* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Physics II - Magnetism - Ms. Gamm
Jerk (physics) wikipedia , lookup
Old quantum theory wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Relativistic mechanics wikipedia , lookup
Spinodal decomposition wikipedia , lookup
Eigenstate thermalization hypothesis wikipedia , lookup
Internal energy wikipedia , lookup
Hooke's law wikipedia , lookup
Gibbs free energy wikipedia , lookup
Newton's laws of motion wikipedia , lookup
Work (thermodynamics) wikipedia , lookup
Heat transfer physics wikipedia , lookup
Centripetal force wikipedia , lookup
Equations of motion wikipedia , lookup
AP Physics - Harmonic Motion We have been dealing with straight line motion or motion that is circular. There are other types of motion that must be dealt with. Specifically a motion that repeats itself over and over. Such a thing has its very own phancy physics name. “The name?” the desperately curious, interested advanced physics student asks? It is called, dear student, periodic motion. Periodic Motion motion in which a body moves back and forth with a fixed path over a definite interval of time. A special case of periodic motion is known as harmonic motion. Harmonic Motion Periodic motion with no friction that is produced by a restoring force that is directly proportional to the displacement and oppositely directed. Don’t you hate definitions like that? The Physics Kahuna is so sorry, but what can you do? Let’s see how it works, which is really the best way to learn about it. Okay, see, the uh, restoring force pushes and or pulls the object undergoing the harmonic motion and is the thing that makes it happen. Let’s look at a simple example of harmonic motion. A sphere is attached by a spring to a solid block. The sphere (and spring) is free to slide back and forth on a smooth, frictionless surface. F F=0 F The drawing above gives you an idea of the sequential motion of the system. Initially the spring is compressed. This is shown in the first drawing. The ball is released and the spring pushes it outward. In the second drawing, the spring has reached its normal displacement and is no longer exerting a force on the ball. Ah, but the ball’s inertia and the good old first law ensure that the ball keeps moving. As it does this, it stretches the spring. Of course this causes the spring to exert a force in the opposite direction which slows the ball. This is the restoring force. Anyway, eventually the spring force has had enough time to stop the ball. This is depicted in the third drawing. Once the ball stops, the spring will pull it back in the opposite direction and the process will repeat itself. 212 Here are some critical terms that have to do with such motion. Equilibrium position this is the point in the motion where the object would be if it were not subject to any forces. Amplitude (A) The maximum displacement from the equilibrium position. Cycle One complete iteration of the motion sequence. Period (T ) The time it takes to do one cycle. Frequency ( f ) The number of cycles per unit of time. The drawing below gives us a depiction of the amplitude of the system. A A A simple way to understand this motion is to look at a graph of displacement vs time. The graph looks like this: x A t 1 cycle T 213 The displacement is plotted along the y axis and time is plotted along the x axis. The amplitude is the maximum displacement value. On the graph, one cycle is the segment of the curve from in phase point to the next sequential in phase point. In phase points? Okay, okay already. These are points along the displacement path where the object is doing the same thing. No better way to understand the thing than to look at another example. Here we have us a weight attached to a vertically mounted spring. The weight is given an initial small displacement (which will be the amplitude) and then released. It bobs up and down. Its velocity will vary as it moves through the cycle. The velocity is zero at the top of the motion and at the bottom. The maximum velocity occurs at the zero displacement position. 1 2 3 4 5 v= 0 vMax v= 0 Acceleration and displacement: We can analyze the motion more fully by looking at the forces in the system, the accelerations that are taking place, and the displacement. We begin with Hooke’s law, which we studied when we dealt with energy. This is the force that is exerted by the spring. Hooke’s Law Fs kx Recall that the minus sign simply means that the force exerted by the spring is always opposite to the displacement. The maximum force will occur at the maximum displacement, which is the amplitude, so we can write an equation for the maximum force. FMax kA Where FMax is the maximum restoring force, k is the spring constant and A is the amplitude. 214 We can now apply the second law to find the maximum acceleration. FMax maMax aMax FMax m We can plug FMax kA into the acceleration equation we just developed: aMax FMax m aMax kA 1 m kA m kA m The acceleration is not constant because the force is not constant. We can write an equation for the acceleration as a function of displacement. a k x m At zero displacement, the acceleration will be zero, since, as you can see, the displacement x is zero. The acceleration is varying then between its maximum value, which takes place at the maximum displacement (the good old amplitude) and zero. The acceleration ranges from k k k A to A . In between it is given by: a x m m m a Max a= 0 - a Max 215 In the drawing above, we can see the positions that have the maximum acceleration. We have chosen the coordinate system so that an acceleration to the right is positive and an acceleration to the left is negative. Another important ideas is that the initial displacement given the system – we could call this the release point – will determine the amplitude. So you pull the spring out and give it a displacement of 5.0 cm, that means that the amplitude has to be 5.0 cm. Do you see why this is so? (a) A spring has a constant of 125 N/m. A 350.0 g block is attached to it and is free to slide horizontally on a smooth surface. You give the block an initial displacement of 7.00 cm. What is (a) the maximum force and (b) the maximum acceleration acting on the block? To find the force we use Hooke’s law: N FMax kA 125 0.0700 m m 8.75 N Note that the Physics Kahuna cleverly gave the thing a negative displacement so it would all come out positive. (b) To find the acceleration we use the second law: F ma a F m 8.75 N 0.350 kg 8.75 kg m s2 0.350 kg 25.0 m s2 Obnoxious Facts: Windmills always turn counter-clockwise--except for the windmills in Ireland. Zero is the only number that cannot be represented by Roman numerals. Janet Guthrie was the first woman to race in the Indianapolis 500. Karate actually originated in India, but was developed further in China. The expression getting someone's goat is based on the custom of keeping a goat in the stable with a racehorse as the horse's companion. The goat becomes a settling influence on the thoroughbred. If you owned a competing horse and were not above some dirty business, you could steal your rival's goat (seriously, it's been done) to upset the other horse and make it run a poor race. From goats and horses it was linguistically extended to people: in order to upset someone, get their goat. The game of squash originated in the United Kingdom. It came about after a few boys, who were waiting for their turn to play racquets, knocked a ball around in a confined area adjoining the racquets court. The hammer throw is illegal as a high school sport in all states except Rhode Island. A cubic mile of fog is made up of less than a gallon of water. 216 Relation Between Frequency and Period: The frequency of the system is the number of cycles per unit time. We can write an equation for this: f number of cycles time f 1 T 1 cycle Period Therefore: f is the frequency and T is the period. T Also 1 f The unit for frequency is the Hertz. (It used to be a cps, a cycle per second, i.e., cycle , but they s changed it back in the turbulent 60’s.) 1 Hz 1 s The period of a system is 0.00210 s. What is its frequency? f 1 T 1 0.00210 s 476 Hz Energy and Amplitude: The total energy of a system undergoing harmonic motion must, by law, remain constant. But of course the type of energy can be transformed from one type or types to another. Clearly the energy of the system must be all potential energy when the displacement is at its maximum value. This is because the velocity of the system is zero. This will occur when the displacement is equal to the amplitude. Once the mass is moving away from maximum displacement, some of the potential energy is converted to kinetic energy. The kinetic energy increases and the potential energy decreases until the displacement is zero. At this point all the energy is kinetic and the object is moving at maximum speed. The kinetic energy then begins to decrease and the potential energy increases until the amplitude is reached again. And so on. It looks like this: 217 PE Max KE Max PE Max The potential energy for a spring is given by this equation: (the Physics Kahuna is positive that you remember the equation with joy) US 1 2 kx 2 If we plug in the amplitude for the displacement, we get an equation for the energy of the system. U 1 2 kA2 This is the maximum amount of energy that the system can have – the system will get no other energy. The Law of Conservation of Energy tells us that the total energy of the system must remain constant, so this equation gives us the energy that the system has at any point in the cycle. Also not that the energy is proportional to the square of the amplitude. We can plot kinetic energy vs time, potential energy vs time, and displacement vs time and then compare them. When we do this, we get three graphs that look like this: 218 x Kinetic Energy Potential Energy t t t You should be prepared to mark up a drawing or a graph of a harmonic motion situation and locate the places where the kinetic energy is at a maximum or minimum, the potential energy’s maximum and minimum values, where the velocity is zero or maximum, where the acceleration is minimum or maximum, and where the forces are minimum or maximum. Calculating Energy: From the law of conservation of energy, we know that the energy must stay constant for the system This means that: K U U S i K U U S f But since we are ignoring gravitational potential energy, the expression is simplified to: K U S i K U S f We also know that the total energy of the system must be: US 1 2 kA2 The energy of the system for any displacement must be: 1 2 1 2 1 2 kA mv kx 2 2 2 kA2 mv2 kx2 219 Period of spring system: The period for a spring system moving with a small displacement is given by this equation. (You will be provided with this equation on the AP Physics Test). T 2 m k T is the period, m is the mass of the weight (we are ignoring the mass of the spring, as it is usually insignificant), and k is the spring constant. A 345 g block is part of a spring system, is oscillating. The spring constant is 125 N/m. What is the period of the system? T 2 m k 1 T 2 0.345 kg 125 kg m 1 m s2 0.330 s In the real world, we have to deal with friction and energy losses, so that the actual graph would look like this: X (m) t (s) The amplitude decreases over time, although the period and frequency do not change. This decrease in amplitude deal is called dampening or attenuation (takes your pick). We will, in solving our little problems, ignore this dampening effect. 220 Hot Air Awards: The annual awards for superfluous scientific achievement were handed out. The awards are presented each year (and for the past twelve) by the Cambridge-based magazine The Annals of Improbable Research (or AIR, as in “hot”). The big winners? Okay, here goes. Full details are available at www.improb.com. Biology: Norma E. Bubier, Charles G.M. Paxton, Phil Bowers, and D. Charles Deeming of the United Kingdom, for their report "Courtship Behaviour of Ostriches Towards Humans Under Farming Conditions in Britain." PHYSICS: Arnd Leike of the University of Munich, for demonstrating that beer froth obeys the mathematical Law of Exponential Decay. INTERDISCIPLINARY RESEARCH: Karl Kruszelnicki of The University of Sydney, for performing a comprehensive survey of human belly button lint -- who gets it, when, what color, and how much. CHEMISTRY: Theodore Gray of Wolfram Research, in Champaign, Illinois, for gathering many elements of the periodic table, and assembling them into the form of a four-legged periodic table table. MATHEMATICS: K.P. Sreekumar and the late G. Nirmalan of Kerala Agricultural University, India, for their analytical report "Estimation of the Total Surface Area in Indian Elephants." LITERATURE: Vicki L. Silvers of the University of Nevada-Reno and David S. Kreiner of Central Missouri State University, for their colorful report "The Effects of Pre-Existing Inappropriate Highlighting on Reading Comprehension." PEACE: Keita Sato, President of Takara Co., Dr. Matsumi Suzuki, President of Japan Acoustic Lab, and Dr. Norio Kogure, Executive Director, Kogure Veterinary Hospital, for promoting peace and harmony between the species by inventing Bow-Lingual, a computer-based automatic dog-tohuman language translation device. HYGIENE: Eduardo Segura, of Lavakan de Aste, in Tarragona, Spain, for inventing a washing machine for cats and dogs. ECONOMICS: The executives, corporate directors, and auditors of Enron, Lernaut & Hauspie [Belgium], Adelphia, Bank of Commerce and Credit International [Pakistan], Cendant, CMS Energy, Duke Energy, Dynegy, Gazprom [Russia], Global Crossing, HIH Insurance [Australia], Informix, Kmart, Maxwell Communications [UK], McKessonHBOC, Merrill Lynch, Merck, Peregrine Systems, Qwest Communications, Reliant Resources, Rent-Way, Rite Aid, Sunbeam, Tyco, Waste Management, WorldCom, Xerox, and Arthur Andersen, for adapting the mathematical concept of imaginary numbers for use in the business world. 221 Period of a Pendulum: Another simple harmonic system is a pendulum. The period of a pendulum is constant for small angle swings (for large angle swings, the period is not a constant). Galileo is credited with the discovery that the pendulum period is constant. He supposedly did this in a cathedral. Apparently not paying as much attention to the priest as church officials would desire, he grew bored and noticed that a chandelier was swinging back and forth. Using his pulse as a timing device, he discovered that the chandelier took the same amount of time to make each swing regardless of how big the swing was. Later he used pendulums to time his experiments. Eventually pendulums were used to regulate the motion of clocks. This led to the first accurate clocks. (One can argue that this led to the horrible, frantic modern world with its insane preoccupation with time, but he Physics Kahuna will not go there.) The period of a pendulum is given by this formula (which will also be available to you on the AP Physics Test). T 2 L g T is the period, L is the length of the pendulum, and g is the acceleration of gravity. Note that the period of a pendulum depends only on its length. Pendulums are commonly used to experimentally find a value for g, the acceleration of gravity in physics experiments. How would you go about doing that? A tall tower has a cable attached to the ceiling with a heavy weight suspended at its bottom near the floor. If the period of the pendulum is 15.0 s, how long is the cable? This is a simple problem – we use the period equation and solve it for the length of the pendulum. L T 2 g T 4 2 m 2 9.8 2 15.0 s s L 4 2 2L L g gT 2 4 2 55.9 m 222 The Highwayman -- Alfred Noyes The wind was a torrent of darkness among the gusty trees, The moon was a ghostly galleon tossed upon cloudy seas, The road was a ribbon of moonlight over the purple moor, And the highwayman came riding, Riding, riding, The highwayman came riding up to the old inn-door. He’d a French cocked-hat on his forehead, a bunch of lace at his chin, A coat of claret velvet, and breeches of brown doe-skin; They fitted with never a wrinkle: his boots were up to his thigh! And he rode with a jeweled twinkle, His pistol butts a-twinkle, His rapier hilt a-twinkle, under the jeweled sky. Over the cobbles he clattered and clashed in the dark inn yard. And he tapped with his whip on the shutters, but all was locked and barred; He whistled a tune to the window, and who should be waiting there But the landlord’s black-eyed daughter, Bess, the landlord’s daughter, Plaiting a dark red love-knot into her long black hair. And dark in the dark old inn-yard a stable-wicket creaked Where Tim the ostler listened, his face was white and peaked; His eyes were hollows of madness, his hair like mouldy hay, But he loved the landlord’s daughter, The landlord’s red-lipped daughter, Dumb as a dog he listened, and he heard the robber say: “One kiss, my bonny sweetheart, I’m after a prize tonight, But I shall be back with the yellow gold before the morning light; Yet if they press me sharply, and harry me through the day, Then look for me by moonlight, Watch for me by moonlight, I’ll come to thee by moonlight, though hell should bar the way.” He rose upright in his stirrups; he scarce could reach her hand, But she loosened her hair i’ the casement! His face burnt like a brand As the black cascade of perfume came tumbling over his breast; And he kissed its waves in the moonlight, (Oh, sweet black waves in the moonlight!) Then he tugged his rein in the moonlight, and galloped away to the West. To be continued 223