Download List of genes previously associated with T2D – compiled by Cristen

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Supplemental Table S1: 147 SNPs reported to be associated with T2D as of May 2005
Gene Name
Full gene name
Reference
Common name dbSNP ID
(if
available)
ABCA1
ATP-binding cassette, subfamily A member 1
ATP-binding cassette, subfamily C (CFTR/MRP,
member 8
1; 2
IMS-JST105322
rs2020927
3-5
4; 6-9
7; 10
11
11
11
11
11
11
1
11
Syn T759T
Intron 24 T/C
Syn R1273R
IV38+54
IV18-36
IVS11-74
K649
S1369A
IVS19+123
IMS-JST032704
IVS13-76
rs1801261
rs1799854
rs4148643
rs4148646
rs4148628*
rs2074308
rs1799858
rs757110‡†
rs8192692
rs2283257
rs1283802
C/T
T/C
C/A
2-sided A/G
T/C
G/T
12; 13
12; 13
14-16
14; 17
18
15; 16
19
45G/T
276T/G
-11377 G/C
-11426 A/G
I164T
– 11391G/A
G54D
rs2241766
rs1501299
rs266729
rs16861194
G/T
G/T
C/G
G/A
rs17300539
rs2856966‡
2-sided A/G
G/A
20
21; 22
23
1
24
25
26
5’UTR -47 T/C
Q27E
W64R
IMS-JST005886
-106 C/T
TaqI
Ala567Gly
rs1042711
rs1042714†
rs4994‡
rs506571
rs759853
rs2280520
rs1803274
C/T
G/C
C/T
A/G
C/T
G/A
T/C
27; 28
SNP 19
SNP 43 Intron 3
SNP 63
§
ABCC8
ABCC9
ACDC/APM1
ADCYAP1
ADRB2
ADRB3
ALDOB
AKR1B1
ApoD
BCHE
/CHLE
CAPN10
ATP-binding cassette, subfamily C, member 9
Adiponectin
adenylate cyclase activating
polypeptide 1 (pituitary
adrenergic, beta-2-, receptor,
surface
adrenergic, beta-3-, receptor
Aldolase B
aldose reductase
Apolipoprotein D
butyrylcholinesterase
calpain – 10
*‡
rs3842570
rs3792267
rs5030952
Risk/nonrisk allele
from
previous
report1
flanking sequence on
strand assayed
A/G
A/G
A/G
T/C
2-sided G/C
2-sided G/A
T/C
gcaaaataca[A/G]gccacttctt
tatccaagtc[A/G]gtcgctgtct
cagctggcct[A/G]cagggaggga
cagagagctc[T/C]ctgtgcaggg
acggccacaa[G/C]aggccagtcc
gggtgcggaa[G/A]gcattctcag
acgctcagca[C/T]tggaagggaa
gggctggacg[T/C]ttgcggttca
tgtccagggg[C/A]gatgagggca
tggagtgcag[A/G]taagcacctg
aatccatcca[T/C]gggtgataac
cttactcaca[G/T]tgctacctaa
ctctgcccgg[G/T]catgaccagg
ctatatgaag[G/T]cattcattat
cagatcctgc[C/G]cttcaaaaac
tggggtcgta[G/A]tttaattcat
gcctaccaca[T/C]cacagtctat
tgcaagaacc[A/G]gctcagatcc
ccagacttcg[G/A]tggctcggag
tgggtccgcc[C/T]gctgaggcgc
cgtcacgcag[G/C]aaagggacga
ggccatcgcc[C/T]ggactccgag
caatgaacct[A/G]ccagaaaagt
gcggcacccc[C/T]agcgcaacca
gggacaatcg[G/A]aggggcatgc
tcccattctg[T/C]ttcatcaata
not successfully genotyped
gaagtaaggc[G/A]tttgaaggtg
gggggtggag[T/C]gaggggtggg
29; 30
CASQ1
calsequestrin 1
CD38
COG2/LDLC
GYS1
HFE
CD38 antigen
Low density lipoprotein
receptor defect Ccomplementing protein
C-reactive protein, pentraxinrelated
proprotein convertase
subtilisin/kexin type 1
intestinal fatty acid binding
protein 2
Friedreich ataxia
Glucagon receptor
glutamine-fructose-6phosphate transaminase 2
guanine nucleotide binding
protein (G protein, beta
polypeptide 3
glycogen synthase 1
hemochromatosis
HNF1A/TCF1
hepatic nuclear factor 1
CRP
ENPP1/PCSK1/P
C1
FABP2
FRDA
GCGR
GFPT2
GNB3
HSD11B1
HSP70-2/HSPA2
HTR2C
IDE
IL-6
hydroxysteroid (11-beta
dehydrogenase 1
heat shock 70kDa protein 1B
5-hydroxytryptamine
(serotonin receptor 2C
insulin-degrading enzyme
interleukin 6 (interferon, beta
SNP 44 C/T and
T504A
CASQ2312
CASQ2399
rs2275703
R140W
2312A/G
IMS-JST051114
rs2975760
rs617698
rs617599†
rs2275703
rs1800561*‡
rs1051038
34
SNP 133552
rs2794521
35; 36
K121Q
rs1044498
C/A
1
IMS-JST031915
rs1397613
T/G
37
38; 39
40
rs2498429
G40S
I471V
rs2498429
rs1801483*‡
rs2303007‡
A/T
41
825T
rs5443
T/C
42
43
44
45
46
46
46
47
46
46
46
46
48
XbaI A2
H63D
C282Y
G391S
GE117881_360
GE117884_349
rs8103451
rs1799945‡
rs1800562‡
rs1169305§
A/G
G/C
A/G
31; 32
31
32
33
1
C/T
2-sided G/A
G/A
C/A
acgcttgctg[C/T]gaagtaaggc
tctattcctt[G/A]tgaagttcca
tggagggaag[G/A]ggagtcgggg
ccagacaagc[C/A]cctccagtat
acaggtccag[C/T]gggacatgtt
G/A
agcagcctta[G/A]gcatcttgga
‡
C/T
agtgagaaca[C/T]gcggtgtttg
ctgcaaggac[C/A]agggcgactg
agttaaagag[T/G]gaaggaaaca
ctaagtaaaa[A/T]gtatatacat
gaagctctac[G/A]gtgaccagtg
C/T
gccacgccga[C/T]ctccggccct
49
50
51; 52
53; 54
Ala98Val
SNP1
SNP5
P2
-995 G/A
-759 C/T
-179 T/C
-174 G/C
rs1169289†
rs1800574‡
rs1920792
rs2178463†
rs2393792†
rs2701175
rs846910§
rs12086634
rs1061581§
rs3813928§
rs3813929
rs4646953
rs1800795
G/A
G/A
2-sided C/G
T/C
T/C
A/G
G/A
C/A
T/G
C/G
T/C
A/G
C/G
gcatcacgtc[T/C]gtggccttct
gttactctag[A/G]atggagtgca
gttctatgat[G/C]atgagagtcg
agatatacgt[A/G]ccaggtggag
not successfully genotyped
aaaattagcc[G/A]ggtgtagtgg
catagaatta[G/A]cgtgtccttt
cggccctgct[C/G]gagtcagggc
gaggaggcgg[T/C]ccaccagaaa
agatcctacc[T/C]cattgggttg
ccactgcgcc[A/G]tgcctgtcct
caagtgatcc[G/A]cctgcctcag
ttttttgtag[C/A]gatgaggtct
not successfully genotyped
caaccccaga[T/G]gatttcttaa
not successfully genotyped
not successfully genotyped
cccctcatcc[T/C]gcttttggcc
aggacggtga[A/G]gaccgcggac
tgtgtcttgc[C/G]atgctaaagg
IL-6R
2
interleukin 6 receptor
INS
INSR
proinsulin precursor
insulin receptor
IPF1
insulin promoter factor 1,
homeodomain
insulin receptor substrate 1
IRS1
IRS2
ITGB3/PIA1/GPII
Ia
KCNJ9
KCNJ11
Insulin receptor substrate-2
integrin, beta 3 (platelet
glycoprotein IIIa, antigen
CD61
potassium inwardlyrectifying channel, subfamily
J, member 9
potassium inwardlyrectifying channel, subfamily
J, member 11
Lep
LIPC
Leptin
lipase, hepatic
LPL
LTA
lipoprotein lipase
lymphotoxin alpha (TNF
superfamily
chemokine (C-C motif ligand
2
Hepatocyte growth factor
receptor
MCP1/CCL2
MET
MGEA5
NEUROD1
NOS3
/eNOS
PAX4
Meningioma-expressed
antigen 5
neurogenic differentiation 1
Endothelial nitric oxide
synthase
paired box gene 4
54
55
56
11
57
11
11
11
58
-598A/G
Asp358Ala
V385I (SNP12
3p+9
V985M
IVS6+43 (SNP131
IVS6+31 (SNP132
IVS7+28 (SNP130
Asp76Asn
rs1800797†
rs8192284‡
rs2228146‡§
rs3842752
rs1799816*‡
rs2860177
rs2860178
rs7252268
A/G
T/C
2-sided T/G
2-sided A/G
A/C
41; 59; 60
61
61
61
62
63; 64
G972R
-7120 G/A
-446 G/A
Ala 804
G1057D
A2
rs1801278‡
rs12053536
rs13306465
rs1801123
rs1805097‡
rs5918
A/G
T/C
T/C
C/T
2-sided T/C
T/C
65
11; 66-70
11
11
1
11
71
72
73
SNP3 A/G
SNP11 T/C
SNP13 A/G
E23K (I337V
A190
3p+215
IMS-JST026278
IVS1+49
-250 G/A
Intron 6 PvuII
T60N
rs2180752
rs2737705
rs2753268
rs5219‡
rs5218†
rs5210
rs2278815
rs8192701
rs2070895§
rs285
rs1041981‡
A/G
C/T
G/A
A/G
G/A
G/A
G/A
C/T
74
-2518 G/A
rs3760399
A/G
1
IMS-JST054758
T3912C, IMSJST000713
LLY-MGEA5-14
rs38848
rs41736
T/C
T/C
Ala45Thr
E298D
IVS18 + 27A/C
R121W
rs1801262‡
rs1799983
rs1799984§
rs2233578*‡
*‡
G/A
A/C
T/C
A/C
aaatttgagg[G/A]tggccaggca
ctagtgcaag[A/C]ttcttcttca
not successfully genotyped
ggctgcctgc[A/G]ggctgcgtct
tcgtccggca[T/C]gtacacagag
cctcgcctcc[T/G]cagcgtctct
ccggtccctc[A/G]tgccaaaaag
tcttccacta[A/C]accggtccct
cctcgccgac[A/G]accccgcggt
tgcacctccc[A/G]gggctgctag
attgctaggt[T/C]accatgtccc
cctctggaag[T/C]agcgattccc
aagaatcatc[C/T]gctgttgcag
tgaggcggcg[T/C]ccgggccctg
gccctgcctc[T/C]gggctcacct
aaactagacc[A/G]tgatggtcag
cagtagacaa[C/T]tggtccactc
ggatgaaggc[G/A]tgcaaggggc
ggaccctgcc[A/G]agcccaggta
cgtggcgcag[G/A]gcgatcaccg
agccagtcct[G/A]aattgggttg
aatgagaggg[G/A]ctgtgtaagg
ctttttaaaa[C/T]gtgtgtcaca
not successfully genotyped
catcttttag[T/C]agctgtgggg
gcccacagca[A/C]cctcaaacct
75
76; 77
78
79-81
tgaaatggcc[A/G]ctccatagag
tagatatgtt[T/C]tcaaatgcaa
cttatcctga[T/C]gtaaacacct
§
T/C
T/G
not successfully genotyped
gcgttcatgg[T/C]ttcgaggtcg
ccccagatga[T/G]cccccagaac
not successfully genotyped
gacctgagcc[G/A]tgtgcacggt
PCK1
PIK3R1
PKLR
PPARG
PPARGC1A/PGC
1
PPP1R3
PRKCZ
PTGS2
PTPN1/PTP1B
PYY
RETN
SLC2A1/GLUT1
SLC2A2
phosphoenolpyruvate
carboxykinase 1
phosphoinositide-3-kinase,
regulatory subunit
pyruvate kinase, liver and
RBC
82
-232 C/G
rs2071023
11
IVS4+82
rs8192680§
83
PKLR1
PKLR2
PKLR4 R569R
PKLR5
rs3020781
rs2071053†
rs1052176†
rs1052177†
G/A
G/A
T/G
G/A
peroxisome proliferative
activated receptor, gamma
peroxisome proliferative
activated receptor, gamma,
coactivator 1
84-91
92
11; 93; 94
see
95
11
96; 97
P12A
1431 C/T
G482S
rs1801282‡
rs3856806
rs8192678‡
C/G
T/C
G/A
T528T
D905Y
rs3755863†
rs1799999‡
C/T
C/A
98
99
rs436045
rs20417
rs436045
rs20417
G/A
C/G
rs2066826
rs16995309*‡
rs2282146
rs718630
rs2206656
rs3787345†
rs4811078
rs718049†
rs941798
rs3787348†
rs718050†
rs754118†
rs2282147†
rs162430
rs1862513
rs841853
C/T
T/C
C/T
G/T
G/C
C/T
C/T
G/A
A/G
11
103; 104
105-108
rs2066826
Nons P387L
Syn exon8 C/T
rs718630
rs2206656
rs3787345
rs4811078
rs718049
rs941798
rs3787348
rs718050
rs754118
rs2282147
IVS3+68
-420
XbaI
109
11
11
TaqI
IVS5-15
T198
rs6785803†
rs5406†
rs5404
Protein phosphatase type-1
glycogen targeting subunit
protein kinase C, zeta
prostaglandin-endoperoxide
synthase 2 precursor
protein tyrosine phosphatase,
non-receptor type 1
peptide YY
resistin
solute carrier family 2
(facilitated glucose
transporter, member 1
solute carrier family 2
(facilitated glucose
transporter, member 2
C/G
tgtgtcaaaa[C/G]tcactatggt
100-102
A/G
A/G
C/G
A/C
2-sided C/G
2-sided A/G
2-sided T/C
not successfully genotyped
aatttttgtt[G/A]aatgaatgac
ccaaccctac[G/A]ggcgccgcct
cttagcaccc[T/G]catgatgttg
gggccagagg[G/A]gggaggggc
g
tcctattgac[C/G]cagaaagcga
tcacggaaca[T/C]gtgcagctac
agacaagacc[G/A]gtgaactgag
aataggattg[C/T]gtgccatccc
ctattagtgt[C/A]tgagttaaaa
tgcctgtcag[G/A]tttggtccaa
gaaagagagg[C/G]gggaaaggt
a
tgggtataag[C/T]ggtaataact
gctgcctccc[T/C]agccaaaggg
agcccccacc[C/T]gagcatatcc
ctgttgcaca[G/T]gtaaagtgcc
tgcaataata[G/C]cttgtgacat
gctacctctg[C/T]ggagctgtgg
gaaactccgt[C/T]taaaaaaaaa
tggtccacgc[G/A]ccctgttccc
gcaccaaagt[A/G]tcatcctagt
not genotyped
ttgagtacct[A/G]ttgatatgtg
not genotyped
not genotyped
acgtcgttaa[A/G]tgatgttgcc
gacatgaaga[C/G]ggaggccctg
gaagagcttt[A/C]tagacttcag
gtataggctc[C/G]attattgtcg
ccaagaaaat[A/G]atcaggttga
taagaatgcc[T/C]gtgacgatgg
SORBS1
11
110
111
T110I
Phe497
T228A
rs5400‡
rs5398
rs2281939‡
2-sided A/G
2-sided A/G
T/C
11
112
IVS17+53
N34S
rs7577088
rs17107315‡
A/G
C/T
113
rs2297508
G/C
117; 118
119
120
121
SNP17, +54G/C,
exon 18c
IMS-JST005889
-308 G/A
-857 C/T
5’ UTR A/C
M229L
-866G/A
Ala55Val
5’ -55 C/T
S89N
rs1800610
rs1800629
rs1799724†
rs10011540
rs2270565†
rs659366
rs660339‡
rs1800849
rs2890565‡
A/G
A/G
T/C
G/T
A/T
2-sided C/T
T/C
G/A
T/C
rs2242103
A/T
TNF
sorbin and SH3 domain
containing 1
son of sevenless homolog 1
serine protease inhibitor,
Kazal type 1
Sterol regulatory elementbinding protein -1
Tumor necrosis factor alpha
UCP1
uncoupling protein 1
UCP2
uncoupling protein 2
UCP3
UTS2
uncoupling protein 3
urotensin 2
VLDLR
very low density lipoprotein
receptor
Wolfram syndrome 1
1
IMS-JST014197
122; 123
wingless-type MMTV
integration site family,
member 5B
124
R456H
H611R
Intron 4+438
IMS-JST024404
Intron 4 + 6763
IMS-JST024409
SOS1
SPINK1
SREBF1
gaatgatgca[A/G]tcattccacc
taaaaaatgt[A/G]aacagggtaa
gatggtggcg[T/C]ctggctaatg
ttaatgaaat[A/G]agtgttttgt
attaagttca[C/T]tgtaacattt
1
49; 114
115
116
ggaagccttt[G/C]cctaggtgct
agaaaaaaac[A/G]tggagaaaga
gaggggcatg[A/G]ggacggggtt
ccccccttaa[T/C]gaagacaggg
ccgatttctg[G/T]tttttgaacc
ggggaggaca[A/T]agctgttgcg
gggtaactga[C/T]gcgtgaacag
cgcgctacag[T/C]cagcgcccag
ttatacacac[G/A]ggctgacctg
aatgttggta[T/C]ttgagtctga
WFS1
WNT5b
1
‡
rs1801208
rs734312‡
rs2270031
G/A
A/G
C/G
rs2270036
C/T
agacttaatc[A/T]ggttagtttg
ccctacacgc[G/A]cagggccctg
ctgctgttgc[A/G]ctggtggacc
tcttccactt[C/G]aacctttgac
cttaccgccc[C/T]ggcctcattc
Alleles are designated according to the strand typed in our study
2-sided indicates SNPs tested with a 2-sided test because the previous risk allele was difficult to determine for ambiguous SNPs (such as C/G) or
the SNP shows evidence for association with both alleles in different studies
* SNPs that were monomorphic or MAF < .005 in our sample
‡
nonsynonymous SNPs
†
SNPs in r2 > .8 with another genotyped SNP (r2 values are given in Table S3)
§
SNP could not be successfully genotyped in our sample
References for Table S1
1. Daimon M, Ji G, Saitoh T, Oizumi T, Tominaga M, Nakamura T, Ishii K, Matsuura T, Inageda K, Matsumine H, Kido T, Htay L, Kamatani N,
Muramatsu M, Kato T: Large-scale search of SNPs for type 2 DM susceptibility genes in a Japanese population. In Biochem Biophys Res
Commun, 2003, p. 751-758
2. Daimon M, Kido T, Baba M, Oizumi T, Jimbu Y, Kameda W, Yamaguchi H, Ohnuma H, Tominaga M, Muramatsu M, Kato T: Association of
the ABCA1 gene polymorphisms with type 2 DM in a Japanese population. In Biochem Biophys Res Commun, 2005, p. 205-210
3. Hani EH, Clement K, Velho G, Vionnet N, Hager J, Philippi A, Dina C, Inoue H, Permutt MA, Basdevant A, North M, Demenais F, GuyGrand B, Froguel P: Genetic studies of the sulfonylurea receptor gene locus in NIDDM and in morbid obesity among French Caucasians. In
Diabetes, 1997, p. 688-694
4. Inoue H, Ferrer J, Welling CM, Elbein SC, Hoffman M, Mayorga R, Warren-Perry M, Zhang Y, Millns H, Turner R, Province M, Bryan J,
Permutt MA, Aguilar-Bryan L: Sequence variants in the sulfonylurea receptor (SUR) gene are associated with NIDDM in Caucasians. In
Diabetes, 1996, p. 825-831
5. Hansen T, Echwald SM, Hansen L, Moller AM, Almind K, Clausen JO, Urhammer SA, Inoue H, Ferrer J, Bryan J, Aguilar-Bryan L, Permutt
MA, Pedersen O: Decreased tolbutamide-stimulated insulin secretion in healthy subjects with sequence variants in the high-affinity sulfonylurea
receptor gene. In Diabetes, 1998, p. 598-605
6. Hart LM, de Knijff P, Dekker JM, Stolk RP, Nijpels G, van der Does FE, Ruige JB, Grobbee DE, Heine RJ, Maassen JA: Variants in the
sulphonylurea receptor gene: association of the exon 16-3t variant with Type II diabetes mellitus in Dutch Caucasians. In Diabetologia, 1999, p.
617-620
7. Rissanen J, Markkanen A, Karkkainen P, Pihlajamaki J, Kekalainen P, Mykkanen L, Kuusisto J, Karhapaa P, Niskanen L, Laakso M:
Sulfonylurea receptor 1 gene variants are associated with gestational diabetes and type 2 diabetes but not with altered secretion of insulin. In
Diabetes Care, 2000, p. 70-73
8. Meirhaeghe A, Helbecque N, Cottel D, Arveiler D, Ruidavets JB, Haas B, Ferrieres J, Tauber JP, Bingham A, Amouyel P: Impact of
sulfonylurea receptor 1 genetic variability on non-insulin-dependent diabetes mellitus prevalence and treatment: a population study. In Am J Med
Genet, 2001, p. 4-8
9. Ji L, Han X, Wang H: [Sulfonylurea receptor gene polymorphism is associated with non-insulin dependent diabetes mellitus in Chinese
population]. In Zhonghua Yi Xue Za Zhi, 1998, p. 774-775
10. Reis AF, Ye WZ, Dubois-Laforgue D, Bellanne-Chantelot C, Timsit J, Velho G: Association of a variant in exon 31 of the sulfonylurea
receptor 1 (SUR1) gene with type 2 diabetes mellitus in French Caucasians. In Hum Genet, 2000, p. 138-144
11. Barroso I, Luan J, Middelberg RP, Harding AH, Franks PW, Jakes RW, Clayton D, Schafer AJ, O'Rahilly S, Wareham NJ: Candidate Gene
Association Study in Type 2 Diabetes Indicates a Role for Genes Involved in beta-Cell Function as Well as Insulin Action. In PLoS Biol, 2003, p.
E20
12. Hara K, Boutin P, Mori Y, Tobe K, Dina C, Yasuda K, Yamauchi T, Otabe S, Okada T, Eto K, Kadowaki H, Hagura R, Akanuma Y, Yazaki
Y, Nagai R, Taniyama M, Matsubara K, Yoda M, Nakano Y, Tomita M, Kimura S, Ito C, Froguel P, Kadowaki T: Genetic variation in the gene
encoding adiponectin is associated with an increased risk of type 2 diabetes in the Japanese population. In Diabetes, 2002, p. 536-540
13. Zacharova J, Chiasson JL, Laakso M: The common polymorphisms (single nucleotide polymorphism [SNP] +45 and SNP +276) of the
adiponectin gene predict the conversion from impaired glucose tolerance to type 2 diabetes: the STOP-NIDDM trial. In Diabetes, 2005, p. 893899
14. Gu HF, Abulaiti A, Ostenson CG, Humphreys K, Wahlestedt C, Brookes AJ, Efendic S: Single Nucleotide Polymorphisms in the Proximal
Promoter Region of the Adiponectin (APM1) Gene Are Associated With Type 2 Diabetes in Swedish Caucasians. In Diabetes, 2004, p. S31-S35
15. Vasseur F, Helbecque N, Dina C, Lobbens S, Delannoy V, Gaget S, Boutin P, Vaxillaire M, Lepretre F, Dupont S, Hara K, Clement K, Bihain
B, Kadowaki T, Froguel P: Single-nucleotide polymorphism haplotypes in the both proximal promoter and exon 3 of the APM1 gene modulate
adipocyte-secreted adiponectin hormone levels and contribute to the genetic risk for type 2 diabetes in French Caucasians. In Hum Mol Genet,
2002, p. 2607-2614
16. Vasseur F, Helbecque N, Lobbens S, Vasseur-Delannoy V, Dina C, Clement K, Boutin P, Kadowaki T, Scherer PE, Froguel P:
Hypoadiponectinaemia and high risk of type 2 diabetes are associated with adiponectin-encoding (ACDC) gene promoter variants in morbid
obesity: evidence for a role of ACDC in diabesity. In Diabetologia, 2005
17. Gibson F, Froguel P: Genetics of the APM1 locus and its contribution to type 2 diabetes susceptibility in French Caucasians. In Diabetes,
2004, p. 2977-2983
18. Kondo H, Shimomura I, Matsukawa Y, Kumada M, Takahashi M, Matsuda M, Ouchi N, Kihara S, Kawamoto T, Sumitsuji S, Funahashi T,
Matsuzawa Y: Association of adiponectin mutation with type 2 diabetes: a candidate gene for the insulin resistance syndrome. In Diabetes, 2002,
p. 2325-2328
19. Gu HF: Genetic variation screening and association studies of the adenylate cyclase activating polypeptide 1 (ADCYAP1) gene in patients
with type 2 diabetes. In Hum Mutat, 2002, p. 572-573
20. Yamada K, Ishiyama-Shigemoto S, Ichikawa F, Yuan X, Koyanagi A, Koyama W, Nonaka K: Polymorphism in the 5'-leader cistron of the
beta2-adrenergic receptor gene associated with obesity and type 2 diabetes. In J Clin Endocrinol Metab, 1999, p. 1754-1757
21. Ishiyama-Shigemoto S, Yamada K, Yuan X, Ichikawa F, Nonaka K: Association of polymorphisms in the beta2-adrenergic receptor gene with
obesity, hypertriglyceridaemia, and diabetes mellitus. In Diabetologia, 1999, p. 98-101
22. Carlsson M, Orho-Melander M, Hedenbro J, Groop LC: Common variants in the beta2-(Gln27Glu) and beta3-(Trp64Arg)--adrenoceptor genes
are associated with elevated serum NEFA concentrations and type II diabetes. In Diabetologia, 2001, p. 629-636
23. Oizumi T, Daimon M, Saitoh T, Kameda W, Yamaguchi H, Ohnuma H, Igarashi M, Eguchi H, Manaka H, Tominaga M, Kato T: Genotype
Arg/Arg, but not Trp/Arg, of the Trp64Arg polymorphism of the beta(3)-adrenergic receptor is associated with type 2 diabetes and obesity in a
large Japanese sample. In Diabetes Care, 2001, p. 1579-1583
24. Sivenius K, Niskanen L, Voutilainen-Kaunisto R, Laakso M, Uusitupa M: Aldose reductase gene polymorphisms and susceptibility to
microvascular complications in Type 2 diabetes. In Diabet Med, 2004, p. 1325-1333
25. Baker WA, Hitman GA, Hawrami K, McCarthy MI, Riikonen A, Tuomilehto-Wolf E, Nissinen A, Tuomilehto J, Mohan V, Viswanathan M,
et al.: Apolipoprotein D gene polymorphism: a new genetic marker for type 2 diabetic subjects in Nauru and south India. In Diabet Med, 1994, p.
947-952
26. Hashim Y, Shepherd D, Wiltshire S, Holman RR, Levy JC, Clark A, Cull CA: Butyrylcholinesterase K variant on chromosome 3 q is
associated with Type II diabetes in white Caucasian subjects. In Diabetologia, 2001, p. 2227-2230
27. Malecki MT, Moczulski DK, Klupa T, Wanic K, Cyganek K, Frey J, Sieradzki J: Homozygous combination of calpain 10 gene haplotypes is
associated with type 2 diabetes mellitus in a Polish population. In Eur J Endocrinol, 2002, p. 695-699
28. Iwasaki N, Horikawa Y, Tsuchiya T, Kitamura Y, Nakamura T, Tanizawa Y, Oka Y, Hara K, Kadowaki T, Awata T, Honda M, Yamashita K,
Oda N, Yu L, Yamada N, Ogata M, Kamatani N, Iwamoto Y, Del Bosque-Plata L, Hayes MG, Cox NJ, Bell GI: Genetic variants in the calpain-10
gene and the development of type 2 diabetes in the Japanese population. In J Hum Genet, 2005, p. 92-98
29. Evans JC, Frayling TM, Cassell PG, Saker PJ, Hitman GA, Walker M, Levy JC, O'Rahilly S, Rao PV, Bennett AJ, Jones EC, Menzel S,
Prestwich P, Simecek N, Wishart M, Dhillon R, Fletcher C, Millward A, Demaine A, Wilkin T, Horikawa Y, Cox NJ, Bell GI, Ellard S, McCarthy
MI, Hattersley AT: Studies of association between the gene for calpain-10 and type 2 diabetes mellitus in the United Kingdom. In Am J Hum
Genet, 2001, p. 544-552
30. del Bosque-Plata L, Aguilar-Salinas CA, Tusie-Luna MT, Ramirez-Jimenez S, Rodriguez-Torres M, Auron-Gomez M, Ramirez E, VelascoPerez ML, Ramirez-Silva A, Gomez-Perez F, Hanis CL, Tsuchiya T, Yoshiuchi I, Cox NJ, Bell GI: Association of the calpain-10 gene with type 2
diabetes mellitus in a Mexican population. In Mol Genet Metab, 2004, p. 122-126
31. Das SK, Chu W, Zhang Z, Hasstedt SJ, Elbein SC: Calsquestrin 1 (CASQ1) gene polymorphisms under chromosome 1q21 linkage peak are
associated with type 2 diabetes in Northern European Caucasians. In Diabetes, 2004, p. 3300-3306
32. Fu M, Damcott CM, Sabra M, Pollin TI, Ott SH, Wang J, Garant MJ, O'Connell JR, Mitchell BD, Shuldiner AR: Polymorphism in the
calsequestrin 1 (CASQ1) gene on chromosome 1q21 is associated with type 2 diabetes in the old order Amish. In Diabetes, 2004, p. 3292-3299
33. Yagui K, Shimada F, Mimura M, Hashimoto N, Suzuki Y, Tokuyama Y, Nata K, Tohgo A, Ikehata F, Takasawa S, Okamoto H, Makino H,
Saito Y, Kanatsuka A: A missense mutation in the CD38 gene, a novel factor for insulin secretion: association with Type II diabetes mellitus in
Japanese subjects and evidence of abnormal function when expressed in vitro. In Diabetologia, 1998, p. 1024-1028
34. Wolford JK, Gruber JD, Ossowski VM, Vozarova B, Antonio Tataranni P, Bogardus C, Hanson RL: A C-reactive protein promoter
polymorphism is associated with type 2 diabetes mellitus in Pima Indians. In Mol Genet Metab, 2003, p. 136-144
35. Hamaguchi K, Terao H, Kusuda Y, Yamashita T, Hazoury Bahles JA, Cruz LM, Brugal VL, Jongchong WB, Yoshimatsu H, Sakata T: The
PC-1 Q121 allele is exceptionally prevalent in the Dominican Republic and is associated with type 2 diabetes. In J Clin Endocrinol Metab, 2004,
p. 1359-1364
36. Meyre D, Bouatia-Naji N, Tounian A, Samson C, Lecoeur C, Vatin V, Ghoussaini M, Wachter C, Hercberg S, Charpentier G, Patsch W,
Pattou F, Charles MA, Tounian P, Clement K, Jouret B, Weill J, Maddux BA, Goldfine ID, Walley A, Boutin P, Dina C, Froguel P: Variants of
ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. In Nat Genet, 2005, p.
863-867
37. Holmkvist J, Almgren P, Parikh H, Zucchelli M, Kere J, Groop L, Lindgren CM: Haplotype construction of the FRDA gene and evaluation of
its role in type II diabetes. In Eur J Hum Genet, 2005
38. Hager J, Hansen L, Vaisse C, Vionnet N, Philippi A, Poller W, Velho G, Carcassi C, Contu L, Julier C, et al.: A missense mutation in the
glucagon receptor gene is associated with non-insulin-dependent diabetes mellitus. In Nat Genet, 1995, p. 299-304
39. Gough SC, Saker PJ, Pritchard LE, Merriman TR, Merriman ME, Rowe BR, Kumar S, Aitman T, Barnett AH, Turner RC, et al.: Mutation of
the glucagon receptor gene and diabetes mellitus in the UK: association or founder effect? In Hum Mol Genet, 1995, p. 1609-1612
40. Zhang H, Jia Y, Cooper JJ, Hale T, Zhang Z, Elbein SC: Common variants in glutamine:fructose-6-phosphate amidotransferase 2 (GFPT2)
gene are associated with type 2 diabetes, diabetic nephropathy, and increased GFPT2 mRNA levels. In J Clin Endocrinol Metab, 2004, p. 748-755
41. Rosskopf D, Frey U, Eckhardt S, Schmidt S, Ritz E, Hofmann S, Jaksch M, Muller N, Husing J, Siffert W, Jocke KH: Interaction of the G
protein beta 3 subunit T825 allele and the IRS-1 Arg972 variant in type 2 diabetes. In Eur J Med Res, 2000, p. 484-490
42. Groop LC, Kankuri M, Schalin-Jantti C, Ekstrand A, Nikula-Ijas P, Widen E, Kuismanen E, Eriksson J, Franssila-Kallunki A, Saloranta C, et
al.: Association between polymorphism of the glycogen synthase gene and non-insulin-dependent diabetes mellitus. In N Engl J Med, 1993, p. 1014
43. Fernandez-Real JM, Vendrell J, Baiget M, Gimferrer E, Ricart W: C282Y and H63D mutations of the hemochromatosis candidate gene in
type 2 diabetes. In Diabetes Care, 1999, p. 525-526
44. Moczulski DK, Grzeszczak W, Gawlik B: Role of hemochromatosis C282Y and H63D mutations in HFE gene in development of type 2
diabetes and diabetic nephropathy. In Diabetes Care, 2001, p. 1187-1191
45. Hegele RA, Cao H, Harris SB, Hanley AJ, Zinman B: The hepatic nuclear factor-1alpha G319S variant is associated with early-onset type 2
diabetes in Canadian Oji-Cree. In J Clin Endocrinol Metab, 1999, p. 1077-1082
46. Winckler W, Burtt NP, Holmkvist J, Cervin C, de Bakker PI, Sun M, Almgren P, Tuomi T, Gaudet D, Hudson TJ, Ardlie KG, Daly MJ,
Hirschhorn JN, Altshuler D, Groop L: Association of common variation in the HNF1alpha gene region with risk of type 2 diabetes. In Diabetes,
2005, p. 2336-2342
47. Weedon MN, Owen KR, Shields B, Hitman G, Walker M, McCarthy MI, Hattersley AT, Frayling TM: A large-scale association analysis of
common variation of the HNF1alpha gene with type 2 diabetes in the U.K. Caucasian population. In Diabetes, 2005, p. 2487-2491
48. Nair S, Lee YH, Lindsay RS, Walker BR, Tataranni PA, Bogardus C, Baier LJ, Permana PA: 11beta-Hydroxysteroid dehydrogenase Type 1:
genetic polymorphisms are associated with Type 2 diabetes in Pima Indians independently of obesity and expression in adipocyte and muscle. In
Diabetologia, 2004, p. 1088-1095
49. Zouari Bouassida K, Chouchane L, Jellouli K, Cherif S, Haddad S, Gabbouj S, Danguir J: Polymorphism of stress protein HSP70-2 gene in
Tunisians: susceptibility implications in type 2 diabetes and obesity. In Diabetes Metab, 2004, p. 175-180
50. Yuan X, Yamada K, Ishiyama-Shigemoto S, Koyama W, Nonaka K: Identification of polymorphic loci in the promoter region of the serotonin
5-HT2C receptor gene and their association with obesity and type II diabetes. In Diabetologia, 2000, p. 373-376
51. Groves CJ, Wiltshire S, Smedley D, Owen KR, Frayling TM, Walker M, Hitman GA, Levy JC, O'Rahilly S, Menzel S, Hattersley AT,
McCarthy MI: Association and haplotype analysis of the insulin-degrading enzyme (IDE) gene, a strong positional and biological candidate for
type 2 diabetes susceptibility. In Diabetes, 2003, p. 1300-1305
52. Karamohamed S, Demissie S, Volcjak J, Liu C, Heard-Costa N, Liu J, Shoemaker CM, Panhuysen CI, Meigs JB, Wilson P, Atwood LD,
Cupples LA, Herbert A: Polymorphisms in the insulin-degrading enzyme gene are associated with type 2 diabetes in men from the NHLBI
Framingham Heart Study. In Diabetes, 2003, p. 1562-1567
53. Vozarova B, Fernandez-Real JM, Knowler WC, Gallart L, Hanson RL, Gruber JD, Ricart W, Vendrell J, Richart C, Tataranni PA, Wolford
JK: The interleukin-6 (-174) G/C promoter polymorphism is associated with type-2 diabetes mellitus in Native Americans and Caucasians. In
Hum Genet, 2003, p. 409-413
54. Illig T, Bongardt F, Schopfer A, Muller-Scholze S, Rathmann W, Koenig W, Thorand B, Vollmert C, Holle R, Kolb H, Herder C: Significant
association of the interleukin-6 gene polymorphisms C-174G and A-598G with type 2 diabetes. In J Clin Endocrinol Metab, 2004, p. 5053-5058
55. Hamid YH, Urhammer SA, Jensen DP, Glumer C, Borch-Johnsen K, Jorgensen T, Hansen T, Pedersen O: Variation in the interleukin-6
receptor gene associates with type 2 diabetes in Danish whites. In Diabetes, 2004, p. 3342-3345
56. Wang H, Zhang Z, Chu W, Hale T, Cooper JJ, Elbein SC: Molecular screening and association analyses of the interleukin 6 receptor gene
variants with type 2 diabetes, diabetic nephropathy, and insulin sensitivity. In J Clin Endocrinol Metab, 2005, p. 1123-1129
57. Hart LM, Stolk RP, Heine RJ, Grobbee DE, van der Does FE, Maassen JA: Association of the insulin-receptor variant Met-985 with
hyperglycemia and non-insulin-dependent diabetes mellitus in the Netherlands: a population-based study. In Am J Hum Genet, 1996, p. 1119-1125
58. Hani EH, Stoffers DA, Chevre JC, Durand E, Stanojevic V, Dina C, Habener JF, Froguel P: Defective mutations in the insulin promoter
factor-1 (IPF-1) gene in late-onset type 2 diabetes mellitus. In J Clin Invest, 1999, p. R41-48
59. Sigal RJ, Doria A, Warram JH, Krolewski AS: Codon 972 polymorphism in the insulin receptor substrate-1 gene, obesity, and risk of
noninsulin-dependent diabetes mellitus. In J Clin Endocrinol Metab, 1996, p. 1657-1659
60. Sesti G, Marini MA, Cardellini M, Sciacqua A, Frontoni S, Andreozzi F, Irace C, Lauro D, Gnasso A, Federici M, Perticone F, Lauro R: The
Arg972 variant in insulin receptor substrate-1 is associated with an increased risk of secondary failure to sulfonylurea in patients with type 2
diabetes. In Diabetes Care, 2004, p. 1394-1398
61. Kovacs P, Hanson RL, Lee YH, Yang X, Kobes S, Permana PA, Bogardus C, Baier LJ: The role of insulin receptor substrate-1 gene (IRS1) in
type 2 diabetes in Pima Indians. In Diabetes, 2003, p. 3005-3009
62. Mammarella S, Romano F, Di Valerio A, Creati B, Esposito DL, Palmirotta R, Capani F, Vitullo P, Volpe G, Battista P, Della Loggia F,
Mariani-Costantini R, Cama A: Interaction between the G1057D variant of IRS-2 and overweight in the pathogenesis of type 2 diabetes. In Hum
Mol Genet, 2000, p. 2517-2521
63. Tschoepe D, Menart B, Ferber P, Altmann C, Haude M, Haastert B, Roesen P: Genetic variation of the platelet- surface integrin GPIIb-IIIa
(PIA1/A2-SNP) shows a high association with Type 2 diabetes mellitus. In Diabetologia, 2003, p. 984-989
64. Lopes C, Dina C, Durand E, Froguel P: PAI-1 polymorphisms modulate phenotypes associated with the metabolic syndrome in obese and
diabetic Caucasian population. In Diabetologia, 2003, p. 1284-1290
65. Wolford JK, Hanson RL, Kobes S, Bogardus C, Prochazka M: Analysis of linkage disequilibrium between polymorphisms in the KCNJ9 gene
with type 2 diabetes mellitus in Pima Indians. In Mol Genet Metab, 2001, p. 97-103
66. Hani EH, Boutin P, Durand E, Inoue H, Permutt MA, Velho G, Froguel P: Missense mutations in the pancreatic islet beta cell inwardly
rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of Type II diabetes mellitus in Caucasians. In
Diabetologia, 1998, p. 1511-1515
67. Gloyn AL, Hashim Y, Ashcroft SJ, Ashfield R, Wiltshire S, Turner RC: Association studies of variants in promoter and coding regions of
beta-cell ATP-sensitive K-channel genes SUR1 and Kir6.2 with Type 2 diabetes mellitus (UKPDS 53). In Diabet Med, 2001, p. 206-212
68. Gloyn AL, Weedon MN, Owen KR, Turner MJ, Knight BA, Hitman G, Walker M, Levy JC, Sampson M, Halford S, McCarthy MI, Hattersley
AT, Frayling TM: Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11)
and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. In Diabetes, 2003, p. 568-572
69. Sakura H, Wat N, Horton V, Millns H, Turner RC, Ashcroft FM: Sequence variations in the human Kir6.2 gene, a subunit of the beta-cell
ATP-sensitive K-channel: no association with NIDDM in while Caucasian subjects or evidence of abnormal function when expressed in vitro. In
Diabetologia, 1996, p. 1233-1236
70. Riedel MJ, Steckley DC, Light PE: Current status of the E23K Kir6.2 polymorphism: implications for type-2 diabetes. In Hum Genet, 2005, p.
133-145
71. Zacharova J, Todorova BR, Chiasson JL, Laakso M: The G-250A substitution in the promoter region of the hepatic lipase gene is associated
with the conversion from impaired glucose tolerance to type 2 diabetes: the STOP-NIDDM trial. In J Intern Med, 2005, p. 185-193
72. Wang XL, McCredie RM, Wilcken DE: Common DNA polymorphisms at the lipoprotein lipase gene. Association with severity of coronary
artery disease and diabetes. In Circulation, 1996, p. 1339-1345
73. Hamid YH, Urhammer SA, Glumer C, Borch-Johnsen K, Jorgensen T, Hansen T, Pedersen O: The common T60N polymorphism of the
lymphotoxin-alpha gene is associated with type 2 diabetes and other phenotypes of the metabolic syndrome. In Diabetologia, 2005, p. 445-451
74. Simeoni E, Hoffmann MM, Winkelmann BR, Ruiz J, Fleury S, Boehm BO, Marz W, Vassalli G: Association between the A-2518G
polymorphism in the monocyte chemoattractant protein-1 gene and insulin resistance and Type 2 diabetes mellitus. In Diabetologia, 2004, p.
1574-1580
75. Lehman DM, Fu DJ, Freeman AB, Hunt KJ, Leach RJ, Johnson-Pais T, Hamlington J, Dyer TD, Arya R, Abboud H, Goring HH, Duggirala R,
Blangero J, Konrad RJ, Stern MP: A Single Nucleotide Polymorphism in MGEA5 Encoding O-GlcNAc-selective N-Acetyl-{beta}-D
Glucosaminidase Is Associated With Type 2 Diabetes in Mexican Americans. In Diabetes, 2005, p. 1214-1221
76. Ye L, Xu Y, Zhu Y, Fan Y, Deng H, Zhang J: [Association of polymorphism in neurogenic differentiation factor 1 gene with type 2 diabetes].
In Zhonghua Yi Xue Yi Chuan Xue Za Zhi, 2002, p. 484-487
77. Kavvoura FK, Ioannidis JP: Ala45Thr polymorphism of the NEUROD1 gene and diabetes susceptibility: a meta-analysis. In Hum Genet,
2005, p. 192-199
78. Monti LD, Barlassina C, Citterio L, Galluccio E, Berzuini C, Setola E, Valsecchi G, Lucotti P, Pozza G, Bernardinelli L, Casari G, Piatti P:
Endothelial nitric oxide synthase polymorphisms are associated with type 2 diabetes and the insulin resistance syndrome. In Diabetes, 2003, p.
1270-1275
79. Shimajiri Y, Shimabukuro M, Tomoyose T, Yogi H, Komiya I, Takasu N: PAX4 mutation (R121W) as a prodiabetic variant in Okinawans. In
Biochem Biophys Res Commun, 2003, p. 342-344
80. Shimajiri Y, Sanke T, Furuta H, Hanabusa T, Nakagawa T, Fujitani Y, Kajimoto Y, Takasu N, Nanjo K: A missense mutation of Pax4 gene
(R121W) is associated with type 2 diabetes in Japanese. In Diabetes, 2001, p. 2864-2869
81. Holm P, Rydlander B, Luthman H, Kockum I: Interaction and association analysis of a type 1 diabetes susceptibility locus on chromosome
5q11-q13 and the 7q32 chromosomal region in Scandinavian families. In Diabetes, 2004, p. 1584-1591
82. Cao H, van der Veer E, Ban MR, Hanley AJ, Zinman B, Harris SB, Young TK, Pickering JG, Hegele RA: Promoter polymorphism in PCK1
(phosphoenolpyruvate carboxykinase gene) associated with type 2 diabetes mellitus. In J Clin Endocrinol Metab, 2004, p. 898-903
83. Wang H, Chu W, Das SK, Ren Q, Hasstedt SJ, Elbein SC: Liver pyruvate kinase polymorphisms are associated with type 2 diabetes in
northern European Caucasians. In Diabetes, 2002, p. 2861-2865
84. Deeb SS, Fajas L, Nemoto M, Pihlajamaki J, Mykkanen L, Kuusisto J, Laakso M, Fujimoto W, Auwerx J: A Pro12Ala substitution in
PPARgamma2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. In Nat Genet, 1998, p. 284287
85. Hara K, Okada T, Tobe K, Yasuda K, Mori Y, Kadowaki H, Hagura R, Akanuma Y, Kimura S, Ito C, Kadowaki T: The Pro12Ala
polymorphism in PPAR gamma2 may confer resistance to type 2 diabetes. In Biochem Biophys Res Commun, 2000, p. 212-216
86. Mori H, Ikegami H, Kawaguchi Y, Seino S, Yokoi N, Takeda J, Inoue I, Seino Y, Yasuda K, Hanafusa T, Yamagata K, Awata T, Kadowaki
T, Hara K, Yamada N, Gotoda T, Iwasaki N, Iwamoto Y, Sanke T, Nanjo K, Oka Y, Matsutani A, Maeda E, Kasuga M: The Pro12 -->Ala
substitution in PPAR-gamma is associated with resistance to development of diabetes in the general population: possible involvement in
impairment of insulin secretion in individuals with type 2 diabetes. In Diabetes, 2001, p. 891-894
87. Altshuler D, Hirschhorn JN, Klannemark M, Lindgren CM, Vohl MC, Nemesh J, Lane CR, Schaffner SF, Bolk S, Brewer C, Tuomi T, Gaudet
D, Hudson TJ, Daly M, Groop L, Lander ES: The common PPARgamma Pro12Ala polymorphism is associated with decreased risk of type 2
diabetes. In Nat Genet, 2000, p. 76-80
88. Doney AS, Fischer B, Cecil JE, Boylan K, McGuigan FE, Ralston SH, Morris AD, Palmer CN: Association of the Pro12Ala and C1431T
variants of PPARG and their haplotypes with susceptibility to Type 2 diabetes. In Diabetologia, 2004
89. Ghoussaini M, Meyre D, Lobbens S, Charpentier G, Clement K, Charles MA, Tauber M, Weill J, Froguel P: Implication of the Pro12Ala
polymorphism of the PPAR-gamma 2 gene in type 2 diabetes and obesity in the French population. In BMC Med Genet, 2005, p. 11
90. Pinterova D, Cerna M, Kolostova K, Novota P, Cimburova M, Romzova M, Kubena A, Andel M: The frequency of alleles of the Pro12Ala
polymorphism in PPARgamma2 is different between healthy controls and patients with type 2 diabetes. In Folia Biol (Praha), 2004, p. 153-156
91. Horiki M, Ikegami H, Fujisawa T, Kawabata Y, Ono M, Nishino M, Shimamoto K, Ogihara T: Association of Pro12Ala polymorphism of
PPARgamma gene with insulin resistance and related diseases. In Diabetes Res Clin Pract, 2004, p. S63-67
92. Evans D, de Heer J, Hagemann C, Wendt D, Wolf A, Beisiegel U, Mann WA: Association between the P12A and c1431t polymorphisms in
the peroxisome proliferator activated receptor gamma (PPAR gamma) gene and type 2 diabetes. In Exp Clin Endocrinol Diabetes, 2001, p. 151154
93. Ek J, Andersen G, Urhammer SA, Gaede PH, Drivsholm T, Borch-Johnsen K, Hansen T, Pedersen O: Mutation analysis of peroxisome
proliferator-activated receptor-gamma coactivator-1 (PGC-1) and relationships of identified amino acid polymorphisms to Type II diabetes
mellitus. In Diabetologia, 2001, p. 2220-2226
94. Hara K, Tobe K, Okada T, Kadowaki H, Akanuma Y, Ito C, Kimura S, Kadowaki T: A genetic variation in the PGC-1 gene could confer
insulin resistance and susceptibility to Type II diabetes. In Diabetologia, 2002, p. 740-743
95. Kubaszek A, Markkanen A, Eriksson JG, Forsen T, Osmond C, Barker DJ, Laakso M: The association of the K121Q polymorphism of the
plasma cell glycoprotein-1 gene with type 2 diabetes and hypertension depends on size at birth. In J Clin Endocrinol Metab, 2004, p. 2044-2047
96. Xia J, Scherer SW, Cohen PT, Majer M, Xi T, Norman RA, Knowler WC, Bogardus C, Prochazka M: A common variant in PPP1R3
associated with insulin resistance and type 2 diabetes. In Diabetes, 1998, p. 1519-1524
97. Wang G, Qian R, Li Q, Niu T, Chen C, Xu X: The association between PPP1R3 gene polymorphisms and type 2 diabetes mellitus. In Chin
Med J (Engl), 2001, p. 1258-1262
98. Li YF, Sun HX, Wu GD, Du WN, Zuo J, Shen Y, Qiang BQ, Yao ZJ, Wang H, Huang W, Chen Z, Xiong MM, Meng Y, Fang FD: Protein
kinase C/zeta (PRKCZ) gene is associated with type 2 diabetes in Han population of North China and analysis of its haplotypes. In World J
Gastroenterol, 2003, p. 2078-2082
99. Konheim YL, Wolford JK: Association of a promoter variant in the inducible cyclooxygenase-2 gene (PTGS2) with type 2 diabetes mellitus in
Pima Indians. In Hum Genet, 2003, p. 377-381
100. Echwald SM, Bach H, Vestergaard H, Richelsen B, Kristensen K, Drivsholm T, Borch-Johnsen K, Hansen T, Pedersen O: A P387L variant
in protein tyrosine phosphatase-1B (PTP-1B) is associated with type 2 diabetes and impaired serine phosphorylation of PTP-1B in vitro. In
Diabetes, 2002, p. 1-6
101. Mok A, Cao H, Zinman B, Hanley AJ, Harris SB, Kennedy BP, Hegele RA: A single nucleotide polymorphism in protein tyrosine
phosphatase PTP-1B is associated with protection from diabetes or impaired glucose tolerance in Oji-Cree. In J Clin Endocrinol Metab, 2002, p.
724-727
102. Bento JL, Palmer ND, Mychaleckyj JC, Lange LA, Langefeld CD, Rich SS, Freedman BI, Bowden DW: Association of protein tyrosine
phosphatase 1B gene polymorphisms with type 2 diabetes. In Diabetes, 2004, p. 3007-3012
103. Ma X, Warram JH, Trischitta V, Doria A: Genetic variants at the resistin locus and risk of type 2 diabetes in Caucasians. In J Clin Endocrinol
Metab, 2002, p. 4407-4410
104. Osawa H, Yamada K, Onuma H, Murakami A, Ochi M, Kawata H, Nishimiya T, Niiya T, Shimizu I, Nishida W, Hashiramoto M, Kanatsuka
A, Fujii Y, Ohashi J, Makino H: The G/G genotype of a resistin single-nucleotide polymorphism at -420 increases type 2 diabetes mellitus
susceptibility by inducing promoter activity through specific binding of Sp1/3. In Am J Hum Genet, 2004, p. 678-686
105. Li SR, Baroni MG, Oelbaum RS, Stock J, Galton DJ: Association of genetic variant of the glucose transporter with non-insulin-dependent
diabetes mellitus. In Lancet, 1988, p. 368-370
106. Baroni MG, Oelbaum RS, Pozzilli P, Stocks J, Li SR, Fiore V, Galton DJ: Polymorphisms at the GLUT1 (HepG2) and GLUT4
(muscle/adipocyte) glucose transporter genes and non-insulin-dependent diabetes mellitus (NIDDM). In Hum Genet, 1992, p. 557-561
107. Tao T, Tanizawa Y, Matsutani A, Matsubara A, Kaneko T, Kaku K: HepG2/erythrocyte glucose transporter (GLUT1) gene in NIDDM: a
population association study and molecular scanning in Japanese subjects. In Diabetologia, 1995, p. 942-947
108. Pontiroli AE, Capra F, Veglia F, Ferrari M, Xiang KS, Bell GI, Baroni MG, Galton DJ, Weaver JU, Hitman GA, Kopelman PG, Mohan V,
Viswanathan M: Genetic contribution of polymorphism of the GLUT1 and GLUT4 genes to the susceptibility to type 2 (non-insulin-dependent)
diabetes mellitus in different populations. In Acta Diabetol, 1996, p. 193-197
109. Alcolado JC, Baroni MG, Li SR: Association between a restriction fragment length polymorphism at the liver/islet cell (GluT 2) glucose
transporter and familial type 2 (non-insulin-dependent) diabetes mellitus. In Diabetologia, 1991, p. 734-736
110. Yasuda K, Seino Y: [Candidate gene approach in Japanese NIDDM: liver/pancreatic beta cell type glucose transporter (GLUT2)]. In Nippon
Rinsho, 1994, p. 2693-2696
111. Lin WH, Chiu KC, Chang HM, Lee KC, Tai TY, Chuang LM: Molecular scanning of the human sorbin and SH3-domain-containing-1
(SORBS1) gene: positive association of the T228A polymorphism with obesity and type 2 diabetes. In Hum Mol Genet, 2001, p. 1753-1760
112. Schneider A, Suman A, Rossi L, Barmada MM, Beglinger C, Parvin S, Sattar S, Ali L, Khan AK, Gyr N, Whitcomb DC: SPINK1/PSTI
mutations are associated with tropical pancreatitis and type II diabetes mellitus in Bangladesh. In Gastroenterology, 2002, p. 1026-1030
113. Eberle D, Clement K, Meyre D, Sahbatou M, Vaxillaire M, Le Gall A, Ferre P, Basdevant A, Froguel P, Foufelle F: SREBF-1 Gene
Polymorphisms Are Associated With Obesity and Type 2 Diabetes in French Obese and Diabetic Cohorts. In Diabetes, 2004, p. 2153-2157
114. Heijmans BT, Westendorp RG, Droog S, Kluft C, Knook DL, Slagboom PE: Association of the tumour necrosis factor alpha -308G/A
polymorphism with the risk of diabetes in an elderly population-based cohort. In Genes Immun, 2002, p. 225-228
115. Kamizono S, Yamada K, Seki N, Higuchi T, Kimura A, Nonaka K, Itoh K: Susceptible locus for obese type 2 diabetes mellitus in the 5'flanking region of the tumor necrosis factor-alpha gene. In Tissue Antigens, 2000, p. 449-452
116. Mori H, Okazawa H, Iwamoto K, Maeda E, Hashiramoto M, Kasuga M: A polymorphism in the 5' untranslated region and a Met229-->Leu
variant in exon 5 of the human UCP1 gene are associated with susceptibility to type II diabetes mellitus. In Diabetologia, 2001, p. 373-376
117. Bulotta A, Ludovico O, Coco A, Di Paola R, Quattrone A, Carella M, Pellegrini F, Prudente S, Trischitta V: The common -866G/A
polymorphism in the promoter region of the UCP-2 gene is associated with reduced risk of type 2 diabetes in Caucasians from Italy. In J Clin
Endocrinol Metab, 2005, p. 1176-1180
118. D'Adamo M, Perego L, Cardellini M, Marini MA, Frontoni S, Andreozzi F, Sciacqua A, Lauro D, Sbraccia P, Federici M, Paganelli M,
Pontiroli AE, Lauro R, Perticone F, Folli F, Sesti G: The -866A/A genotype in the promoter of the human uncoupling protein 2 gene is associated
with insulin resistance and increased risk of type 2 diabetes. In Diabetes, 2004, p. 1905-1910
119. Xiu LL, Weng JP, Sui Y, Wang J, Yan JH, Huang ZM: [Common variants in beta 3-adrenergic-receptor and uncoupling protein-2 genes are
associated with type 2 diabetes and obesity]. In Zhonghua Yi Xue Za Zhi, 2004, p. 375-379
120. Meirhaeghe A, Amouyel P, Helbecque N, Cottel D, Otabe S, Froguel P, Vasseur F: An uncoupling protein 3 gene polymorphism associated
with a lower risk of developing Type II diabetes and with atherogenic lipid profile in a French cohort. In Diabetologia, 2000, p. 1424-1428
121. Suzuki S, Wenyi Z, Hirai M, Hinokio Y, Suzuki C, Yamada T, Yoshizumi S, Suzuki M, Tanizawa Y, Matsutani A, Oka Y: Genetic
variations at urotensin II and urotensin II receptor genes and risk of type 2 diabetes mellitus in Japanese. In Peptides, 2004, p. 1803-1808
122. Minton JA, Hattersley AT, Owen K, McCarthy MI, Walker M, Latif F, Barrett T, Frayling TM: Association studies of genetic variation in the
WFS1 gene and type 2 diabetes in U.K. populations. In Diabetes, 2002, p. 1287-1290
123. Kawamoto T, Horikawa Y, Tanaka T, Kabe N, Takeda J, Mikuni M: Genetic variations in the WFS1 gene in Japanese with type 2 diabetes
and bipolar disorder. In Mol Genet Metab, 2004, p. 238-245
124. Kanazawa A, Tsukada S, Sekine A, Tsunoda T, Takahashi A, Kashiwagi A, Tanaka Y, Babazono T, Matsuda M, Kaku K, Iwamoto Y,
Kawamori R, Kikkawa R, Nakamura Y, Maeda S: Association of the gene encoding wingless-type mammary tumor virus integration-site family
member 5B (WNT5B) with type 2 diabetes. In Am J Hum Genet, 2004, p. 832-843