Download ÁLTALÁNOS SZERVEZ*DÉS:

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Molecular neuroscience wikipedia , lookup

Clinical neurochemistry wikipedia , lookup

Channelrhodopsin wikipedia , lookup

Transcript
A tantárgy zárásakor a hallgatóknak az alábbi témakörökben kell tájékozottságot mutatni:
Students are expected to be familiar with the following topics at the end of the Semester:
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
Az idegrendszer felépítése és az élő szervezetekben betöltött funkciója.
Structure of the nervous system and its function in living organisms.
Az információ felvétele, feldolgozása és tárolása, valamint válaszadás a sejtek szintjén.
Information recording, processing and storage and reactions at cellular levels.
Az idegszövet sejtes elemeinek jellemzése; közös és eltérő vonások más testi sejtek
szerkezetéhez és működéséhez hasonlítva.
Characterization of cellular elements of the nervous tissue; common and differential
features in structure and function compared to other somatic cells.
Az idegsejtek elektromos tevékenységének jellemzése, az akciós potenciál, EPSP és IPSP.
Characterization of electric activity of neurons; graded potentials, PSPs and action
potentials.
Idegrostok típusai, ingerületvezetés a központi és a perifériás idegrendszerben.
Types of nerve fibers, stimulus conductance in the central and peripheral nervous systems.
Gliasejtek típusai, és funkciói.
Types of glial cells; structure and function.
“Idegsejt-idegsejt kapcsolat” morfológiai és funkcionális jellemzése. Elektromos és kémiai
szinapszisok tulajdonságainak összehasonlítása.
Morphological and functional characterization of „neuron - neuron connection”.
Comparison of electric and chemical synapses.
“Idegsejt-gliasejt kapcsolat” morfológiai és funkcionális jellemzése. Gliasejtek szerepe a
szinaptikus jelátvitelben.
Morphological and functional characterization of „neuron - glia connection”. The role of
glial cells in the synaptic communication.
Kémiai szinapszisok felépítése, gátló és serkentő szinapszisok.
Structure and operation of chemical synapses. Excitatory and inhibitory synapses.
Kémiai hírvivőanyagok fajtái, ezek szintézise, felhasználása és lebontása. Amin és peptid
transzmitterek
Types, synthesis, role and degradation of chemical neurotransmitters; focus on amine and
peptide transmitters.
(11.
Nem szinaptikus interneuronális kapcsolatok és retrográd jelátvitel.
Non-synaptic interneuronal connections and retrograde neurotransmission.) NEM KELL!!!
12.
Receptorok fajtái és működése. Az izomorsó felépítése és szerepe
Types and functions of receptor cells. The muscle spindle.
Effektorok fajtái és működése. A motoros véglemez felépítése és szerepe
Types and functions of effector cells. The motor endplate.
A gerincvelő szürke- és fehérállományának szerveződése. A gerincvelő szürkeállományában
található idegsejtek főbb működése
Organization of the white- and grey matter of the spinal cord. Distribution and function of
the local neurons.
Gerincvelői reflexek. A reflexív általános felépítése.
Spinal cord reflexes. Basic components of the reflex arch.
Érzőpályák.
Sensory pathways.
Mozgatópályák.
Motor pathways.
Agytörzs fő részei, jelentősebb magok és pályák. Agytörzsi reflexek.
Major parts, nuclei and pathways of the brain stem. Brain stem reflexes.
Kisagy fő részei és összeköttetései.
Major parts, connections and microcircuitry of the cerebellum.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
Thalamus főbb magvai, ezek funkciója és kapcsolódásuk más agyi struktúrákhoz.
Function and connectome of the thalamic major nuclei.
Az agykéreg anatómiai és funkcionális felosztása. Kérgi oszlopok szerkezete és működése.
Morphological and functional subdivisions of the cerebral cortex. Structure and function of
the cortical columns.
A memória, tanulás idegi központjai.
Centers of memory and learning.
A szaglórendszer szerveződése.
Organization of olfactory system.
A látórendszer szerveződése. A látórendszer felépítése és látótérkiesések.
Organization of the visual system. Physiological and pathological reasons for the existence of
blind spots in the visual field.
A halló- és egyensúlyozó rendszer szerveződése.
Organization of the auditory and vestibular systems.
A zsigerek működésének szabályozása: a szimpatikus és a paraszimpatikus rendszer.
Central regulation of the viscera: the sympathetic and parasympathetic nervous systems.
Témák, tételek az előadásokon és szemináriumokon elhangzott anyag alapján
Topics by subjects of lectures and seminars
1) The modular structure of the body
2) The functions required to maintain the body at changing internal and external millieu
3) The role played by the nervous system to ensure survival
4) The way the cells can specialize to carry out different functions (gain different morphology and
chemotype).
5) The basic structure and function of cellular organelles.
6) The basic process of protein synthesis and modifications.
7) The way of energy production to serve cellular events.
8) The structural and functional symbioses of neurons and glial cells.
9) The morphological and functional diversity of neurons. Mutual definiteness of morphology and function.
10) Resting potential and action potential.
11) Electrotonic (graded) potential, conductance.
12) The role of somatodendritic region in information processing.
13) The structure of neuropil and events, which take place in the neuropil.
14) The way, how different glial cells contribute to the maintenance of neuronal functions.
15) The way, how various physical and chemical changes in our close environment are detected and
transformed to sensory information.
16) The structural elements and the mechanisms, which are involved in the transformation of neuronal
activity to muscle contraction or secretion.
17) The structure and the operation of chemical synapses.
18) The structure and the operation of electric synapses.
19) The common and differring features of amine and peptide transmitter synthesis and release.
20) The spontaneous and action potential-generated transmitter release.
21) Involvement of glial cells in transmitter synthesis and elimination from the extracellular space.
22) The two basic signal transduction mechanisms of amine transmitters i.e. ionotropic and metabotropic
23) Dependence of the transmitter effect on the physiological status of the postsynaptic cells.
24) The brain area specific distribution of neurons using specific amine or peptide transmitters.
25) Co-existance of amine and/or peptide transmitters in the vast majority of neurons.
26) Pathological events maybe generated by certain transmitter(s).
27) The difference between ion channels and ion pumps.
28) Regulation of ion channels.
29) Majority of amine transmitters targets both ionotropic and metabotropic receptors.
30) Peptide transmitters target metabotropic receptors.
31) The signalling waves of first, second and third messengers.
32) The complex role of calcium played in signalling.
33) Regulation of protein functions by phosphorilation and dephosphorilation.
34) The difference between necrosis and apoptosis.
35) Tissue damage and tendency for regeneration in the PNS and CNS.
36) The development of the central nervous system from a tube-like structure, the wall of which host
initially stem cells. After multiplication, cells differentiate into neurons and glial cells and establish
function-related connections with the capacity of plastic changes.
37) The basic structure of spinal cord is organised to support body segments. The term of reflex arch, and
the difference between somatic and autonomic reflex arches.
38) The arrangement of nerve fibers within the spinal cord carrying motor and/or sensory informations
from and to supraspinal centers.
39) At some extent, the human body preserved the segmental organization of phylogenetically more ancient
creatures. The segments became more or less reorganised, but kept their controlling neuronal pathways
with sensory and motor innervation.
40) The spinal cord collects sensory information from the body and the limbs. The information is conveyed
to higher brain centers via ascending pathways.
41) There are pathways selective for the different sensory modalities. Some sensory modalities are carried
by paralell pathways to different brain centers.
42) The spinal cord sends motor commands to the body and the limbs. The information is conveyed from
higher brain centers via descending pathways.
43) There are pathways, which carry motor information from different higher brain centers.
44) Reflex arcs have five basic elements.
45) The generation of specific responses to stretch, pain or visceral sensations.
46) The consequences of spinal cord injury.
47) The brain stem has three parts, which develop from the midbrain and the hindbrain (rhombencephalon).
48) The brain stem hosts 10 out of 12 cranial nerves, which ensure all functions for the neck and the face,
as spinal neurons do for the body and the limbs.
49) The brain stem level is the site, where CSF moves in and out of the 4th ventricle and the subarachnoidal
space.
50) The cerebellum establish connection with all three parts of the brain stem, through which it can gain
essential somatosensory, vestibular and higher cortical informations to carry out its motor control.
51) The different cell types, and the functional interconnections in the cerebellar cortex.
52) The brain stem has inherent regulatory functions i.e. it controls somatic (e.g. coordinated eye
movements) and vital autonomic functions (e.g. respiration, circulation, feeding, state of consciousness,
arousal)
53) The brain stem transmits motor and sensory pathways.
54) There are motor cranial nerves carrying out either single (somatic) or multiple motor (somato and
autonomic) functions.
55) There are sensory cranial nerves carrying out either single, or multiple sensory (somatic and autonomic)
functions.
56) The thalamus is a complex nucleus; each of its nuclei are in reciprocal connection with the
corresponding areas of the cerebral cortex.
57) There is a functional distinction among the thalamic nuclei; there are nuclei with primary motor, sensory
or limbic functions, each transmit excitatory signal to target areas.
58) The thalamic inhibitory neurons are segregated into the reticular nucleus.
59) The hypothalamus, besides being regulatory center of several autonomic functions (i.e.
thermoregulation, metabolism), it controls the peripheral endocrine organs via the hypothalamohypophyseal axis.
60) The telencephalic grey matter forms an internal core, the basal ganglia, and an outer folded mantle, the
cerebral cortex. The telencephalic white matter is composed of nerve fibers conneting either contralateral
cortical areas (commisural pathways), ipsilateral cortical areas (associative pathways) or cortical areas to
subcortical regions (projecting pathways).
61) The structural components of the basal ganglia and the internal capsule.
62) The morphology, connectivity and function of the various cortical cell types and the putative model of
the cortical column.
63) Topography of functionally different cortical areas.
64) The sensory modalities, which stimulate the medial lemniscus system.
65) The sensory modalities, which stimulate the spinothalamic tract.
66) The receptors, first, second and third order neurons and their terminal fields within both systems.
67) The multi-center aspect of motor control.
68) The upper and lower motor neurons.
69) The trisynaptic neuronal network of the hippocampus.
70) The structure of the receptor organ, which translate and enhance the olfactory, visual, auditory and
vestibular signals to cellular activity.
71) Signalling mechanism(s) in the receptor cells.
72) Basic information processing at the level of receptor organs.