Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
10.1 Formulae and tables Content Mathematical notation Mathematical formulae and definitions formulae & tables 10.1.1 10.1.2 FORMULAE section 10 formulae & tables 10-1 10.1.1 Mathematical notation The list which follows summarises the notation used in the Syndicate’s Mathematics examinations. Although primarily directed towards A Level, the list also applies, where relevant, to examinations at all other levels and other boards. 1. Set notation is an element of is not an element of x1 , x2 , ... the set with elements x1 , x2 , ... x : ... the set of all x such that n A the number of elements in set A the empty set universal set A' the complement of the set A the set of integers, 0, 1, 2, 3 , ... the set of positive integers, 1, 2, 3, ... the set of rational numbers the set of positive rational numbers, x 0 :x0 the set of positive rational numbers and zero, x : x 0 the set of real numbers the set of positive real numbers, x :x0 0 the set of positive real numbers and zero, x : x 0 n the real n tuples the set of complex numbers is a subset of is a proper subset of is not a proper subset of union intersection a, b the closed interval x a, b the interval x :a x b a, b a, b the interval x :a x b AL eGuide Mathematics is not a subset of the open interval x :a x b :a x b cosmic 2. Miscellaneous Symbols is equal to is not equal to is identical to or is congruent to is approximately equal to ; is proportional to ; is less than or equal to; is not greater than ; is greater than; is much greater than ; is greater than or equal to; is not less than infinity is less than; is much less than 3. Operations ab a plus b ab a minus b a b , ab , a b a multiplied by b ab, a:b n a i 1 a i a , ab b a divided by b the ratio of a to b a1 a2 ... an the positive square root of the real number a a the modulus of the real number a n! n factorial for n n r the binomial coefficient n! , for n , r r ! n r ! 0, 0! 1 n n 1 ... n r 1 r! 0, 0 r n , for n , r 0 10 formulae & tables 10-3 4. Functions f function f f x the value of the function f at x f: A B f is a function under which each element of set A has an image in set B f: x the function f maps the element x to the element y y f -1 the inverse of the function f g f , gf the composite function of f and g which is defined by g f x or gf x g f x lim f x x a the limit of f x as x tends to a x ; x an increment of x dy dx the derivative of y with respect to x dn y dx n the n th derivative of y with respect to x n f ' x , f " x , …, f x the first, second, …, n th derivatives of f x with respect to x y dx b a indefinite integral of y with respect to x the definite integral of y with respect to x for y dx values of x between a and b y x the partial derivative of y with respect to x x, x,… the first, second, … derivatives of x with respect to time 5. Exponential and Logarithmic Functions e base of natural logarithms x e , exp x exponential function of x loga x logarithm to the base a of x ln x natural logarithm of x lg x logarithm of x to base 10 6. Circular Functions and Relations sin, cos, tan cosec, sec, cot cosec , sec , cot sin1, cos1, tan1 1 AL eGuide Mathematics 1 1 the circular functions the inverse circular functions cosmic 7. Complex Numbers i square root of –1 z a complex number, z x iy r cos isin , r i re , r 0 0 Re z the real part of z , Re x iy x Im z the imaginary part of z , Im x iy y z the modulus of z , x iy x 2 y 2 , r cos i sin r arg z the argument of z , arg r cos i sin , z the complex conjugate of z , x iy x iy 8. Matrices M M a matrix M 1 the inverse of the square matrix M MT the transpose of the matrix M det M the determinant of the square matrix M 9. Vectors a the vector a AB the vector represented in magnitude and direction by the directed line segment AB â a unit vector in the direction of the vector a i, j, k unit vectors in the directions of the cartesian coordinate axes a the magnitude of a AB the magnitude of AB a b the scalar product of a and b a b the vector product of a and b 10 formulae & tables 10-5 10. Probability and Statistics A, B, C, etc. events AB union of events A and B AB intersection of the events A and B P A probability of the event A A' complement of the event A , the event ‘not A ’ P A B probability of the event A given the event B X , Y , R, etc. random variables x, y, r , etc. value of the random variables X , Y , R, etc. x1, x2 , ... observations f1, f2 , ... frequencies with which the observations, x1, x2 , ... occur px the value of the probability function P X x of the discrete random variable X p1, p2 , ... probabilities of the values x1, x2 , ... of the discrete random variable X f x , g x , … the value of the probability density function of the continuous random variable X Fx , Gx , … the value of the (cumulative) distribution function P X x of the random variable X E X expectation of the random variable X E g X expectation of g X Var X variance of the random variable X B n, p binominal distribution, parameters n and p N , 2 normal distribution, mean and variance 2 population mean 2 population variance population standard deviation x sample mean s2 unbiased estimate of population variance from a 2 1 xx sample, s 2 n 1 probability density function of the standardised normal variable with distribution N 0, 1 corresponding cumulative distribution function r Cov X , Y AL eGuide Mathematics linear product-moment correlation coefficient for a population linear product-moment correlation coefficient for a sample covariance of X and Y cosmic 10.1.2 Mathematical formulae and definitions PURE MATHEMATICS Algebraic series n r r 1 1 2 n n n 1 , r 2 r 1 n r 61 n n 1 2n 1 , 41 n2 n 1 3 r 1 2 Binomial expansion: a b n n1 n n2 2 n n3 3 n n a a b a b a b ... b , 1 2 3 n n n! where n is a positive integer and r n r ! r ! Maclaurin's expansion: 1 x n 1 nx ex 1 x sin x x cos x 1 x x n n 1 2! 2 2! 2! x2 3 3! f x f 0 f ' 0 x x 5 3! ... xr r! 4 n 0 n! x r ... 2 r 1 2r 1 ! x x 1 all x ... 2r 2r ! ln 1 x x 21 x 2 31 x 3 ... (1)r 1 x n ... all x x r 4! r! f ... ... 1 ... 1 2! x 2 ... n n 1 ... n r 1 x 2 ... r 5! x x3 f '' 0 xr r ... all x ... 1 x 1 Trigonometry sin A B sin A cos B cos A sin B cos A B cos A cos B sin A sin B tan A B tan A tan B 1 tan A tan B sin3A 3 sin A 4 sin3 A cos 3A 4 cos3 A 3 cos A sin P sinQ 2sin 21 P Q cos 21 P Q sin P sinQ 2cos 21 P Q sin 21 P Q cos P cos Q 2cos 21 P Q cos 21 P Q cos P cos Q 2sin 21 P Q sin 21 P Q If t tan 21 x , then: sin x 2t 1 t 2 and cos x 1 t 2 1 t 2 10 formulae & tables 10-7 Principal values: 21 sin1 x 21 x 1 0 cos1 x x 1 21 tan1 x 21 Integrals (Arbitrary constants are omitted; a denotes a positive constant) f x f x dx 1 1 x a 2 2 a 1 a x 2 2 x a x a 2a x a 2 1 1 a x 2 x sin1 a 1 1 2 1 x tan a 2 2a ln a x a x ln ln sec x tan x sec x x a x a x x a 21 Numerical Methods Trapezium Rule: f x dx b a 1 2 h y 0 2 y 1 y 2 ... y n1 y n , where h ba n The Newton-Raphson iteration for approximating a root of f x 0 : xr 1 xr f( xr ) f '( xr ) Vectors The point dividing AB in the ratio : has position vector a b AL eGuide Mathematics cosmic PROBABILITY AND STATISTICS Sampling and testing Unbiased variance estimate from a single sample: s2 2 1 2 x 1 2 x x x n 1 n n 1 x1 x1 x2 x2 2 Two-sample estimate of a common variance: s2 2 n1 n2 2 Regression and correlation Estimated product moment correlation coefficient: r x x y y x x y y 2 2 xy n 2 x 2 2 y 2 y x n n xy Estimated regression line of y on x : y y b x2 x2 , where b x x y y x x 2 The Greek Alphabet alpha iota rho beta kappa sigma gamma lambda tau delta mu upsilon epsilon nu phi zeta xi chi eta omicron psi theta pi omega 10 formulae & tables 10-9 THE NORMAL DISTRIBUTION FUNCTION If Z has a normal distribution with mean 0 and variance 1 then, for each value of z , the table gives the value of z , where pdf = (z) Φ(z) z PZ z . For negative values of z use z 1 z . z z z 0 1 2 3 4 5 6 7 8 9 ADD z 0 1 2 3 4 5 6 7 8 9 0.0 0.1 0.2 0.3 0.4 0.5000 0.5398 0.5793 0.6179 0.6554 .5040 .5438 .5832 .6217 .6591 .5080 .5478 .5871 .6255 .6628 .5120 .5517 .5910 .6293 .6664 .5160 .5557 .5948 .6331 .6700 .5199 .5596 .5987 .6368 .6736 .5239 .5636 .6026 .6406 .6772 .5279 .5675 .6064 .6443 .6808 .5319 .5714 .6103 .6480 .6844 .5359 .5753 .6141 .6517 .6879 4 4 4 4 4 8 8 8 7 7 12 12 12 11 11 16 16 15 15 14 20 20 19 19 18 24 24 23 22 22 28 28 27 26 25 32 32 31 30 29 36 36 35 34 32 0.5 0.6 0.7 0.8 0.9 0.6915 0.7257 0.7580 0.7881 0.8159 .6950 .7291 .7611 .7910 .8186 .6985 .7324 .7642 .7939 .8212 .7019 .7357 .7673 .7967 .8238 .7054 .7389 .7704 .7995 .8264 .7088 .7422 .7734 .8023 .8289 .7123 .7454 .7764 .8051 .8315 .7157 .7486 .7794 .8078 .8340 .7190 .7517 .7823 .8106 .8365 .7224 .7549 .7852 .8133 .8389 3 3 3 3 3 7 7 6 5 5 10 10 9 8 8 14 13 12 11 10 17 16 15 14 13 20 19 18 16 15 24 23 21 19 18 27 26 24 22 20 31 29 27 25 23 1.0 1.1 1.2 1.3 1.4 0.8413 0.8643 0.8849 0.9032 0.9192 .8438 .8665 .8869 .9049 .9207 .8461 .8686 .8888 .9066 .9222 .8485 .8708 .8907 .9082 .9236 .8508 .8729 .8925 .9099 .9251 .8531 .8749 .8944 .9115 .9265 .8554 .8770 .8962 .9131 .9279 .8577 .8790 .8980 .9147 .9292 .8599 .8810 .8997 .9162 .9306 .8621 .8830 .9015 .9177 .9319 2 2 2 2 1 5 4 4 3 3 7 6 6 5 4 9 8 7 6 6 12 10 9 8 7 14 12 11 10 8 16 14 13 11 10 19 16 15 13 11 21 18 17 14 13 1.5 1.6 1.7 1.8 1.9 0.9332 0.9452 0.9554 0.9641 0.9713 .9345 .9463 .9564 .9649 .9719 .9357 .9474 .9573 .9656 .9726 .9370 .9484 .9582 .9664 .9732 .9382 .9495 .9591 .9671 .9738 .9394 .9505 .9599 .9678 .9744 .9406 .9515 .9608 .9686 .9750 .9418 .9525 .9616 .9693 .9756 .9429 .9535 .9625 .9699 .9761 .9441 .9545 .9633 .9706 .9767 1 1 1 1 1 2 2 2 1 1 4 3 3 2 2 5 4 4 3 2 6 5 4 4 3 7 6 5 4 4 8 7 6 5 4 10 8 7 6 5 11 9 8 6 5 2.0 2.1 2.2 2.3 2.4 0.9772 0.9821 0.9861 0.9893 0.9918 .9778 .9826 .9864 .9896 .9920 .9783 .9830 .9868 .9898 .9922 .9788 .9834 .9871 .9901 .9925 .9793 .9838 .9875 .9904 .9927 .9798 .9842 .9878 .9906 .9929 .9803 .9846 .9881 .9909 .9931 .9808 .9850 .9884 .9911 .9932 .9812 .9854 .9887 .9913 .9934 .9817 .9857 .9890 .9916 .9936 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 2 2 1 1 1 2 2 2 1 1 3 2 2 2 1 3 3 2 2 1 4 3 3 2 2 4 4 3 2 2 2.5 2.6 2.7 2.8 2.9 0.9938 0.9953 0.9965 0.9974 0.9981 .9940 .9955 .9966 .9975 .9982 .9941 .9956 .9967 .9976 .9982 .9943 .9957 .9968 .9977 .9983 .9945 .9959 .9969 .9977 .9984 .9946 .9960 .9970 .9978 .9984 .9948 .9961 .9971 .9979 .9985 .9949 .9962 .9972 .9979 .9985 .9951 .9963 .9973 .9980 .9986 .9952 .9964 .9974 .9981 .9986 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 0 Critical values for the normal distribution If Z has a normal distribution with mean 0 and variance 1 then, for each value of p , the table gives the value of z , where PZ z p . p 0.75 0.90 0.95 0.975 0.99 0.995 0.9975 0.999 0.9995 z 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291 AL eGuide Mathematics cosmic