Download 15 Competition 2010

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Renewable resource wikipedia , lookup

Biological Dynamics of Forest Fragments Project wikipedia , lookup

Overexploitation wikipedia , lookup

Biodiversity action plan wikipedia , lookup

Molecular ecology wikipedia , lookup

Habitat conservation wikipedia , lookup

Island restoration wikipedia , lookup

Latitudinal gradients in species diversity wikipedia , lookup

Habitat wikipedia , lookup

Bifrenaria wikipedia , lookup

Occupancy–abundance relationship wikipedia , lookup

Theoretical ecology wikipedia , lookup

Storage effect wikipedia , lookup

Transcript
Fall 2010 IB Workshop Series
sponsored by IB academic advisors
Undergraduate
Research
Tuesday, Oct. 12
4:00-5:00pm 1038 FLB
Learn why this experience is so valuable, how to go about finding a
faculty member with whom to work, and how to use this experience to
apply for graduation with distinction. Fellow IB students who have
done IB 390 or 490 will share their experiences as well.
Chapter 16
To what extent does competition control
species’ presence and abundance?
Objectives I
•
•
•
•
•
•
•
Define competition
Types of competition
Types of resources
D-D regulation via intraspecific competition
Plant responses
Animal responses
Competition added to logistic growth models
Competition: use or defense of a limiting
resource that reduces availability to
others
Superior competitors can persist at lower
resource levels.
Types of competition:
• Exploitation vs. interference
• Intraspecific vs. interspecific
Competition may occur through exploitation
(indirect) of shared resources or (direct)
interference (individuals defend resources
actively).
exploit
interfere
Allelopathy:
chemical (interference) competition.
•
•
•
•
This plant distribution is caused by:
H1: Allelopathy
H2: Seed predation by small mammals
No resolution: need experiment considering
both simultaneously.
Types of Resources
• Plants
• abiotic
• biotic
• Animals
• abiotic
• biotic
Intraspecific competition + densitydependent population regulation
• Negative responses:
•
Growth is….
•
Sexual maturity is….
•
Birth rate is …
•
Death rate is…
Density-dependent regulation (via
intraspecific competition) of growth.
***Summarize 2 conclusions.
Figure 1
Density-dependent regulation of time to
reach sexual maturity. ***Does age or
weight determine sexual maturity?
Explain.
Figure 2
Density-dependent regulation of birth rate
Figure 3
Intraspecific competition contributes to
density-dependent birth and death rates;
hence to regulation of population size.
Figure 5
Logistic growth model
• dN/dt = r N(K - N)/K)
• As N approaches K,
intraspecific competition
increases.
• Population growth slows.
Logistic equation is based on intraspecific
competition depressing r, the per capita
population growth rate; population size
continues to increase until N = K.
Interspecific competition reduces equilibrium
level of population below carrying capacity.
At equilibrium, each competing species reduces K
for the other species.
*** How much is K of sp 1 reduced by one
individual of competing sp 2? By all
individuals?
Figure 6
K1
Lotka-Volterra addition of interspecific
competition to logistic equation:
• (dN/dt) = rN[(K-N)/K] becomes:
• (dN1/dt) = r1N1[(K1 -N1 - 1,2N2)/K1]
• 1,2 = competition coefficient
•
effect of each individual of sp 2 on sp 1
•
effect of sp 2 on sp 1’s growth rate
• Similarly, for species 2:
• (dN2/dt) = r2 N2[(K2 -N2 - 2,1N1)/K2]
***What is  (competition coefficient) for
the effect of 1 ind. of sp. 2 (N2) on sp. 1
(N1) or equivalence of sp. 2 for sp. 1?
K1
Figure 7
Objectives II
• Niche concepts
• Interspecific competition
• ‘Ghost of competition past’: how
deduce today whether competition
in past?
• Classic experiments
•
Competitive exclusion hypothesis
• Field experimental studies: how
document that competition is
occurring?
Niche:
• Ecological role of species in
community
• Ranges of conditions and resource
qualities within which the species
persists
• Often conceived as a multidimensional space (hypervolume)
From 1 to n niche axes --> hypervolume of
niche space
Niche metrics
Intraspecific competition: creates
selective pressure for broader resource use.
Frequency
w/o
within pop.
with
Food size utilized
• Interspecific competition: select for
• narrower resource use; pack in more sp.
w/o
with
Frequency
within pop.
Food size utilized
Niche breadth decreases with interspecific
competition..
Without competing sp.
With competing sp..
Niche differences among congeneric trees.
Note differences on different rock types.
‘Ghost of competition past’:
What evidence is used to deduce that
interspecific competition has occurred in
the past?
1
2
3
4
5
1) Niche separation via
resource partitioning
among related
species.
1) Niche separation via resource partitioning
2) Habitat shift: Use of habitat often changes
depending on presence or absence of closely
related species.
Expand habitat when other species absent.
Figure 10
3) Character displacement when in sympatry.
3) Character displacement: Morphological
traits and food selection of species shift
depending on presence or absence of
closely related species.
4. Competitive Exclusion Hypothesis: 2
species can’t coexist on the same limiting
resource.
Figure 12
Two species can coexist if they are limited
by different resources.
Figure 12A
5) Competitive release: Densities of
organisms often increase when densities
of competing species are reduced.
Figure 14
• Observation: One predator feeds on many competing prey
species. Does it control diversity?
• Hypothesis:
• Prediction:
• If prey species drop from 15 to 8 when starfish removed,
• What is Conclusion?
• What is a keystone predator?
Figure 15
Field Experiments: How can we
demonstrate competition is occurring?
The following slides are sample test
questions for you to work on at
home as ICA 5. See website
to print worksheet to use.
Do ONLY questions 3 + 4.
Worksheet is due on Thursday,
October 14 at lecture.
Question 1: Buttercups
The figure on the next slide illustrates the
distribution of two species of buttercups along a
transect across ridge (high land) and furrow (low
valley) grassland.
1. In one sentence summarize the results.
2. Provide two alternative hypotheses (If…then) for
the observed pattern.
3. Draw or describe one complete experiment that
would test both hypotheses.
4. What specific results from the experiment would
provide support for your hypothesis 1 above?
Figure for preceding ? Draw the
contrasting curves for species 1 and 2.
Sp 1 peaks on furrow (F)
Sp 2 peaks on ridge (R )
No. of
plants
F
R
F
R
Distance along transect (m)
F
Question 2. Observation: zones of sp. B + C
do not overlap.
What are two alternative hypotheses /
predictions?
Experimental design?
B
C
What explains zonation of barnacles?
• Results:
• Together: Only B survives with B + C in B zone.
•
Only C survives with B + C in C zone.
• Alone: C grows in B but B can’t grow in C zone.
• What are two conclusions?
Question 3: Galium sp. + Common garden
experiment to study
interspecific competition:
• Observation:
• 2 closely related sp. grow in
different habitats or soils.
• What are 2 altenative hypotheses
• H1:
• H2 :
• Describe the experimental
design.
• What are 2 key results?
• What is main conclusion?
• Is competition symmetric
between the two species?
• Question 4. Desmodium sp. X 2
• What are the two key questions being addressed
by this experiment?
• Summarize two key results.
• What is the main conclusion?
• Which species is the better
• competitor?
• Is competition symmetric
between the two species?
•Question 5: 2 grasses
Observation: An area of serpentine rock is
adjacent to an area of granite rock. Grass 1 on
granite soil is replaced abruptly by Grass 2 on
serpentine soil.
• What are two alternative hypotheses that explain
their distribution?
•
• Question 1: Are the two grasses restricted to
their respective substrates by soil factors?
• ***Design an experiment to answer the ?
Results:
• Grass 1 grows well on granitic soil but fails to
grow on serpentine soils.
• Grass 2 grows equally well on serpentine and
granitic soils.
• ***What is the main conclusion for grass 1? For
grass 2?
***Design two experiments to determine
whether competition limits the distribution of
these two grasses.
Results:
• Experiment 1
• 1:1 mix on serpentine,
Grass 1 dies, Grass 2 thrives.
• 1:1 mix on granite,
Grass 2 dies, Grass 1 thrives.
• Experiment 2
• When Grass 2 is cleared from serpentine,
Grass 1 does not spread into area.
• When Grass 1 is cleared from granite,
Grass 2 spreads into area.
• Is competition symmetric or asymmetric?
• What is the main conclusion about grass 1’s competitive
ability? Its tolerance of serpentine soil stress?
• What may be a general principle relating to competitive
ability vs. tolerance of stressful conditions?