%
(b) IO = 35%
(c) IO = 0%
A=“Active” or power phase
P=“Passive” or freewheel phase
45
Current Doubler Rectifier
What is it? - A full wave alternative rectification technique compatible with all
double ended converter topologies
Derivation of Current Doubler
L
D1
NS
D1
NS
VO
CO
L
D1
V
VO
CO
D2
D2
(b)
D1
NP
CO
VO
NP
NS
CO
D1
D2
(c)
Current Doubler
L1
L1
I
V
D2
(a)
NS
VO
CO
I
V
I
NS
NS
VO
CO
NP
NP
D1
L1
Q1
VO
NP
(d)
VO
CO
NS
Q2
D2
L2
L2
(f)
OR
L2
(g)
D2
(e)
46
Phase Shifted Full Bridge with Current Doubler
Gate, Q1
L1
Q1
Q3
Gate, Q2
CO
D1
Gate, Q3
CIN
D2
Q2
Gate, Q4
Q4
L2
t0
t1
VP
L1
Q1
Q3
IP
CO
D1
CIN
VL1
D2
Q2
IL1
Q4
L2
t1
t2
VL2
IL2
IO=IL1+IL2
L1
Q1
Q3
CO
D1
CIN
t0 t1 t2 t3 t4
D2
Q2
Current Doubler Timing Diagram (PSFB Application)
Q4
L2
t2
t3
L1
Q1
Q3
CO
D1
CIN
D2
Q2
Q4
L2
t3
t4
 Better thermal distribution for higher current outputs
 Each inductor carries half the load current at half
the switching frequency
 Ripple currents cancel as a function of D
 Single winding secondary
47
High Power Topology Summary
Topology
Transformer
Primary
Switches
VDS
“Ideal” Application
CCM Boost
Inductor
(non-isolated)
1
VOUT
High power PFC > 300 W
Interleaved PFC > Several kW
BCM Boost
Inductor
(non-isolated)
1
VOUT
PFC < 300 W
Interleaved PFC < 1 kW
Forward
Single-end
1
2xVIN
< 200 W, universal off-line or telecom
Active Clamp
Single-end
2
2-Switch Forward
Single-end
2
VIN
< 500 W, universal off-line, PFC preregulator
Half Bridge
Double-end
2
VIN
< 500 W, EU off-line, Intermediate Bus
Converters
Push Pull
Double-end
2
2xVIN
< 500 W, telecom or low VIN (< 200 V)
Full Bridge
Double-end
4
VIN
> 500 W, universal off-line
Phase Shifted FB
Double-end
4
VIN
> 1 kW, universal off-line or telecom,
highest efficiency required
Current Doubler
Double-end
NA
NA
Any double-ended topology, low VOUT,
high IOUT most benefit
VIN ×
1
1− D
< 500 W, universal off-line or telecom,
highest efficiency required
48
Summary
 Power Converter Topology Trends:
 Advanced control algorithms breathing new life into classic topologies…
 Buck → multiphase buck
 Boost → BCM boost
 Flyback → QR flyback
 Forward → active clamp forward
 Half bridge → LLC resonant
 Full bridge → PSFB
 The innovation trends are in new control methods that are pushing the limits of
power processing, converter size, and operating frequencies.
 Better uses of zero-voltage switching and zero-current switching for lower
stresses
 Better use of parasitic elements
 Digital techniques including non-linear and multi-variant control
 Better synchronous rectification timing control
49