Download 50 Questions of Class XII Mathematics

Document related concepts

Statistics wikipedia , lookup

History of statistics wikipedia , lookup

Ars Conjectandi wikipedia , lookup

Birthday problem wikipedia , lookup

Probability interpretations wikipedia , lookup

Probability wikipedia , lookup

Transcript
K.V.No.1 HARNI ROAD VADODARA
QUESTIONS FOR PRACTICE(CLASS - XII)
INVERSE TRIGNOMETRY
1
1
1. Prove the following:2๐‘ก๐‘Ž๐‘›โˆ’1 (3) + ๐‘ก๐‘Ž๐‘›โˆ’1 (7) =
๐œ‹
4
2. Prove that: tanโˆ’1 1 + tanโˆ’1 2 + tanโˆ’1 3 = ๐œ‹.
tan ๏€ญ1
3. Prove that
1
1
1 ๏ฐ
๏€ซ tan ๏€ญ1 ๏€ซ tan ๏€ญ1 ๏€ฝ
2
5
8 4
๐Ÿ
๐Ÿ
๐Ÿ
๐Ÿ’
4. Prove the following:๐’•๐’‚๐’โˆ’๐Ÿ (๐Ÿ’) + ๐’•๐’‚๐’โˆ’๐Ÿ (๐Ÿ—) = ๐Ÿ ๐ฌ๐ข๐งโˆ’๐Ÿ (๐Ÿ“)
๐Ÿ”๐Ÿ
๐Ÿ“
1
1
๐Ÿ‘
5. Prove that: ๐’•๐’‚๐’โˆ’๐Ÿ (๐Ÿ๐Ÿ”) = ๐ฌ๐ข๐งโˆ’๐Ÿ ๐Ÿ๐Ÿ‘ + ๐œ๐จ๐ฌ โˆ’๐Ÿ ๐Ÿ“
1
1
6.๐‘ก๐‘Ž๐‘›โˆ’1 (3) + ๐‘ก๐‘Ž๐‘›โˆ’1 (5) + ๐‘ก๐‘Ž๐‘›โˆ’1 (7) + ๐‘ก๐‘Ž๐‘›โˆ’1 (8) =
โˆš1+๐‘ ๐‘–๐‘›๐‘ฅ+โˆš1โˆ’๐‘ ๐‘–๐‘›๐‘ฅ
7. Prove the following: ๐‘๐‘œ๐‘ก โˆ’1 (
8. Prove the
๐œ‹
4
๐‘ฅ
๐œ‹
) = 2 , ๐‘ฅ โˆˆ (0, 4 )
โˆš1+๐‘ ๐‘–๐‘›๐‘ฅโˆ’โˆš1โˆ’๐‘ ๐‘–๐‘›๐‘ฅ
3
โˆ’1 3
following:๐‘ก๐‘Ž๐‘› (4) + ๐‘ก๐‘Ž๐‘›โˆ’1 (5) โˆ’
8
๐‘ก๐‘Ž๐‘›โˆ’1 (19) =
๐œ‹
4
.
9. Solve for ๐‘ฅ โˆถ 2๐‘ก๐‘Ž๐‘›โˆ’1 (cos ๐‘ฅ) = ๐‘ก๐‘Ž๐‘›โˆ’1 (2 ๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ)
๐œ‹
10. Solve for x:๐‘ก๐‘Ž๐‘›โˆ’1 (2๐‘ฅ) + ๐‘ก๐‘Ž๐‘›โˆ’1 (3๐‘ฅ) = 4 , x>0.
SOLUTION
INVERSE TRIGNOMETRY
1. ๐‘ก๐‘Ž๐‘›โˆ’1
2/3
1โˆ’1/32
+๐‘ก๐‘Ž๐‘›โˆ’1
3
๐‘ก๐‘Ž๐‘›โˆ’1 4 +๐‘ก๐‘Ž๐‘›โˆ’1
1
7
1
7
๐œ‹
โ†’ ๐‘ก๐‘Ž๐‘›โˆ’1 1 = 4
3
2. LHS= ๐‘ก๐‘Ž๐‘›โˆ’1 (โˆ’1) +๐‘ก๐‘Ž๐‘›โˆ’1 3
โˆ’3+3
= ๐‘ก๐‘Ž๐‘›โˆ’1 ( 1+9 ) == ๐‘ก๐‘Ž๐‘›โˆ’1 (0) = ๐œ‹
7
3. tanโˆ’1 9 +๐‘ก๐‘Ž๐‘›โˆ’1
4 . 2 ๐‘ก๐‘Ž๐‘›โˆ’1
1 2
+
4 9
1.2
1โˆ’
4.9
1
8
= ๐‘ก๐‘Ž๐‘›โˆ’1
=2. ๐‘ก๐‘Ž๐‘›โˆ’1
56+9
72โˆ’7
17
34
= ๐‘ก๐‘Ž๐‘›โˆ’1 1 =
1
๐œ‹
4
=2. ๐‘ก๐‘Ž๐‘›โˆ’1 2 = . ๐‘ก๐‘Ž๐‘›โˆ’1
1
1โˆ’
1
4
= . ๐‘ ๐‘–๐‘›โˆ’1
4
5
5 . RHS= . ๐‘ก๐‘Ž๐‘›โˆ’1
5
12
4
15+48
3
36โˆ’20
+. ๐‘ก๐‘Ž๐‘›โˆ’1 = . ๐‘ก๐‘Ž๐‘›โˆ’1
๐‘ฅ
๐‘ฅ
๐‘ฅ
=LHS
๐‘ฅ
๐‘ฅ
๐‘ฅ
6. 1+ sinx = ๐‘๐‘œ๐‘  2 2 + ๐‘ ๐‘–๐‘›2 2 +2๐‘ ๐‘–๐‘› 2 ๐‘๐‘œ๐‘  2 = (cos 2 + ๐‘ ๐‘–๐‘› 2)2
๐‘ฅ
๐‘ฅ
1-sinx = (cos 2 โˆ’ ๐‘ ๐‘–๐‘› 2)2
๐‘ฅ
2
๐‘ฅ
2๐‘ ๐‘–๐‘›
2
2๐‘๐‘œ๐‘ 
LHS= ๐‘๐‘œ๐‘ก โˆ’1 (
7. LHS = ๐‘ก๐‘Ž๐‘›โˆ’1 (
๐‘ฅ
) = ๐‘๐‘œ๐‘ก โˆ’1 (cot2) = x/2
15+12
20โˆ’9
8
) - ๐‘ก๐‘Ž๐‘›โˆ’1 (19)
27
8
513โˆ’88
= ๐‘ก๐‘Ž๐‘›โˆ’1 (11) - ๐‘ก๐‘Ž๐‘›โˆ’1 (19) = ๐‘ก๐‘Ž๐‘›โˆ’1 (209+ 216) = ๐‘ก๐‘Ž๐‘›โˆ’1 (1)=
๐œ‹
4
2 cos ๐‘ฅ
8. ๐‘ก๐‘Ž๐‘›โˆ’1 (1โˆ’ ๐‘๐‘œ๐‘ 2 ๐‘ฅ ) = ๐‘ก๐‘Ž๐‘›โˆ’1 (๐‘๐‘œ๐‘ ๐‘’๐‘ ๐‘ฅ)
2 cos ๐‘ฅ
2
( ๐‘ ๐‘–๐‘›2 ๐‘ฅ ) = ๐‘ ๐‘–๐‘›2 ๐‘ฅ โ†’ sin x(cosx โ€“ sinx) = 0
x= 0, x=
9. ๐‘ก๐‘Ž๐‘›โˆ’1
๐œ‹
4
, x=0 satisfies the given equation
2๐‘ฅ+3๐‘ฅ
1โˆ’2๐‘ฅ๐‘‹3๐‘ฅ
=
1
๐œ‹
4
โ†’ ๐‘ก๐‘Ž๐‘›โˆ’1
5๐‘ฅ
1โˆ’6๐‘ฅ 2
=
๐œ‹
4
โ†’
5๐‘ฅ
1โˆ’6๐‘ฅ 2
= 1 โ†’ (6x-1) (x+1) =0
1
โ†’ x= 6 , -1 โ†’ x= 6 as x> 0
(๐‘ฅโˆ’1)(๐‘ฅ+2)+(๐‘ฅ+1)(๐‘ฅโˆ’2)
๐œ‹
10. ๐‘ก๐‘Ž๐‘›โˆ’1 (๐‘ฅโˆ’2)(๐‘ฅ+2)โˆ’(๐‘ฅโˆ’1)(๐‘ฅ+1) = 4
โ†’
2๐‘ฅ 2 โˆ’4
โˆ’3
โ†’x=±
=1
1
โˆš2
Find the values/ relation of a, b, c and k wherever required
๐‘Ž๐‘ฅ + 1, ๐‘–๐‘“ ๐‘ฅ โ‰ค 3
11. f(x)= {
๐‘๐‘ฅ + 3, ๐‘–๐‘“ ๐‘ฅ > 3
๐‘˜(๐‘ฅ 2 โˆ’ 2๐‘ฅ),
12. f(x)={
4๐‘ฅ + 1,
x=1.
๐‘˜๐‘๐‘œ๐‘ ๐‘ฅ
13. f(x)= {
is continuous at x=3
๐‘ฅโ‰ค0
is continuous at x=0 also discuss about continuity at
๐‘ฅ>0
,
๐œ‹โˆ’2๐‘ฅ
๐‘–๐‘“ ๐‘ฅ โ‰ 
3,
๐‘–๐‘“ ๐‘ฅ =
๐œ‹
2
๐œ‹
2
๐œ‹
is continuous at x=2
1. f(x)= {
๐‘˜๐‘ฅ + 1,
๐‘๐‘œ๐‘ ๐‘ฅ,
๐‘–๐‘“ ๐‘ฅ โ‰ค ๐œ‹
is continuous at x=๐œ‹
๐‘–๐‘“ ๐‘ฅ > ๐œ‹
5, ๐‘–๐‘“ ๐‘ฅ โ‰ค 2
14. f(x)= {๐‘Ž๐‘ฅ + ๐‘, 2 < ๐‘ฅ < 10is continuous function.
21, ๐‘–๐‘“ ๐‘ฅ โ‰ฅ 10
15. Show that f(x)= |๐‘ฅ โˆ’ 3| is continuous but not differentiable at x=3
1โˆ’๐‘๐‘œ๐‘ ๐‘ฅ
16. f(x)={
๐‘˜๐‘ฅ 2
๐‘–๐‘“ ๐‘ฅ = 0
๐‘ฅโˆ’2
,
๐‘–๐‘“ ๐‘ฅ โ‰  2
๐‘˜,
๐‘–๐‘“ ๐‘ฅ = 2
sin(๐‘ฅโˆ’2)
18. f(x)= {
Find,
๐‘–๐‘“ ๐‘ฅ โ‰  0
3,
๐‘ฅ 5 โˆ’25
17. f(x)= {
,
๐‘ฅโˆ’2
๐‘˜,
๐’…๐Ÿ ๐’š
๐’…๐’™๐Ÿ
,
is continuous at x=0
is continuous at x=2
๐‘–๐‘“ ๐‘ฅ โ‰  2
is continuous at x=2
๐‘–๐‘“ ๐‘ฅ = 2
when a function is given by
19.x= sint, y= cos2t
20. x=cost- cos2t, y=(1+cost)
๐‘ก
21. x= a(cost + log(tan2)), y = a sint
22. x = 2a๐‘ก 2 , y = a๐‘ก 4
4
๐‘‘๐‘ฆ
23. x = 4t, y = ๐‘ก find,๐‘‘๐‘ฅ when a function is given by
24. x=
๐‘ ๐‘–๐‘›3 ๐‘ก
โˆš๐‘๐‘œ๐‘ 2๐‘ก
, y=
๐‘๐‘œ๐‘ 3 ๐‘ก
โˆš๐‘๐‘œ๐‘ 2๐‘ก
๐‘‘๐‘ฆ
โˆ’1
25. if ๐‘ฅโˆš1 + ๐‘ฆ + ๐‘ฆโˆš1 + ๐‘ฅ=0 then prove that๐‘‘๐‘ฅ = (1+๐‘ฅ)2
26. if (๐‘ฅ โˆ’ ๐‘Ž) + (๐‘ฆ โˆ’ ๐‘) = ๐‘ then prove that
2
2
2
๐‘‘๐‘ฆ
27. if cos y = x cos(a+y) then prove that ๐‘‘๐‘ฅ =
28. if y = ๐‘’ ๐‘Ž๐‘๐‘œ๐‘ 
โˆ’1 ๐‘ฅ
๐‘‘2 ๐‘ฆ
3
๐‘‘๐‘ฆ 2
) ]2
๐‘‘๐‘ฅ
๐‘‘2 ๐‘ฆ
๐‘‘๐‘ฅ2
[1+(
๐‘๐‘œ๐‘ 2 (๐‘Ž+๐‘ฆ)
sin ๐‘Ž
๐‘‘๐‘ฆ
then show that (1-x2)๐‘‘๐‘ฅ 2 - x๐‘‘๐‘ฅ - ๐‘Ž2 ๐‘ฆ = 0
is independent of a and b
Solutions: continuity and differentiability
๐‘Ž๐‘ฅ + 1, ๐‘–๐‘“ ๐‘ฅ โ‰ค 3
11. As f(x)= {
๐‘๐‘ฅ + 3, ๐‘–๐‘“ ๐‘ฅ > 3
is continuous at x=3
โˆด lim+ ๐‘“(๐‘ฅ)= f(3)
๐‘ฅโ†’3
3b+3 = 3a + 1
a-b = 2/3
๐‘˜(๐‘ฅ 2 โˆ’ 2๐‘ฅ),
4๐‘ฅ + 1,
โˆด lim+ ๐‘“(๐‘ฅ)= f(0)
๐‘ฅโ‰ค0
is continuous at x=0
๐‘ฅ>0
12. as f(x)={
๐‘ฅโ†’0
1= k(0)
1=0 which is not possible for any value of k
lim ๐‘“(๐‘ฅ)= f(1)
๐‘ฅโ†’1
5=5
โˆด for all values of k f(x) is continuous at x = 1
๐‘˜๐‘๐‘œ๐‘ ๐‘ฅ
13. f(x)= {
๐œ‹โˆ’2๐‘ฅ
,
๐‘–๐‘“ ๐‘ฅ โ‰ 
3,
๐‘–๐‘“ ๐‘ฅ =
๐œ‹
2
๐œ‹
๐œ‹
is continuous at x=2
2
๐œ‹
lim๐œ‹ ๐‘“(๐‘ฅ)= f( 2 )
๐‘ฅโ†’
2
.lim๐œ‹
๐‘ฅโ†’
๐œ‹
2
๐œ‹
2( โˆ’๐‘ฅ)
2
๐‘˜๐‘ ๐‘–๐‘›( โˆ’๐‘ฅ)
2
k/2 = 3
=3
k=6
๐‘˜๐‘ฅ + 1, ๐‘–๐‘“ ๐‘ฅ โ‰ค ๐œ‹
is continuous at x=๐œ‹
๐‘๐‘œ๐‘ ๐‘ฅ,
๐‘–๐‘“ ๐‘ฅ > ๐œ‹
โˆด lim+ ๐‘“(๐‘ฅ)= f(๐œ‹)
14. as f(x)= {
๐‘ฅโ†’๐œ‹
. lim+๐‘๐‘œ๐‘ ๐‘ฅ = k ๐œ‹+1
๐‘ฅโ†’๐œ‹
-1 = k ๐œ‹+1 K = -2/ ๐œ‹
5, ๐‘–๐‘“ ๐‘ฅ โ‰ค 2
15. as f(x)= {๐‘Ž๐‘ฅ + ๐‘, 2 < ๐‘ฅ < 10is continuous function.
21, ๐‘–๐‘“ ๐‘ฅ โ‰ฅ 10
โˆด lim+ ๐‘“(๐‘ฅ)= f(2)
๐‘ฅโ†’2
โˆด lim+ ๐‘Ž๐‘ฅ + ๐‘=5
๐‘ฅโ†’2
2a+b = 5โ€ฆ(1)
โˆด limโˆ’ ๐‘“(๐‘ฅ)= f(10)
๐‘ฅโ†’10
โˆด limโˆ’ ๐‘Ž๐‘ฅ + ๐‘ = 21
๐‘ฅโ†’10
10a+b = 21โ€ฆ (2)
a=2, b=1
โˆ’๐‘ฅ + 3 ๐‘–๐‘“ ๐‘ฅ < 3
16. f(x)= {
๐‘ฅ โˆ’ 3, ๐‘–๐‘“ ๐‘ฅ โ‰ฅ 3
at x=3
lim ๐‘“(๐‘ฅ)= lim+ ๐‘“(๐‘ฅ) =f(3)
๐‘ฅโ†’3โˆ’
๐‘ฅโ†’3
lim -(3-h)+3 = lim (3+h)-3= 0
โ„Žโ†’0
โ„Žโ†’0
0=0=0
โˆดcontinuous at x=3
. ๐ฟ. ๐ป. ๐ท = lim
๐‘“(3โˆ’โ„Ž)โˆ’๐‘“(3)
โˆ’โ„Ž
โ„Žโ†’0
R.H.D = lim
๐‘“(3+โ„Ž)โˆ’๐‘“(3)
โ„Ž
โ„Žโ†’0
=
lim
= lim
โ„Žโ†’0
โˆ’3+โ„Ž+3
โ„Žโ†’0
โˆ’โ„Ž
3+โ„Žโˆ’3
=1
โ„Ž
= -1
As L.H.D โ‰  R.H.D
โˆด f(x) is not differentiable at x=3.
1โˆ’๐‘๐‘œ๐‘ ๐‘ฅ
17. As f(x)={
๐‘˜๐‘ฅ 2
3,
,
๐‘–๐‘“ ๐‘ฅ โ‰  0
๐‘–๐‘“ ๐‘ฅ = 0
is continuous at x=0
lim ๐‘“(๐‘ฅ)= f(0)
๐‘ฅโ†’0
.lim
๐‘ฅ
2
๐‘ฅ2
2๐‘ ๐‘–๐‘›2
๐‘ฅโ†’0 4๐‘˜
=3
4
1
.2๐‘˜ = 3
K =1/6
๐‘ฅ 5 โˆ’25
18. As f(x)= {
๐‘ฅโˆ’2
,
๐‘˜,
๐‘–๐‘“ ๐‘ฅ โ‰  2
๐‘–๐‘“ ๐‘ฅ = 2
is continuous at x=2
โˆด lim ๐‘“(๐‘ฅ)= f(2)
๐‘ฅโ†’2
Question based on rate of change.
29. The side of a square is changing at the rate of 5cm/sec.How fast is its area
increasing when the Length of its side is 8cm.
30. The rate of change of the side of a cube 6 cm /sec .How fast is its surface area
changing when the length of its edge is 5 cm?
31. The volume of a cube is increasing at the rate 10
๐‘๐‘š3
๐‘ ๐‘’๐‘
.
๐ป๐‘œ๐‘ค ๐‘“๐‘Ž๐‘ ๐‘ก ๐‘–๐‘  ๐‘กโ„Ž๐‘’ ๐‘ ๐‘ข๐‘Ÿ๐‘“๐‘Ž๐‘๐‘’ ๐‘Ž๐‘Ÿ๐‘’๐‘Ž
Increasing when the length of an edge is 15 cm?
32. Find the point on the curve ๐‘ฆ 2 =3x for which the abscissa and ordi nate change
at the same rate.
33. An edge of a variable cube is increasing at the rate of 3cm/s.How fast is the
volume of The cube increasing when the edge is 10 cm long.
34. A particle move along the curve 6y=๐‘ฅ 3 +2. Find the points on the curve at which
the
Y coordinate is changing 8 times as fast as the x โ€“coordinate.
1
35. The radius of an air buble is increasing at the rate of 2cm/s. At what rate is the
volume of The buble increasing when the radius is 1cm?
36. Aman 2m high , walks at a uni form speed of 6m/min . away from a lamp post 5m
high. Find the rate at which the length of his shadow increases.
37. The radius of a circle is increasing uniformly at the rate of 3cm/s. find the rate at
which the area of the circle is increasing when the radius is 10cm.
๐‘๐‘š3
38. Sand is pouring from a pipe at the rate of 12 ๐‘ ๐‘’๐‘ .The falling sand forms, a cone on
The ground in such a way that the hight of the cone is always one โ€“sixth of the
Radius of the base .How fast is the height of the sand cone increasing when the
Height is 4cm?
SOLUTIONS
Q.29
Let side of square at any time be x cm.
๐‘‘๐‘ฅ
The ๐‘‘๐‘ก =5cm/sec
Now, area of square ,A=๐‘‹ 2
๐‘‘๐ด
โˆดThe ๐‘‘๐‘ก =80๐‘๐‘š2 /๐‘  Ans .
Q. 30 Let x be the lenth of the cube and s be the surface area at any time t
๐‘‘๐‘ฅ
๐‘‘๐‘ก
=6cm/sec
s=6๐‘ฅ 2
๐‘‘๐‘ 
The ๐‘‘๐‘ก = 360๐‘๐‘š2 /๐‘ 
Q. 31 Here 6y =๐‘ฅ 3 + 2 ๐‘Ž๐‘›๐‘‘
๐‘‘๐‘ฆ
๐‘‘๐‘ก
๐‘‘๐‘ฅ
=8 ๐‘‘๐‘ก
Solving them we get x=±4
At x=4 y=11
Atx=-4, y=
โˆ’32
3
Thus requird points are (4,11) and (-4,
Q 32
โˆ’32
3
)
Let r be the radius of bubble and v be the volume of bubble at any time t.
Then
๐‘‘๐‘Ÿ
๐‘‘๐‘ก
1 ๐‘๐‘š
=2
๐‘ 
๐‘Ž๐‘›๐‘‘ ๐‘Ÿ = 1๐‘๐‘š
By solving we get
๐‘‘๐‘ฃ
๐‘‘๐‘ก
=2ฯ€๐‘๐‘š3 /s
Q. 33 Let AB is the Lamp post.
At any time t ,let the man be at a distance of x m away from the lamp post and
Y m be length of his shadow
Then AB= 5m and CD= 2m
๐‘‘๐‘ฅ
๐‘‘๐‘ก
=6m/min
๐‘‘๐‘ฆ
By solving we get ๐‘‘๐‘ก =4m/min
Q. 34 Let r be the radius and A be the area of the circle at any time t.
๐‘‘๐‘Ÿ
Now ๐‘‘๐‘ก =3cm/s and r=10cm
Now A=ฯ€๐‘Ÿ 2
By solving it we get
๐‘‘๐ด
๐‘‘๐‘ก
=60๐œ‹๐‘๐‘š2/s
Q. 35 Let r be the radius h be the height and v be the volume of sand
Cone at any time t.
๐‘‘๐‘ฃ
Then
๐‘‘๐‘ก
1
=12๐‘๐‘š3 /s and h= 6 r
๐‘‘โ„Ž
1
By solving we get ๐‘‘๐‘ก =48 ๐œ‹ cm/sec
. lim
๐‘ฅ 5 โˆ’25
๐‘ฅโˆ’2
๐‘ฅโ†’2
=k
5(24) = k
K = 80
sin(๐‘ฅโˆ’2)
36. As f(x)= {
๐‘ฅโˆ’2
๐‘˜,
,
๐‘–๐‘“ ๐‘ฅ โ‰  2
๐‘–๐‘“ ๐‘ฅ = 2
is continuous at x=2
โˆด lim ๐‘“(๐‘ฅ)= f(2)
๐‘ฅโ†’2
.lim
sin(๐‘ฅโˆ’2)
๐‘ฅโˆ’2
๐‘ฅโ†’2
=k
K=1
๐‘’ ๐‘ฅ โˆ’1
37. As f(x)= { ๐‘ฅ
๐‘˜,
,
โˆด lim ๐‘“(๐‘ฅ)= f(0)
๐‘ฅโ†’0
.lim
๐‘ฅโ†’0
๐‘’ ๐‘ฅ โˆ’1
๐‘ฅ
=k
๐‘–๐‘“ ๐‘ฅ โ‰  0
๐‘–๐‘“ ๐‘ฅ = 0
is continuous at x=0
1=k
Differentiation:
19, x= sint, y= cos2t
๐‘‘๐‘ฅ
๐‘‘๐‘ฆ
. ๐‘‘๐‘ก = cos t,
๐‘‘๐‘ก
= -2sin 2t
๐‘‘๐‘ฆ
.. ๐‘‘๐‘ฅ = -2sin 2t/cos t
๐‘‘๐‘ฆ
.๐‘‘๐‘ฅ = - 4 sin t
๐‘‘2 ๐‘ฆ
โˆ’4 sin ๐‘ก
.๐‘‘๐‘ฅ 2 = -
๐‘๐‘œ๐‘ ๐‘ก
= - 4 tan t
20.x=cost- cos2t, y=(1+cost)
๐‘‘๐‘ฅ
. ๐‘‘๐‘ก = 2 sin 2๐‘ก โˆ’ sin ๐‘ก,
๐‘‘๐‘ฆ
๐‘‘๐‘ฆ
๐‘‘๐‘ก
= โˆ’ sin ๐‘ก
1
.๐‘‘๐‘ฅ = 1โˆ’ 4 cos t
๐‘‘2 ๐‘ฆ
โˆ’4 sin ๐‘ก
1
1
.๐‘‘๐‘ฅ 2 =(1โˆ’4 cos ๐‘ก)2 *๐‘ ๐‘–๐‘›๐‘ก(4๐‘๐‘œ๐‘ ๐‘กโˆ’1) = (1โˆ’4 cos ๐‘ก)3
๐‘ก
21 x= a(cost + log(tan2)), y = a sint
๐‘‘๐‘ฅ
1
๐‘๐‘œ๐‘ 2 ๐‘ก
. ๐‘‘๐‘ก = a(-sint +๐‘ ๐‘–๐‘›๐‘ก) =a ๐‘ ๐‘–๐‘›๐‘ก
๐‘‘๐‘ฆ
. ๐‘‘๐‘ก = a cos t
๐‘‘๐‘ฆ
.๐‘‘๐‘ฅ =tan t
๐‘‘2 ๐‘ฆ
๐‘ ๐‘–๐‘›๐‘ก
.๐‘‘๐‘ฅ 2 = ๐‘ ๐‘’๐‘ 2 ๐‘ก*๐‘Ž ๐‘๐‘œ๐‘ 2 ๐‘ก
22 x = 2a๐‘ก 2 , y = a๐‘ก 4
๐‘‘๐‘ฅ
๐‘‘๐‘ฆ
. ๐‘‘๐‘ก =4at, ๐‘‘๐‘ก =4๐‘Ž๐‘ก 3
๐‘‘๐‘ฆ
.๐‘‘๐‘ฅ = ๐‘ก 2
๐‘‘2 ๐‘ฆ
1
.๐‘‘๐‘ฅ 2 = 2t*4๐‘Ž๐‘ก
4
23 x = 4t, y = ๐‘ก
๐‘‘๐‘ฅ
๐‘‘๐‘ฆ โˆ’4
. ๐‘‘๐‘ก = 4, ๐‘‘๐‘ก = ๐‘ก 2
๐‘‘๐‘ฆ
.๐‘‘๐‘ฅ =
๐‘‘2 ๐‘ฆ
โˆ’1
๐‘ก2
2 1
.๐‘‘๐‘ฅ 2 = ๐‘ก 3 *4
24 x=
๐‘ ๐‘–๐‘›3 ๐‘ก
โˆš๐‘๐‘œ๐‘ 2๐‘ก
๐‘‘๐‘ฅ
. ๐‘‘๐‘ก =
, y=
๐‘๐‘œ๐‘ 3 ๐‘ก
โˆš๐‘๐‘œ๐‘ 2๐‘ก
๐‘ ๐‘–๐‘›2 ๐‘ก
๐‘๐‘œ๐‘ ๐‘ก(2๐‘๐‘œ๐‘ 2๐‘ก+1) ๐‘‘๐‘ฆ ๐‘๐‘œ๐‘ 2 ๐‘ก ๐‘ ๐‘–๐‘›๐‘ก(1โˆ’2๐‘๐‘œ๐‘ 2๐‘ก)
(๐‘๐‘œ๐‘ 2๐‘ก)3/2
, ๐‘‘๐‘ก =
(๐‘๐‘œ๐‘ 2๐‘ก)3/2
๐‘‘๐‘ฆ
.๐‘‘๐‘ฅ = cot t
25 ๐‘ฅโˆš1 + ๐‘ฆ + ๐‘ฆโˆš1 + ๐‘ฅ=0
.๐‘ฅโˆš1 + ๐‘ฆ= -๐‘ฆโˆš1 + ๐‘ฅ
โˆ’๐‘ฅ
. y=1+๐‘ฅ
๐‘‘๐‘ฆ
โˆ’1
.๐‘‘๐‘ฅ =(1+๐‘ฅ)2
๐‘‘๐‘ฆ
.(x-a)+(y-b)๐‘‘๐‘ฅ = 0
26 (๐‘ฅ โˆ’ ๐‘Ž)2 + (๐‘ฆ โˆ’ ๐‘)2 = ๐‘ 2
๐‘‘2 ๐‘ฆ
๐‘‘๐‘ฆ
1+(y-b)๐‘‘๐‘ฅ 2 +(๐‘‘๐‘ฅ )2 =0
๐‘‘2 ๐‘ฆ
.๐‘‘๐‘ฅ 2 = -(1+y12)
.
3
๐‘‘๐‘ฆ 2
) ]2
๐‘‘๐‘ฅ
๐‘‘2 ๐‘ฆ
๐‘‘๐‘ฅ2
[1+(
=-
(1+๐‘ฆ12 )3/2
(1+๐‘ฆ12 )
= - (1 + ๐‘ฆ12 )1/2=-(๐‘ 2 )1/2= -c
27. if cos y = x cos(a+y) then prove that
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
=
๐‘๐‘œ๐‘ 2 (๐‘Ž+๐‘ฆ)
sin ๐‘Ž
๐‘๐‘œ๐‘ ๐‘ฆ
X= cos(๐‘Ž+๐‘ฆ)
๐‘‘๐‘ฅ
.๐‘‘๐‘ฆ=
โˆ’siny cos(a+y)+sin(๐‘Ž+๐‘ฆ)๐‘๐‘œ๐‘ ๐‘ฆ
28.if y = ๐‘’ ๐‘Ž๐‘๐‘œ๐‘ 
๐‘๐‘œ๐‘ 2 (๐‘Ž+๐‘ฆ)
โˆ’1 ๐‘ฅ
๐‘‘๐‘ฆ
.๐‘‘๐‘ฅ =
๐‘‘2 ๐‘ฆ
๐‘๐‘œ๐‘ 2 (๐‘Ž+๐‘ฆ)
sin ๐‘Ž
๐‘‘๐‘ฆ
then show that (1-x2)๐‘‘๐‘ฅ 2 - x๐‘‘๐‘ฅ - ๐‘Ž2 ๐‘ฆ = 0
.
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= ๐‘’ ๐‘Ž๐‘๐‘œ๐‘ 
โˆ’๐‘Ž
โˆ’1 ๐‘ฅ
โˆš1โˆ’๐‘ฅ 2
๐‘‘2 ๐‘ฆ
๐‘ฅ
๐‘‘๐‘ฆ
.โˆš1 โˆ’ ๐‘ฅ 2 ๐‘‘๐‘ฅ 2 - โˆš1โˆ’๐‘ฅ 2 ๐‘‘๐‘ฅ = ๐‘’ ๐‘Ž๐‘๐‘œ๐‘ 
๐‘‘2 ๐‘ฆ
โˆ’1 ๐‘ฅ
โˆ’๐‘Ž2
โˆš1โˆ’๐‘ฅ 2
๐‘‘๐‘ฆ
(1-x2)๐‘‘๐‘ฅ 2 - x๐‘‘๐‘ฅ - ๐‘Ž2 ๐‘ฆ = 0
INCREASING AND DECREASING FUNCTIONS
39. Find the intervals in which the function f given by f(x) = 4๐‘ฅ 3 โ€“ 6 ๐‘ฅ 2 - 72๐‘ฅ + 30 is
strictly increasing .
40. Find the intervals in which the function f given by f(x) = -2๐‘ฅ 3 - 9 ๐‘ฅ 2 - 12๐‘ฅ +1 is
strictly decreasing .
41. Find the intervals in which the function f given by f(x) = sin ๐‘ฅ+ cos ๐‘ฅ , 0 โ‰ค x โ‰ค 2๐œ‹ is
strictly increasing .
42. Find the intervals in which the function f given by f(x) = 2๐‘ฅ 3 โ€“ 3 ๐‘ฅ 2 - 36๐‘ฅ + 7 is
strictly increasing and decreasing.
43. Show that the function f(x) = ๐‘’ 2๐‘ฅ is strictly increasing on R.
44. Prove that the function given by f(x) = ๐‘ฅ 3 โ€“ 3๐‘ฅ 2 + 3๐‘ฅ + 30 is strictly increasing.
45. Prove that the logarithmic function is strictly increasing on (0, โˆž).
46. Find the value of x for which y = [ x ( x โˆ’ 2 )] 2is an increasing function.
47. Prove that the function given by f(x) = cos x is (a) strictly decreasing in (0,๐œ‹).
(b) strictly increasing in (๐œ‹, 2 ๐œ‹).
(c) neither increasing nor decreasing in (0, 2 ๐œ‹).
TANGENTS AND NORMALS
48. Find the equations of the tangent to the curve y =๐‘ฅ 2 + 4๐‘ฅ + 1 at the point whose xcoordinate is 3.
49. Find the equations of the normal to the curve y =๐‘ฅ 2 + 4๐‘ฅ + 1 at the point whose xcoordinate is 3.
50. Find the slope of the normal to the curve y = ๐‘ฅ 2 - 3๐‘ฅ + 2 at the point whose xcoordinate is 3.
๐œ‹
51. Find the equations of the tangent to the curve x = cos ๐‘ก , y = sin ๐‘กat t = 4 .
52. Find the equation of the normal at the point (1,1) on the curve 2y + ๐‘ฅ 2 = 3.
53. Find the equation of tangent to the curve y = โˆš3๐‘ฅ โˆ’ 2 , which is parallel to the line
4x -2y + 5 =0.
54. Find the equations of the tangent to the parabola ๐‘ฆ 2 = 4๐‘Ž๐‘ฅ at the point ( a๐‘ก 2 , 2๐‘Ž๐‘ก )
๐‘ฅ2
55. Find the equations of the tangent to the parabola๐‘Ž2 -
๐‘ฆ2
๐‘2
= 1 at the point (h,k).
56. Prove that the curves x = ๐‘ฆ 2 and xy = k cut at right angles if 8๐‘˜ 2 = 1.
57. On which point the line y = x + 1 is a tangent to the curve ๐‘ฆ 2 = 4๐‘ฅ
SECOND ORDER DERIVATIVE
58. If y = a sin x + b cos x, then prove that
59. If y = 3๐‘’ 2๐‘ฅ + 2๐‘’ 3๐‘ฅ , prove that
๐‘‘2 ๐‘ฆ
๐‘‘๐‘ฅ 2
61. Find
๐‘‘๐‘ฅ 2
๐‘‘๐‘ฅ 2
๐‘‘๐‘ฆ
+ y = 0.
- 5 ๐‘‘๐‘ฅ + 6y = 0.
60. If y = 500๐‘’ 7๐‘ฅ + 600๐‘’ โˆ’7๐‘ฅ , prove that
๐‘‘2 ๐‘ฆ
๐‘‘2 ๐‘ฆ
๐‘‘2 ๐‘ฆ
๐‘‘๐‘ฅ 2
- 49y = 0.
, if y = ๐‘ฅ 3 + tan ๐‘ฅ .
๐‘‘2 ๐‘ฆ
๐‘‘๐‘ฆ
62. If y = 3 cos ( log x ) + 4 sin ( log x ) , show that ๐‘ฅ 2 ๐‘‘๐‘ฅ 2 + x๐‘‘๐‘ฅ + y = 0.
63. Find
๐‘‘2 ๐‘ฆ
๐‘‘๐‘ฅ 2
, if x = a cost , y = b sin t.
64. If f(x) = ๐‘ฅ 3 โ€“ 3๐‘ฅ 2 + 3๐‘ฅ + 30 , then find f โ€ ( -3 ).
65. Find the second order derivative of ๐‘ฅ 3 + log x.
66. If y = tanโˆ’1 ๐‘ฅ , prove that ( 1 + ๐‘ฅ 2 ) ๐‘ฆ2 + 2x ๐‘ฆ1 = 0.
67. If y = sinโˆ’1 ๐‘ฅ , prove that ( 1 - ๐‘ฅ 2 ) ๐‘ฆ2 - x ๐‘ฆ1 = 0.
Solutions
INCREASING AND DECREASING FUNCTIONS
39. by f(x) = 4๐‘ฅ 3 โ€“ 6 ๐‘ฅ 2 - 72๐‘ฅ + 30
f โ€™(x) = 12 ๐‘ฅ 2 - 12๐‘ฅ - 72 = 12(๐‘ฅ 2 โ€“x โ€“ 6 ) = 12( x-3 ) ( x+2)
Critical points are -2,3.
Interval
x-3
x+2
12( x-3 ) (
x+2)
+
x < -2
+
-2 < x < 3
+
+
+
x>3
increasing
Decreasing
increasing
40. f(x) = -2๐‘ฅ 3 - 9 ๐‘ฅ 2 - 12๐‘ฅ +1
f โ€™(x) = -6๐‘ฅ 2 - 18๐‘ฅ - 12 = -6(๐‘ฅ 2 +3x + 2 ) = -6( x +1 ) ( x+2)
Critical points are -1, -2.
Interval
x +1
x+2
-6( x+1 ) (x+2)
x < -2
+
+
-2 < x < -1
+
+
x > -1
Nature
Decreasing
increasing
Decreasing
41. f(x) = sin ๐‘ฅ + cos ๐‘ฅ , 0 โ‰ค x โ‰ค 2๐œ‹
f โ€™(x) = cos x โ€“ sin x ,
f โ€™(x) = 0 , gives cos x = sin x ,
๐œ‹
x=4 ,
5๐œ‹
4
Nature
Sign of f โ€™(x)
+
Nature
increasing
)
-
Decreasing
( 4 , 2๐œ‹)
+
increasing
Interval
๐œ‹
[0 , 4 )
๐œ‹ 5๐œ‹
(4 ,
5๐œ‹
4
42. f(x) = 2๐‘ฅ 3 โ€“ 3 ๐‘ฅ 2 - 36๐‘ฅ + 7
f โ€™(x) = 6๐‘ฅ 2 - 6๐‘ฅ - 36 = 6(๐‘ฅ 2 - x -6 ) = 6( x -3 ) ( x+2)
Critical points are -2 , 3.
Interval
x -3
x+2
6( x -3 ) ( x+2)
+
x < -2
+
-2 < x < 3
+
+
+
x>3
Nature
increasing
Decreasing
increasing
43. f(x) = ๐‘’ 2๐‘ฅ
f โ€™(x) = 2 ๐‘’ 2๐‘ฅ
Since ๐‘’ 2๐‘ฅ is always positive . Therefore f โ€™(x)>0
44. f(x) = ๐‘ฅ 3 โ€“ 3๐‘ฅ 2 + 3๐‘ฅ + 30.
f โ€™(x) = 3๐‘ฅ 2 - 6๐‘ฅ + 3 = 3(๐‘ฅ 2 โ€“ 2x+ 1 ) = 3( x - 1 )2
Since ( x - 1 )2 is always positive . Therefore f โ€™(x)>0
45. f(x) = log x, x >0
1
f โ€™(x) =๐‘ฅ ,
f โ€™(x)>0 , function is strictly increasing on (0, โˆž).
46. y = [ x ( x โˆ’ 2 )]
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
2
= ๐‘ฅ 2 (๐‘ฅ โˆ’ 2)2
= 2x(๐‘ฅ โˆ’ 2)2+2 ๐‘ฅ 2 (๐‘ฅ โˆ’ 2) = 2x(x-2)( x - 2 + x) = 4x( x โ€“ 2) ( x โ€“ 1 )
Critical points are 0, 1 , 2 .
interval
x
x-1
x<0
0<x<1
1<x<2
x>2
+
+
+
+
+
x-2
+
4x( x โ€“ 2) ( x โ€“ 1 )
+
+
Nature
Decreasing
increasing
Decreasing
increasing
47. f(x) = cos x
f โ€™(x) = - sin x
(a) In (0,๐œ‹) , sin x > 0 , -sin x < 0 =>f โ€™(x)< 0.
(b) In (๐œ‹, 2 ๐œ‹) , sin x < 0, -sin x > 0 =>f โ€™(x)> 0.
(c) Clearly from (a) and (b) , f is neither increasing nor decreasing in (0, 2 ๐œ‹).
TANGENTS AND NORMALS
48. curve y = ๐‘ฅ 2 + 4๐‘ฅ + 1
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= 2x + 4
at x = 3 is 10. So m = 10.
๐‘ฅ = 3 , y = 22
๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘ก๐‘Ž๐‘›๐‘”๐‘’๐‘›๐‘ก ๐‘–๐‘ 
y - 22 = 10 ( x โ€“ 3 ) i. e. 10x โ€“y = 8.
49. curve y = ๐‘ฅ 2 + 4๐‘ฅ + 1
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= 2x + 4
at x = 3 is 10.
1
So slope of normal is -10.
๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘–๐‘ 
1
y - 22 = - 10( x โ€“ 3 ) i. e. x + 10y = 223
50. y = ๐‘ฅ 2 - 3๐‘ฅ + 2
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= 2x -3.
at x = 3 is 3.
1
So slope of normal is -3.
51. x = cos ๐‘ก , y = sin ๐‘ก
๐‘‘๐‘ฅ
๐‘‘๐‘ก
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= โˆ’ sin ๐‘ก
at t =
๐œ‹
4
๐œ‹
x = cos 4 =
,
๐‘‘๐‘ฆ
๐‘‘๐‘ก
๐‘‘๐‘ฆ
= cos ๐‘ก
=>๐‘‘๐‘ฅ = - cot t
= -1
1
,
โˆš2
๐œ‹
y = sin 4 =
1
โˆš2
Hence, ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘ก๐‘Ž๐‘›๐‘”๐‘’๐‘›๐‘ก ๐‘–๐‘ 
y-
1
โˆš2
= -1( x -
1
โˆš2
)
=>
x + y = โˆš2 .
52. Curve 2y + ๐‘ฅ 2 = 3
๐‘‘๐‘ฆ
2๐‘‘๐‘ฅ +2x = 0
๐‘‘๐‘ฆ
=>๐‘‘๐‘ฅ = -x
๐‘‘๐‘ฆ
=>๐‘‘๐‘ฅ ๐‘Ž๐‘ก (1,1) = โˆ’1
So slope of normal is 1.
y โ€“ 1 = 1( x โ€“ 1 )
53. curve y = โˆš3๐‘ฅ โˆ’ 2 ,
๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘›๐‘œ๐‘Ÿ๐‘š๐‘Ž๐‘™ ๐‘–๐‘ 
=>
xโ€“y=0
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
3
=
2โˆš3๐‘ฅโˆ’2
Slope of the line
Given
3
2โˆš3๐‘ฅโˆ’2
4x -2y + 5 =0 is 2.
41
=2
=> x = 48and y =
3
4
Hence, ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘ก๐‘Ž๐‘›๐‘”๐‘’๐‘›๐‘ก ๐‘–๐‘ 
3
41
y - 4 = 2 ( x - 48 )
=>
48x -24 y -23 = 0
54. parabola ๐‘ฆ 2 = 4๐‘Ž๐‘ฅ
๐‘‘๐‘ฆ
๐‘‘๐‘ฆ
2y๐‘‘๐‘ฅ = 4a
=>๐‘‘๐‘ฅ =
2๐‘Ž
๐‘‘๐‘ฆ
=>๐‘‘๐‘ฅ at the point ( a๐‘ก 2 , 2๐‘Ž๐‘ก ) =
๐‘ฆ
1
๐‘ก
Hence, ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘ก๐‘Ž๐‘›๐‘”๐‘’๐‘›๐‘ก ๐‘–๐‘ 
1
y โ€“ 2at = ๐‘ก ( x - a๐‘ก 2 )
๐‘ฅ2
55. ๐‘Ž2 -
๐‘ฆ2
๐‘‘๐‘ฆ
= 1 =>๐‘‘๐‘ฅ =
๐‘2
x โ€“ ty + a๐‘ก 2 = 0
=>
๐‘2 ๐‘ฅ
๐‘Ž2 ๐‘ฆ
๐‘2 โ„Ž
๐‘‘๐‘ฆ
at the point ( h,k) = ๐‘Ž2 ๐‘˜
๐‘‘๐‘ฅ
Hence, ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘› ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘ก๐‘Ž๐‘›๐‘”๐‘’๐‘›๐‘ก ๐‘–๐‘ 
yโ€“k=
56. x = ๐‘ฆ 2
๐‘2 โ„Ž
๐‘Ž2 ๐‘˜
โ„Ž๐‘ฅ
(xโ€“h)
๐‘‘๐‘ฆ
=>๐‘Ž2 -
๐‘˜๐‘ฆ
๐‘2
=1
1
=>๐‘‘๐‘ฅ =
2๐‘ฆ
๐‘‘๐‘ฆ
andxy = k
=>๐‘‘๐‘ฅ =
1
โˆ’๐‘ฆ
๐‘ฅ
โˆ’๐‘ฆ
cut at right angles if2๐‘ฆx ๐‘ฅ = -1
so
1
x=2
1 21
xy = k ,=>๐‘ฅ 2 ๐‘ฆ 2 = ๐‘˜ 2 =>(2)
Since
2
1
, ๐‘ฆ2 = 2
= ๐‘˜2
๏ƒฐ 8๐‘˜ 2 = 1
๐‘‘๐‘ฆ
57. ๐‘ฆ 2 = 4๐‘ฅ =>2y๐‘‘๐‘ฅ = 4
๐‘‘๐‘ฆ
2
=>๐‘‘๐‘ฅ = ๐‘ฆ
Slope of the line y = x + 1 is 1.
๏ƒฐ
2
๐‘ฆ
=1
=>
y = 2. Then x = 1.
๏ƒฐ So required point is ( 1, 2).
SECOND ORDER DERIVATIVE
58. y = a sin x + b cos x,
๐‘‘๐‘ฆ
= acos x โ€“ b sin x
๐‘‘๐‘ฅ
๐‘‘2 ๐‘ฆ
๐‘‘๐‘ฅ 2
๐‘‘2 ๐‘ฆ
= - a sin x - b cos x = - y
+ y = 0.
๐‘‘๐‘ฅ 2
2๐‘ฅ
59. y = 3๐‘’
๐‘‘๐‘ฆ
+ 2๐‘’ 3๐‘ฅ ,
= 6๐‘’ 2๐‘ฅ + 6๐‘’ 3๐‘ฅ
๐‘‘๐‘ฅ
๐‘‘2 ๐‘ฆ
= 12๐‘’ 2๐‘ฅ + 18๐‘’ 3๐‘ฅ ,
๐‘‘๐‘ฅ 2
๐‘‘2 ๐‘ฆ
๐‘‘๐‘ฆ
On substituting we get, ๐‘‘๐‘ฅ 2 - 5๐‘‘๐‘ฅ + 6y = 0.
60. y = 500๐‘’ 7๐‘ฅ + 600๐‘’ โˆ’7๐‘ฅ ,
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= 7 ( 500๐‘’ 7๐‘ฅ - 600๐‘’ โˆ’7๐‘ฅ )
๐‘‘2 ๐‘ฆ
= 49 (500๐‘’ 7๐‘ฅ + 600๐‘’ โˆ’7๐‘ฅ ) = 49 y
๐‘‘๐‘ฅ 2
61. y = ๐‘ฅ 3 + tan ๐‘ฅ .
๐‘‘๐‘ฆ
= 3๐‘ฅ 2 + ๐‘ ๐‘’๐‘ 2 ๐‘ฅ
๐‘‘๐‘ฅ
๐‘‘2 ๐‘ฆ
= 6x + 2 ๐‘ ๐‘’๐‘ 2 ๐‘ฅ. tan x
๐‘‘๐‘ฅ 2
62. y = 3 cos ( log x ) + 4 sin ( log x ) ,
๐‘‘๐‘ฆ
1
1
= -3 sin log x .๐‘ฅ+ 4cos log x . ๐‘ฅ
๐‘‘๐‘ฅ
๐‘‘๐‘ฆ
x ๐‘‘๐‘ฅ = -3 sin log x + 4 cos log x
๐‘‘2 ๐‘ฆ
๐‘‘๐‘ฆ
x๐‘‘๐‘ฅ 2 + ๐‘‘๐‘ฅ = - ( 3 cos ( log x ) + 4 sin ( log x ) ) = -y
๐‘‘2 ๐‘ฆ
๐‘‘๐‘ฆ
๐‘ฅ 2 ๐‘‘๐‘ฅ 2 + x๐‘‘๐‘ฅ + y = 0.
Hence ,
63. x = a cost , y = b sin t.
๐‘‘๐‘ฅ
๐‘‘๐‘ก
๐‘‘๐‘ฆ
= โˆ’๐‘Ž sin ๐‘ก
,
๐‘‘๐‘ฆ
๐‘‘๐‘ก
= ๐‘ cos ๐‘ก
๐‘
= - ๐‘Ž cot ๐‘ก
๐‘‘๐‘ฅ
๐‘‘2 ๐‘ฆ
๐‘‘๐‘ฅ 2
=
๐‘
๐‘Ž
๐‘๐‘œ๐‘ ๐‘’๐‘ 2 ๐‘ก .
1
โˆ’๐‘Ž sin ๐‘ก
๐‘
= -๐‘Ž2 ๐‘๐‘œ๐‘ ๐‘’๐‘ 3 ๐‘ก
64. f(x) = ๐‘ฅ 3 โ€“ 3๐‘ฅ 2 + 3๐‘ฅ + 30 ,
f โ€™( x ) = 3๐‘ฅ 2 - 6๐‘ฅ + 3
fโ€ (x) = 6x โ€“ 6and f โ€ ( -3 ) = -24
65. y = ๐‘ฅ 3 + log x.
yโ€™ = 3๐‘ฅ 2 +
yโ€™โ€™ = 6x -
1
๐‘ฅ
1
๐‘ฅ2
66. y = tanโˆ’1 ๐‘ฅ ,
๐‘ฆ1 =
1
(1 + ๐‘ฅ 2 ) ๐‘ฆ1 = 1
=>
1+ ๐‘ฅ 2
=> (1 + ๐‘ฅ 2 ) ๐‘ฆ2 + 2x๐‘ฆ1 = 0
67. If y = sinโˆ’1 ๐‘ฅ ,
๐‘ฆ1 =
1
=>
โˆš1โˆ’ ๐‘ฅ 2
2
(1 โˆ’ ๐‘ฅ 2 )๐‘ฆ1 2 = 1
๏ƒฐ ( 1 - ๐‘ฅ ) ๐‘ฆ2 - x ๐‘ฆ1 = 0.
SAMPLE PAPER II
1. Let N be the set of natural numbers and R be the relation in NX N
defined by (๐‘Ž, ๐‘) ๐‘… (๐‘, ๐‘‘) ๐‘–๐‘“ ๐‘Ž๐‘‘ = ๐‘๐‘. Show that R is an equivalence
relation.
1
2
3
4
9
5
2. Prove that tan-1 ( ) +tan-1 ( ) = ½ cos-1( )
Prove that
๐‘ก๐‘Ž๐‘›
โˆ’1
1 + ๐‘ก๐‘Ž๐‘›
โˆ’1
OR
2 + ๐‘ก๐‘Ž๐‘›โˆ’1 3 = ๐œ‹ .
3. Using properties of determinants, show that
๐‘+๐‘
๐‘Ž
๐‘Ž
| ๐‘
๐‘+๐‘Ž
๐‘ | = 4๐‘Ž๐‘๐‘.
๐‘
๐‘
๐‘Ž+๐‘
4. If y= sin(log ๐‘ฅ) prove that ๐‘ฅ 2
๐‘‘2๐‘ฆ
๐‘‘๐‘ฅ 2
+๐‘ฅ
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
+ ๐‘ฆ = 0.
5. For what values of a and b , the function โ€˜๐‘“โ€™ defined by
3๐‘Ž๐‘ฅ + ๐‘
๐‘–๐‘“ ๐‘ฅ < 1
๐‘–๐‘“ ๐‘ฅ = 1is continuous at x=1.
๐‘“(๐‘ฅ) = {11
5๐‘Ž๐‘ฅ โˆ’ 2๐‘ ๐‘–๐‘“ ๐‘ฅ > 1
๐œ‹
6. Using the properties of definite integral, evaluate โˆซ0
๐‘ฅ
4โˆ’๐‘๐‘œ๐‘  2 ๐‘ฅ
๐‘‘๐‘ฅ.
๐‘ฅ
7. Evaluate:โˆซ 3 ๐‘‘๐‘ฅ
๐‘ฅ โˆ’1
8. Find a unit vector perpendicular toeach of the vectors .๐‘Žโƒ— + ๐‘โƒ—โƒ— & ๐‘Žโƒ— โˆ’ ๐‘โƒ—โƒ—where
โƒ—โƒ—โƒ—โƒ—
๐‘Ž = 3๐‘– + 2๐‘— + 2๐‘˜&๐‘โƒ—โƒ— = ๐‘– + 2๐‘— โˆ’ 2๐‘˜
9. Find the particular solution of the differential
(1 + ๐‘ฆ + ๐‘ฅ 2 ๐‘ฆ)๐‘‘๐‘ฅ + (๐‘ฅ + ๐‘ฅ 3 )๐‘‘๐‘ฆ = 0where๐‘ฆ = 0 ๐‘Ž๐‘›๐‘‘ ๐‘ฅ = 1.
equation:
10. A biased die is twice as likely to show an even number as an odd
number.Thedieis rolled three times. If occurrence of an even number is
considered a success, then write the probability distribution of number of
success. Alsofind the mean number of success.
11. Solve the following differential equation 2x2dy/dx -2xy +y2 = 0.
12. Draw a rough sketch of the region enclosed between the circles:
๐‘ฅ 2 + ๐‘ฆ 2 = 4and(๐‘ฅ โˆ’ 2)2 + ๐‘ฆ 2 = 1, using integration, find the area of the
enclosed region.
13. In an examination 10 questions of true/false type are asked. A student tosses
a fair coin to determine his answer to each question. If the coin shows head, he
answers โ€˜trueโ€™ and if it shows tail, he answers โ€˜falseโ€™. Show that the probability
121
that he answers at most 7 questions correctly is .
128
OR
From a pack of 52 cards, a card is lost. From the remaining 51 cards, 2
cardsare drawn at random (without replacement) are found to be both
diamonds.What is the probability that the lost card was a card of heart?
14. A company sells two different products A and B. The two productsare
produced in a common production unit which has a total capacity of 500 hours.
It takes 5 hours to produce a unit of A and 3 hours to producea unit of B. The
demand in the market shows the maximum number of unitsofA that can be sold
is 70 and that of B is 120. Profit by selling one unit ofA isRs.20 and that of B is
Rs.15. How many units of A and B should be produced to maximize the profit.
Form L.P.P and solve it graphically.
****************************************************************
MODEL SOLUTION
1.
2.
a) proving R is reflexive
b) proving R is symmetric
c) Proving R is transitive
d) Proving R is equivalence relation
L.H.S ;
(1)
(1)
(1)
(1)
1
2
๐‘ก๐‘Ž๐‘›โˆ’1 ( ) + ๐‘ก๐‘Ž๐‘›โˆ’1 ( )
a)
4
โˆ’1 1
= ๐‘ก๐‘Ž๐‘› (2)
1
1
b) 2 {2 ๐‘ก๐‘Ž๐‘›โˆ’1 (2)}
9
(2)
1
1
= 2 ๐‘๐‘œ๐‘  โˆ’1 (3)
(2)
OR
โˆ’1
โˆ’1
โˆ’1
L.H.S = ๐‘ก๐‘Ž๐‘› 1 + ๐‘ก๐‘Ž๐‘› 2 + ๐‘ก๐‘Ž๐‘› 3
๐œ‹
๐œ‹
๐œ‹
= 4 + (2 โˆ’ ๐‘๐‘œ๐‘ก โˆ’1 2) + ( 2 โˆ’ ๐‘๐‘œ๐‘ก โˆ’1 3)
5๐œ‹
=
โˆ’ ๐‘๐‘œ๐‘ก โˆ’1 2 โˆ’ ๐‘๐‘œ๐‘ก โˆ’1 3
4
5๐œ‹
1
1
= 4 โˆ’ ๐‘ก๐‘Ž๐‘›โˆ’1 2 โˆ’ ๐‘ก๐‘Ž๐‘›โˆ’1 3
(1)
=
5๐œ‹
4
๐œ‹
โˆ’4=๐œ‹
(1)
(2)
3. Operate ๐‘…1 โ†’ ๐‘…1 โˆ’ ๐‘…2 โˆ’ ๐‘…3
Expanding the determinant by R1
get the result after simplification
result = 4๐‘Ž๐‘๐‘
(1)
(1)
(2)
4. We have ๐‘ฆ = sin(log ๐‘ฅ)
Diff. w.r.t x,
๐‘‘๐‘ฆ
๐‘ฅ ๐‘‘๐‘ฅ = cos(log ๐‘ฅ)
๐‘‘2 ๐‘ฆ
(1)
๐‘‘๐‘ฆ
1
1
Again diff. w.r.t x๐‘ฅ ๐‘‘๐‘ฅ 2 + ๐‘‘๐‘ฅ = โˆ’ sin(log ๐‘ฅ) โˆ™ ๐‘ฅ
๐‘‘2 ๐‘ฆ
๐‘‘๐‘ฆ
(1 2)
1
Hence ,๐‘ฅ 2 ๐‘‘๐‘ฅ 2 + ๐‘ฅ ๐‘‘๐‘ฅ + ๐‘ฆ = 0 (1 2)
1
LHL = lim ๐‘“(๐‘ฅ) = 5๐‘Ž โˆ’ 2๐‘
๐‘ฅ โ†’ 1โˆ’
RHL = lim ๐‘“(๐‘ฅ) = 3๐‘Ž + ๐‘
๐‘ฅ โ†’ 1+
๐‘“is continuous at ๐‘ฅ = 1
lim ๐‘“(๐‘ฅ) = lim ๐‘“(๐‘ฅ) = ๐‘“(1)(1)
๐‘ฅ โ†’ 1โˆ’
๐‘ฅ = 1+
From this we get
5๐‘Ž โˆ’ 2๐‘ = 1
(2)
3๐‘Ž + ๐‘ = 1
(1)
5.
1
(2)
Solving above equations๐‘Ž = 3 , ๐‘ = 2
6.
๐ผ=
๐œ‹
๐ผ = โˆซ0
๐‘ฅ
4โˆ’๐‘๐‘œ๐‘ 2 ๐‘ฅ
๐œ‹โˆ’๐‘ฅ
๐œ‹
โˆซ0 4โˆ’๐‘๐‘œ๐‘ 2 ๐‘ฅ
(1)
๐‘‘๐‘ฅ
๐‘Ž
๐‘Ž
[โˆต โˆซ0 ๐‘“(๐‘ฅ)๐‘‘๐‘ฅ = โˆซ0 ๐‘“(๐‘Ž โˆ’ ๐‘ฅ)๐‘‘๐‘ฅ
๐œ‹
๐‘‘๐‘ฅ
Now 2๐ผ = 2๐œ‹ โˆซ0 2 4โˆ’๐‘๐‘œ๐‘ 2 ๐‘ฅ [โˆต
๐œ‹
๐‘ ๐‘’๐‘ 2 ๐‘ฅ
= 2๐œ‹ โˆซ0 2 3+4๐‘ก๐‘Ž๐‘›2 ๐‘ฅ ๐‘‘๐‘ฅ
2
๐‘๐‘œ๐‘  2 (๐œ‹ โˆ’ ๐‘ฅ) = ๐‘๐‘œ๐‘  2 ๐‘ฅ]
(1)
๐œ‹
Put ๐‘ก = tan ๐‘ฅ, ๐‘ ๐‘’๐‘ ๐‘ฅ๐‘‘๐‘ฅ = ๐‘‘๐‘ก , ๐‘ฅ = 2 ,
After solution
(1)
2๐ผ =
๐œ‹
โˆš3
(๐‘ก๐‘Ž๐‘›โˆ’1 โˆ โˆ’๐‘ก๐‘Ž๐‘›โˆ’1 0)
๐œ‹2
(1)
๐œ‹
Hence๐ผ = 4โˆš3(since ๐‘ก๐‘Ž๐‘›โˆ’1 โˆ= 2 )
(1)
๐‘ฅ
Let ๐ผ = โˆซ ๐‘ฅ 3 โˆ’1 ๐‘‘๐‘ฅ
๐‘ฅ
๐‘ฅ
๐ด
๐ต๐‘ฅ + ๐ถ
=
=
+ 2
3
2
๐‘ฅ โˆ’ 1 (๐‘ฅ โˆ’ 1)(๐‘ฅ + ๐‘ฅ + 1) ๐‘ฅ โˆ’ 1 ๐‘ฅ + ๐‘ฅ + 1
1
1
Solving ๐ด = ๐ถ = 3 , ๐ต = โˆ’ 3
(1)
7.
1
1
1
1
3
(2๐‘ฅ+1)โˆ’
2
2
๐‘ฅ 2 +๐‘ฅ+1
Then ,๐ผ = 3 โˆซ ๐‘ฅโˆ’1 ๐‘‘๐‘ฅ โˆ’ 3 โˆซ
๐‘‘๐‘ฅ
Integrating and solving
1
1
๐ผ = 3 log|๐‘ฅ โˆ’ 1| โˆ’ 6 log|๐‘ฅ 2 + ๐‘ฅ + 1| +
(1)
1
โˆš3
๐‘ก๐‘Ž๐‘›โˆ’1
2๐‘ฅ+1
8. (๐‘Žโƒ— โˆ’ ๐‘‘โƒ—) × (๐‘โƒ—โƒ— โˆ’ ๐‘โƒ—)
(๐‘Žโƒ— × ๐‘โƒ—โƒ—) โˆ’ (๐‘Žโƒ— × ๐‘โƒ—) โˆ’ (๐‘‘โƒ— × ๐‘โƒ—โƒ— ) + (๐‘‘โƒ— × ๐‘โƒ—)
(๐‘โƒ— × ๐‘‘โƒ—) โˆ’ (๐‘โƒ—โƒ— × ๐‘‘โƒ—) + (๐‘โƒ—โƒ— × ๐‘‘โƒ—) โˆ’ (๐‘โƒ— × ๐‘‘โƒ—)
= 0 [โˆต ๐‘Žโƒ— × ๐‘โƒ—โƒ— = ๐‘โƒ— × ๐‘‘โƒ— , ๐‘Žโƒ— × ๐‘โƒ— = ๐‘โƒ—โƒ— × ๐‘‘โƒ—]
โ„Ž๐‘’๐‘›๐‘๐‘’ (๐‘Žโƒ— โˆ’ ๐‘‘โƒ—)๐‘๐‘Ž๐‘Ÿ๐‘Ž๐‘™๐‘™๐‘’๐‘™ (๐‘โƒ—โƒ— โˆ’ ๐‘โƒ—)
โˆš3
+๐‘
(2)
(1)
(1)
(1)
(1)
9. Given differential equation is
(1 + ๐‘ฆ + ๐‘ฅ 2 ๐‘ฆ)๐‘‘๐‘ฅ + (๐‘ฅ + ๐‘ฅ 3 )๐‘‘๐‘ฆ = 0
๐‘‘๐‘ฆ
โˆ’1โˆ’๐‘ฆ(1+๐‘ฅ 2 )
= ๐‘ฅ(1+๐‘ฅ 2 )
๐‘‘๐‘ฅ
๐‘‘๐‘ฆ 1
1
โˆด
+ ๐‘ฆ=โˆ’
๐‘‘๐‘ฅ ๐‘ฅ
๐‘ฅ(1 + ๐‘ฅ 2 )
๐‘‘๐‘ฆ
Comparing ๐‘‘๐‘ฅ + ๐‘๐‘ฆ = ๐‘„
(1/2)
(1/2)
1
โˆซ๐‘ฅ๐‘‘๐‘ฅ
Finding ๐ผ. ๐น = ๐‘’
=๐‘ฅ
1
(๐‘ฆ โˆ™ ๐‘ฅ) = โˆ’
๐‘‘๐‘ฅ
1+๐‘ฅ 2
๐‘ฆ๐‘ฅ = โˆ’๐‘ก๐‘Ž๐‘›โˆ’1 ๐‘ฅ + ๐‘
Putting ๐‘ฆ = 0 , ๐‘ฅ = 1
๐œ‹
๐‘ฆ๐‘ฅ = โˆ’๐‘ก๐‘Ž๐‘›โˆ’1 ๐‘ฅ + 4 this is the result
๐‘‘
10.
We have ๐‘ƒ (odd number)
2
(1)
(1)
(1)
1
=3
๐‘ƒ (even number) = 3
Let ๐‘‹ be the event getting an even number
ie. 0 , 1 , 2 , 3
1 1 1
1
๐‘ƒ(0) = × × =
3 3 3 27
2 1 1 1 2 1 1 1 2
6
๐‘ƒ(1) = × × + × × + × × =
3 3 3 3 3 3 3 3 3 27
2 2 1 2 1 2 1 2 2 12
๐‘ƒ(2) = × × + × × + × × =
3 3 3 3 3 3 3 3 3 27
2
2
2
8
๐‘ƒ(3) = 3 × 3 × 3 = 27
(1)
(1)
X
0
1
1
27
๐‘ƒ(๐‘‹)
2
6
27
6
27
๐‘‹๐‘ƒ(๐‘‹) 0
Mean = ๐›ด ๐‘‹ ๐‘ƒ(๐‘‹) = 2
3
12
27
12
27
8
27
12
27
(2)
11. To convert into linear in y
Correct I.F
Correct solution
12. Given circle are ๐‘ฅ 2 + ๐‘ฆ 2 = 4 -----------(i)
(๐‘ฅ โˆ’ 2)2 + ๐‘ฆ 2 = 1---------(ii)
Equation (i)
centre (0,0) , radius = 2
Equation (ii)
centre (2,0) , radius = 1
For fig.
(1)
7
Solving (i) , (ii) , ๐‘ฅ = 3โ€ฆโ€ฆ..(1)
7
(1)
(1)
(2)
(1)
2
Required area = 2 โˆซ14 โˆš1 โˆ’ (๐‘ฅ โˆ’ 2)2 ๐‘‘๐‘ฅ + โˆซ7 โˆš4 โˆ’ ๐‘ฅ 2 ๐‘‘๐‘ฅ
(1)
4
Solving
Required area =
5๐œ‹
2
โˆ’
โˆš15
2
1
7
โˆ’ ๐‘ ๐‘–๐‘›โˆ’1 (4) โˆ’ 4๐‘ ๐‘–๐‘›โˆ’1 (8) ๐‘ ๐‘ž. ๐‘ข๐‘›๐‘–๐‘ก
(2)
1
13. P(answer is true) = 2 (๐‘)
1
P(answer is false) =
(๐‘ž)
2
๐‘ฅ = 10
P(most 7 correct answer)
= 1 โˆ’ ๐‘ƒ(8) + ๐‘ƒ(9) + ๐‘(10)
= 1 โˆ’ (10๐‘
(1)
(2)
1 10
2
+ 10๐‘1 + 10๐‘0 ) (2)
121
Simplify = 128
(1)
๐‘คโ„Ž๐‘–๐‘โ„Ž ๐‘–๐‘  ๐‘ก๐‘Ÿ๐‘ข๐‘’
(2)
OR
Let the events be
E1โ†’missing card is a diamond
E2โ†’ missing card is a spade
E3โ†’ missing card is a club
E4โ†’ missing card is a heart
And Aโ†’ 2 diamonds cards are drawn
1
๐‘ƒ(E1) =P(E2) = P(E3) = P(E4) = 4
๐ด
12 11
๐‘ƒ( ) =
×
๐ธ1
51 50
๐ด
๐ด
๐ด
13
12
๐‘ƒ (๐ธ ) = ๐‘ƒ (๐ธ ) = ๐‘ƒ (๐ธ ) = 51 × 50
2
3
By Bayeโ€™s theorem
๐ธ4
๐‘ƒ( ๐ด ) =
๐ด
)
๐ธ4
๐ด
4
โˆ‘๐‘–=1 ๐‘(๐ธ๐‘– ) โˆ™ ๐‘ƒ( )
๐ธ๐‘–
๐‘ƒ(๐ธ4 ) โˆ™๐‘ƒ(
4
(1)
(1)
(1)
(1)
๐ธ
13
After simplification ๐‘ƒ ( 4 ) =
(2)
๐ด
50
14. Unit A produced = ๐‘ฅ
Unit B produced = ๐‘ฆ
The LPP : max. : ๐‘ = 20๐‘ฅ + 15๐‘ฆ---------(i)
Subject to ,5๐‘ฅ + 3๐‘ฆ โ‰ค 500 ---------(ii)
๐‘ฅ โ‰ค 70------------(iii)
๐‘ฆ โ‰ค 120 , ๐‘ฅ , ๐‘ฆ โ‰ฅ 0---------(iv)
(2)
For graph
(2)
Conner points are
๐‘‚(0,0), ๐ท(70,0) , ๐ธ(70,50) , ๐น(28,120), ๐ถ(0,120)
(1)
Maximum profit is ๐‘…๐‘ . 2360 when (28,120)
(1)
***************************************************************************
Topic : Vector
68. If ๐‘Žโƒ— = 5๐‘– โˆ’ ๐‘— โˆ’ 3๐‘˜ ๐‘Ž๐‘›๐‘‘ ๐‘โƒ—โƒ— = i+3j -5k then show that the vectors ๐‘Žโƒ— + ๐‘โƒ—โƒ— and ๐‘Žโƒ— โˆ’ ๐‘โƒ—โƒ— are
perpendicular.
69. If ๐‘Žโƒ— = 2๐‘– + 2๐‘— + 3๐‘˜ , ๐‘โƒ—โƒ— = โˆ’๐‘– + 2๐‘— + ๐‘˜ ๐‘Ž๐‘›๐‘‘ ๐‘โƒ— = 3i+ j are such that ๐‘Žโƒ— + ๐œ‡๐‘โƒ—โƒ— is perpendicular
to ๐‘โƒ—โƒ—โƒ—, then find the value of ๐œ‡ .
โƒ—โƒ— ๐‘โƒ—โƒ—โƒ— + ๐‘โƒ—โƒ—โƒ—. ๐‘Žโƒ—.
70. If ๐‘Žโƒ—, โƒ—โƒ—โƒ—โƒ—
๐‘ , ๐‘โƒ—โƒ—โƒ— are unit vectors such that ๐‘Žโƒ— + โƒ—โƒ—โƒ—โƒ—
๐‘ + ๐‘โƒ—โƒ—โƒ—โƒ— = โƒ—โƒ—0โƒ—โƒ— .Find the value of ๐‘Žโƒ—. โƒ—โƒ—โƒ—โƒ—
๐‘ + โƒ—๐‘.
71. Find a unit vector perpendicular to each of the vector ๐‘Žโƒ— + ๐‘โƒ—โƒ— and ๐‘Žโƒ— โˆ’ ๐‘โƒ—โƒ—, where
๐‘Žโƒ— = 3๐‘– + 2๐‘— + 2๐‘˜ and โƒ—โƒ—โƒ—โƒ—
๐‘ = ๐‘– + 2๐‘— โˆ’ 2๐‘˜.
Model Answers:
68. ๐‘Žโƒ— + ๐‘โƒ—โƒ— = 6i+2j โ€“ 8k , ๐‘Žโƒ— โˆ’ ๐‘โƒ—โƒ— = 4i โ€“ 4j+2k,
๐‘โƒ—โƒ— is perpendicular to ๐‘Žโƒ— โˆ’ ๐‘โƒ—โƒ— .
โƒ—โƒ—โƒ—โƒ—โƒ— + ๐‘โƒ—โƒ— ). (๐‘Ž
โƒ—โƒ—โƒ—โƒ—โƒ— โˆ’ ๐‘โƒ—โƒ—) = 24-8-16 = 0 therefor ๐‘Žโƒ— +
(๐‘Ž
69. ๐‘Žโƒ— + ๐œ‡๐‘โƒ—โƒ— = (2๐‘– + 2๐‘— + 3๐‘˜ ) + ๐œ‡(โˆ’๐‘– + 2๐‘— + ๐‘˜) = (2- ๐œ‡)๐‘– + (2+2 ๐œ‡)j+ (3+ ๐œ‡)๐‘˜
๐‘Žโƒ— + ๐œ‡๐‘โƒ—โƒ— is perpendicular to ๐‘โƒ—โƒ—โƒ—, โˆด ( ๐‘Žโƒ— + ๐œ‡๐‘โƒ—โƒ— ) ๐‘โƒ—โƒ—โƒ— = 0 , โˆด 3(2- ๐œ‡) + (2+2 ๐œ‡) = 0 , โˆด ๐œ‡ = 8.
70. ๐‘Žโƒ—, โƒ—โƒ—โƒ—โƒ—
๐‘ , ๐‘โƒ—โƒ—โƒ— are unit vectors โˆด |๐‘Žโƒ—|= |๐‘โƒ—โƒ—| = |๐‘โƒ—|= 1 , ๐‘Žโƒ—. (๐‘Žโƒ— + โƒ—โƒ—โƒ—โƒ—
๐‘ + โƒ—โƒ—โƒ—โƒ—)
๐‘ = ๐‘Žโƒ—. โƒ—โƒ—0โƒ—โƒ— = 0 ,
โƒ—โƒ—โƒ—โƒ— + ๐‘Ž.
โƒ—โƒ—โƒ— ๐‘โƒ—โƒ—โƒ— = โˆ’1 and ๐‘โƒ—. โƒ—โƒ—โƒ—โƒ—
|๐‘Žโƒ—|2 + ๐‘Žโƒ—. ๐‘
โƒ—โƒ—โƒ—โƒ— ๐‘โƒ—โƒ—โƒ— = 0, โˆด ๐‘Žโƒ—. โƒ—โƒ—โƒ—โƒ—
๐‘ + ๐‘Ž.
โƒ—โƒ—โƒ—โƒ— ๐‘โƒ—โƒ—โƒ— = โˆ’1, similarily, ๐‘โƒ—โƒ—. โƒ—โƒ—โƒ—โƒ—
๐‘Ž + ๐‘.
๐‘ + ๐‘โƒ—โƒ—โƒ—. ๐‘Žโƒ— =
โˆ’3
โƒ—โƒ— ๐‘โƒ—โƒ—โƒ— + ๐‘โƒ—โƒ—โƒ—. ๐‘Žโƒ— ) = -3, ๐‘Žโƒ—. โƒ—โƒ—โƒ—โƒ—
-1 , Add all above three equation , we get 2(๐‘Žโƒ—. โƒ—โƒ—โƒ—โƒ—
๐‘ + โƒ—๐‘.
๐‘ + โƒ—โƒ—โƒ—โƒ—
๐‘. ๐‘โƒ—โƒ—โƒ— + ๐‘โƒ—โƒ—โƒ—. ๐‘Žโƒ— =
2
71. ๐‘Žโƒ— + ๐‘โƒ—โƒ— = 4i+ 4j and ๐‘Žโƒ— โˆ’ ๐‘โƒ—โƒ— =2i +4k , โƒ—โƒ—โƒ—โƒ—
๐‘ =
DIFFERENTIAL EQUATION
72. Form a Differential equation of the family of circles in the second quadrant and
touching the coordinate axes.
73. Form a Differential equation representing the family of curves y2
2ay + x2 = a2, . where a is an arbitrary constant.
74. Form a Differential equation representing the family of curves given by
(x- a)2 + 2y2 =a2 where a is an arbitrary constant.
75. Form a Differential equation representing the family of circles touching the Y-axis at
origin.
76. Form a Differential equation representing the family of circles touching the X-axis at
origin.
SOLUTION
72. Equation representing the family of circles is( x + a)2 + (y-a)2 = a2
x2 + y2 +2ax-2ay +a2=0
Diff. the eq with r. to x we get
2x+2ydy/dx +2a-2ady/dx =0
a= x+yyโ€™/yโ€™-1
substituting the value in eq.
(x+y)2 [(๐‘ฆ โ€ฒ )2 + 1] = (๐‘ฅ + ๐‘ฆ๐‘ฆ โ€ฒ )2 is the required diff. eq.
73. family of curves y2-2ay+x2=a2 diff. w.r to x
a= (y+ xyโ€™) sub. Value of a in eq
p2(x2-2y2) โ€“ 4xyp-x2=0 where p=dy/dx
74. Given family of curves (x- a)2 + 2y2 =a2
2a = (x2 +2y2)/x diff. both side w.r.to x we get
(X2-2y2) = -4xydy/dx
dy/dx= (X2-2y2)/- 4xy is the required eq.
75. Let, (r,0) be the centre of circle eq of circle will be (x-r)2 +(y-0)2= r2
Diff w.r to x , r = x+ ydy/dx
Putting the value of r in the given eq. we get
2xydy/dx + x2 โ€“ y2 = 0 which is the required solution.
76. Let (0,a) be the coordinates of the centre of any member of thev family of circle the
eq of family is x2 + (y-a)2 = a2 or x2 + y2 = 2ay
Diff. w r to x we get a = (x+ydy/dx)/dy/dx
Sub. The value of a in the eq. we get dy/dx= 2xy/x2-y2 this is the required diff. eq.
Questions based on variable separable
๐‘‘๐‘ฆ
Q.1 Solve
= sec y
๐‘‘๐‘ฅ
Q2. Solve.
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= (1+x²) (1+y²)
๐‘‘๐‘ฆ
Q3. Solve ๐‘’ ๐‘‘๐‘ฅ = 2
๐‘‘๐‘ฆ
Q4. Solve
๐‘‘๐‘ฅ
Q5. Solve ๐‘ฅ๐‘ฆ
= x² +sin 3x
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= (๐‘ฅ + 2)(๐‘ฆ + 2)
Solutions:dy
Q1.
dx
= secy
dy
secy
โˆซ
= dx
dy
= โˆซ dx
secy
Siny = x + c Ans.
Q2.
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= (1 + ๐‘ฅ 2 )(1 + ๐‘ฆ 2 )
๐‘‘๐‘ฆ
= (1 + ๐‘ฅ 2 )๐‘‘๐‘ฅ
1 + ๐‘ฆ2
โˆซ ๐‘‘๐‘ฆ/(1 + ๐‘ฆ 2 ) = โˆซ(1 + ๐‘ฅ 2 )๐‘‘๐‘ฅ
tanโˆ’1 ๐‘ฆ = ๐‘ฅ +
๐‘ฅ3
3
+c Ans.
Q3.
๐‘’ ๐‘‘๐‘ฆ/๐‘‘๐‘ฅ = 2
๐‘‘๐‘ฆ
= ๐‘™๐‘œ๐‘”2
๐‘‘๐‘ฅ
๐‘‘๐‘ฆ = ๐‘™๐‘œ๐‘”2 ๐‘‘๐‘ฅ
โˆซ ๐‘‘๐‘ฆ = โˆซ ๐‘™๐‘œ๐‘”2๐‘‘๐‘ฅ
๐‘ฆ = ๐‘™๐‘œ๐‘”2. ๐‘ฅ + ๐‘ ans.
Q4.
๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
= ๐‘ฅ 2 + ๐‘ ๐‘–๐‘›3๐‘ฅ
๐‘‘๐‘ฆ = (๐‘ฅ 2 + ๐‘ ๐‘–๐‘›3๐‘ฅ)๐‘‘๐‘ฅ
โˆซ ๐‘‘๐‘ฆ = โˆซ(๐‘ฅ 2 + ๐‘ ๐‘–๐‘›3๐‘ฅ)๐‘‘๐‘ฅ
๐‘ฆ=
Q5.
๐‘ฅ3
3
๐‘ฅ๐‘ฆ๐‘‘๐‘ฆ
๐‘‘๐‘ฅ
โˆ’
๐‘๐‘œ๐‘ 3๐‘ฅ
3
+ ๐‘ Ans.
= (๐‘ฅ + 2)(๐‘ฆ + 2)
๐‘ฆ๐‘‘๐‘ฆ
๐‘ฅ+2
=
๐‘‘๐‘ฅ
๐‘ฆ+2
๐‘ฅ
๐‘ฆ๐‘‘๐‘ฆ
โˆซ ๐‘ฆ+2 = โˆซ
๐‘ฅ+2
๐‘ฅ
๐‘‘๐‘ฅ
๐‘ฆ โˆ’ 2 log(๐‘ฆ + 2) = ๐‘ฅ + 2๐‘™๐‘œ๐‘”๐‘ฅ + ๐‘
VECTORS
Q-1
Show that the vectors are ๐‘Žโƒ— = 3๐‘–ฬ‚ โˆ’ 2๐‘—ฬ‚ โˆ’ 5๐‘˜ฬ‚ and ๐‘โƒ—โƒ— = 6๐‘–ฬ‚ โˆ’ ๐‘—ฬ‚ + 4๐‘˜ฬ‚ are orthogonal.
Q-2
Show that the vectors โƒ—โƒ—โƒ—๐‘Žโƒ— = 2๐‘–ฬ‚ โˆ’ 3๐‘—ฬ‚ + 5๐‘˜ฬ‚ and ๐‘โƒ—โƒ— = 4๐‘–ฬ‚ + 6๐‘—ฬ‚ + 2๐‘˜ฬ‚ are orthogonal.
Q-3
Find the value of โ€˜tโ€™ so that the vectors ๐‘Žโƒ— = 2๐‘–ฬ‚ + ๐‘ก ๐‘—ฬ‚ + ๐‘˜ฬ‚ and ๐‘โƒ—โƒ— = ๐‘–ฬ‚ โˆ’ 2๐‘—ฬ‚ + 3๐‘˜ฬ‚ are
orthogonal.
Q-4
Find the value of โ€˜tโ€™ so that the vectors ๐‘Žโƒ— = 3๐‘–ฬ‚ + ๐‘ก ๐‘—ฬ‚ + ๐‘˜ฬ‚ and ๐‘โƒ—โƒ— = 2๐‘–ฬ‚ โˆ’ ๐‘—ฬ‚ โˆ’ 8 ๐‘˜ฬ‚ are
orthogonal.
Q-5
If ๐›ผโƒ— = ๐‘–ฬ‚ + 2๐‘—ฬ‚ โˆ’ 3๐‘˜ฬ‚ and ๐›ฝโƒ— = 3๐‘–ฬ‚ โˆ’ ๐‘—ฬ‚ โˆ’ 2๐‘˜ฬ‚ , find (2๐›ผโƒ— + ๐›ฝโƒ— ) โˆ™ (๐›ผโƒ— + 2๐›ฝโƒ— ).
Q-6
If ๐‘Žโƒ— = 2๐‘–ฬ‚ + 3๐‘—ฬ‚ + 4๐‘˜ฬ‚ , ๐‘โƒ—โƒ— = 5๐‘–ฬ‚ + 4๐‘—ฬ‚ โˆ’ ๐‘˜ฬ‚ , ๐‘โƒ— = 3๐‘–ฬ‚ + 6๐‘—ฬ‚ + 2๐‘˜ฬ‚ and ๐‘‘โƒ— = ๐‘–ฬ‚ + 2๐‘—ฬ‚ , show that
๐‘โƒ—โƒ— โˆ’ ๐‘Žโƒ— is perpendicular to ๐‘‘โƒ— โˆ’ ๐‘โƒ— .
Q-7
Show that the vectors ๐‘Žโƒ— = 2๐‘–ฬ‚ + 3๐‘—ฬ‚ โˆ’ 6๐‘˜ฬ‚ , ๐‘โƒ—โƒ— = 3๐‘–ฬ‚ โˆ’ 6๐‘—ฬ‚ โˆ’ 2๐‘˜ฬ‚ , ๐‘โƒ— = 6๐‘–ฬ‚ + 2๐‘—ฬ‚ + 3๐‘˜ฬ‚ are
mutually perpendicular.
Q-8
verify if the vectors ๐‘Žโƒ— + ๐‘โƒ—โƒ— and ๐‘Žโƒ— โˆ’ ๐‘โƒ—โƒ— are perpendicular or not if it is given that |๐‘Žโƒ—| =
|๐‘โƒ—โƒ—|.
Q-9
If ๐›ผโƒ— = ๐‘–ฬ‚ + 2๐‘—ฬ‚ โˆ’ 3๐‘˜ฬ‚ and ๐›ฝโƒ— = 3๐‘–ฬ‚ โˆ’ ๐‘—ฬ‚ โˆ’ 2๐‘˜ฬ‚ , Find (๐›ผโƒ— + ๐›ฝโƒ— ) โˆ™ (๐›ผโƒ— โˆ’ ๐›ฝโƒ— ) , hence deduce that
the vectors ๐›ผโƒ— + ๐›ฝโƒ— and ๐›ผโƒ— โˆ’ ๐›ฝโƒ— are mutually perpendicular.
Q-10 Find the angle between the vectors ๐‘Žโƒ— = 3๐‘–ฬ‚ + 2 ๐‘—ฬ‚ + ๐‘˜ฬ‚ and ๐‘โƒ—โƒ— = 2๐‘–ฬ‚ โˆ’ ๐‘—ฬ‚ โˆ’ 4 ๐‘˜ฬ‚ using the
scalar product of the vectors.
SOLUTIONS
Q-1
Here ๐‘Žโƒ— โˆ™ ๐‘โƒ—โƒ— = 18+2-20 = 0 hence ๐‘Žโƒ— โˆ™ ๐‘โƒ—โƒ— = 0 so the vectors are orthogonal.
Q-2
Here ๐‘Žโƒ— โˆ™ ๐‘โƒ—โƒ— = 8-18+10 = 0 hence ๐‘Žโƒ— โˆ™ ๐‘โƒ—โƒ— = 0 so the vectors are orthogonal.
Q-3
We know that two vectors ๐‘Žโƒ— and ๐‘โƒ—โƒ— are orthogonal if ๐‘Žโƒ— โˆ™ ๐‘โƒ—โƒ— = 0
Here ๐‘Žโƒ— = 2๐‘–ฬ‚ + ๐‘ก ๐‘—ฬ‚ + ๐‘˜ฬ‚ and ๐‘โƒ—โƒ— = ๐‘–ฬ‚ โˆ’ 2๐‘—ฬ‚ + 3๐‘˜ฬ‚ are orthogonal.
So , ๐‘Žโƒ— โˆ™ ๐‘โƒ—โƒ— = 0
So, 2 โ€“ 2t +3 = 0
5
Hence ๐‘ก = 2
Q-4
We know that two vectors ๐‘Žโƒ— and ๐‘โƒ—โƒ— are orthogonal if ๐‘Žโƒ— โˆ™ ๐‘โƒ—โƒ— = 0
Here ๐‘Žโƒ— = 3๐‘–ฬ‚ + ๐‘ก ๐‘—ฬ‚ + ๐‘˜ฬ‚ and ๐‘โƒ—โƒ— = 2๐‘–ฬ‚ โˆ’ ๐‘—ฬ‚ โˆ’ 8 ๐‘˜ฬ‚ are orthogonal.
So , ๐‘Žโƒ— โˆ™ ๐‘โƒ—โƒ— = 0
So, 6 โ€“ t - 8 = 0
Hence ๐‘ก = โˆ’2
Q-5
Here ๐›ผโƒ— = ๐‘–ฬ‚ + 2๐‘—ฬ‚ โˆ’ 3๐‘˜ฬ‚ and ๐›ฝโƒ— = 3๐‘–ฬ‚ โˆ’ ๐‘—ฬ‚ โˆ’ 2๐‘˜ฬ‚
๏ƒฐ 2๐›ผโƒ— + ๐›ฝโƒ— = (2๐‘–ฬ‚ + 4๐‘—ฬ‚ โˆ’ 6๐‘˜ฬ‚) + (3๐‘–ฬ‚ โˆ’ ๐‘—ฬ‚ โˆ’ 2๐‘˜ฬ‚) = 5๐‘–ฬ‚ + 3๐‘—ฬ‚ โˆ’ 8๐‘˜ฬ‚
And ๐›ผโƒ— + 2๐›ฝโƒ— = (๐‘–ฬ‚ + 2๐‘—ฬ‚ โˆ’ 3๐‘˜ฬ‚) + (6๐‘–ฬ‚ โˆ’ 2๐‘—ฬ‚ โˆ’ 4๐‘˜ฬ‚) = 7๐‘–ฬ‚ โˆ’ 7๐‘˜ฬ‚
๏ƒฐ (2๐›ผโƒ— + ๐›ฝโƒ— ) โˆ™ (๐›ผโƒ— + 2๐›ฝโƒ— ) = (5๐‘–ฬ‚ + 3๐‘—ฬ‚ โˆ’ 8๐‘˜ฬ‚) โˆ™ ( 7๐‘–ฬ‚ โˆ’ 7๐‘˜ฬ‚) = 35 + 56 = 91
Q-6
Here ๐‘Žโƒ— = 2๐‘–ฬ‚ + 3๐‘—ฬ‚ + 4๐‘˜ฬ‚ , ๐‘โƒ—โƒ— = 5๐‘–ฬ‚ + 4๐‘—ฬ‚ โˆ’ ๐‘˜ฬ‚ , ๐‘โƒ— = 3๐‘–ฬ‚ + 6๐‘—ฬ‚ + 2๐‘˜ฬ‚ and ๐‘‘โƒ— = ๐‘–ฬ‚ + 2๐‘—ฬ‚
๏ƒฐ ๐‘โƒ—โƒ— โˆ’ ๐‘Žโƒ— = (5๐‘–ฬ‚ + 4๐‘—ฬ‚ โˆ’ ๐‘˜ฬ‚) โˆ’ (2๐‘–ฬ‚ + 3๐‘—ฬ‚ + 4๐‘˜ฬ‚) = 3๐‘–ฬ‚ + ๐‘—ฬ‚ โˆ’ 5 ๐‘˜ฬ‚ and
๐‘‘โƒ— โˆ’ ๐‘โƒ— = (๐‘–ฬ‚ + 2๐‘—ฬ‚) โˆ’ (3๐‘–ฬ‚ + 6๐‘—ฬ‚ + 2๐‘˜ฬ‚) = โˆ’2๐‘–ฬ‚ โˆ’ 4๐‘—ฬ‚ โˆ’ 2๐‘˜ฬ‚
๏ƒฐ (๐‘โƒ—โƒ— โˆ’ ๐‘Žโƒ—) โˆ™ ( ๐‘‘โƒ— โˆ’ ๐‘โƒ—) = ( 3๐‘–ฬ‚ + ๐‘—ฬ‚ โˆ’ 5 ๐‘˜ฬ‚) โˆ™ ( โˆ’2๐‘–ฬ‚ โˆ’ 4๐‘—ฬ‚ โˆ’ 2๐‘˜ฬ‚) = โˆ’6 โˆ’ 4 + 10 = 0
๏ƒฐ ๐‘โƒ—โƒ— โˆ’ ๐‘Žโƒ— is perpendicular to ๐‘‘โƒ— โˆ’ ๐‘โƒ—
Q-7
Here ๐‘Žโƒ— = 2๐‘–ฬ‚ + 3๐‘—ฬ‚ โˆ’ 6๐‘˜ฬ‚ , ๐‘โƒ—โƒ— = 3๐‘–ฬ‚ โˆ’ 6๐‘—ฬ‚ โˆ’ 2๐‘˜ฬ‚ , ๐‘โƒ— = 6๐‘–ฬ‚ + 2๐‘—ฬ‚ + 3๐‘˜ฬ‚.
๐‘Žโƒ— โˆ™ ๐‘โƒ—โƒ— = (2๐‘–ฬ‚ + 3๐‘—ฬ‚ โˆ’ 6๐‘˜ฬ‚) โˆ™ (3๐‘–ฬ‚ โˆ’ 6๐‘—ฬ‚ โˆ’ 2๐‘˜ฬ‚) = 6 โˆ’ 18 + 12 = 0
๐‘โƒ—โƒ— โˆ™ ๐‘โƒ— = (3๐‘–ฬ‚ โˆ’ 6๐‘—ฬ‚ โˆ’ 2๐‘˜ฬ‚) โˆ™ (6๐‘–ฬ‚ + 2๐‘—ฬ‚ + 3๐‘˜ฬ‚) = 18 โˆ’ 12 โˆ’ 6 = 0
๐‘โƒ— โˆ™ ๐‘Žโƒ— = (6๐‘–ฬ‚ + 2๐‘—ฬ‚ + 3๐‘˜ฬ‚) โˆ™ (2๐‘–ฬ‚ + 3๐‘—ฬ‚ โˆ’ 6๐‘˜ฬ‚) = 12 + 6 โˆ’ 18 = 0
๏ƒฐ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘Žโƒ— , ๐‘โƒ—โƒ— ๐‘Ž๐‘›๐‘‘ ๐‘โƒ— are mutually perpendicular.
Q-8
(๐‘Žโƒ— + ๐‘โƒ—โƒ—) โˆ™ (๐‘Žโƒ— โˆ’ ๐‘โƒ—โƒ—) = ๐‘Žโƒ— โˆ™ ๐‘Žโƒ— โˆ’ ๐‘Žโƒ— โˆ™ ๐‘โƒ—โƒ— + ๐‘โƒ—โƒ— โˆ™ ๐‘Žโƒ— โˆ’ ๐‘โƒ—โƒ— โˆ™ ๐‘โƒ—โƒ—
2
= |๐‘Žโƒ—|2 โˆ’ |๐‘โƒ—โƒ—| ( because dot product is commutative)
=0
Q-9
( because |๐‘Žโƒ—| = |๐‘โƒ—โƒ—| ๐‘–๐‘  ๐‘”๐‘–๐‘ฃ๐‘’๐‘›)
Here ๐›ผโƒ— = ๐‘–ฬ‚ + 2๐‘—ฬ‚ โˆ’ 3๐‘˜ฬ‚ and ๐›ฝโƒ— = 3๐‘–ฬ‚ โˆ’ ๐‘—ฬ‚ โˆ’ 2๐‘˜ฬ‚
๏ƒฐ ๐›ผโƒ— + ๐›ฝโƒ— = (๐‘–ฬ‚ + 2๐‘—ฬ‚ โˆ’ 3๐‘˜ฬ‚) + (3๐‘–ฬ‚ โˆ’ ๐‘—ฬ‚ โˆ’ 2๐‘˜ฬ‚) = 4๐‘–ฬ‚ + ๐‘—ฬ‚ โˆ’ 5๐‘˜ฬ‚ and
๐›ผโƒ— โˆ’ ๐›ฝโƒ— = (๐‘–ฬ‚ + 2๐‘—ฬ‚ โˆ’ 3๐‘˜ฬ‚) โˆ’ (3๐‘–ฬ‚ โˆ’ ๐‘—ฬ‚ โˆ’ 2๐‘˜ฬ‚) = โˆ’2๐‘–ฬ‚ + 3๐‘—ฬ‚ โˆ’ ๐‘˜ฬ‚
๏ƒฐ (๐›ผโƒ— + ๐›ฝโƒ— ) โˆ™ (๐›ผโƒ— โˆ’ ๐›ฝโƒ— ) = (4๐‘–ฬ‚ + ๐‘—ฬ‚ โˆ’ 5๐‘˜ฬ‚) โˆ™ (โˆ’2๐‘–ฬ‚ + 3๐‘—ฬ‚ โˆ’ ๐‘˜ฬ‚) = โˆ’8 + 3 + 5 = 0
Here (๐›ผโƒ— + ๐›ฝโƒ— ) โˆ™ (๐›ผโƒ— โˆ’ ๐›ฝโƒ— ) = 0 hence ๐›ผโƒ— + ๐›ฝโƒ— and ๐›ผโƒ— โˆ’ ๐›ฝโƒ— are mutually perpendicular.
Q-10 Here ๐‘Žโƒ— = 3๐‘–ฬ‚ + 2 ๐‘—ฬ‚ + ๐‘˜ฬ‚ and ๐‘โƒ—โƒ— = 2๐‘–ฬ‚ โˆ’ ๐‘—ฬ‚ โˆ’ 4 ๐‘˜ฬ‚
๏ƒฐ ๐‘Žโƒ— โˆ™ ๐‘โƒ—โƒ— = (3๐‘–ฬ‚ + 2 ๐‘—ฬ‚ + ๐‘˜ฬ‚) โˆ™ (2๐‘–ฬ‚ โˆ’ ๐‘—ฬ‚ โˆ’ 4 ๐‘˜ฬ‚) = 6 โˆ’ 2 โˆ’ 4 = 0
And according to the definition of the scalar product we know that if the scalar
product of two vectors is zero then the vectors are mutually perpendicular.
๐œ‹
Here ๐‘Žโƒ— โˆ™ ๐‘โƒ—โƒ— = 0 โ„Ž๐‘’๐‘›๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘›๐‘”๐‘™๐‘’ ๐‘๐‘’๐‘ก๐‘ค๐‘’๐‘’๐‘› ๐‘กโ„Ž๐‘’ ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ๐‘  ๐‘–๐‘  .
2
VECTORS
1. If ๐‘Žโƒ— = i -2j + 3k and ๐‘โƒ—โƒ— = 2i + 3j -5k, then find ๐‘Ž
โƒ—โƒ—โƒ—โƒ— X ๐‘โƒ—โƒ— and verify ๐‘Ž
โƒ—โƒ—โƒ—โƒ— X ๐‘โƒ—โƒ— is
perpendicular to ๐‘Žโƒ—
๐‘–
๐‘—
๐‘˜
โƒ—โƒ—
Ans โƒ—โƒ—โƒ—โƒ—โƒ—
๐‘Ž X ๐‘ = |1 โˆ’2 3 | = i + 11j +7k
2 3 โˆ’5
(๐‘Ž
โƒ—โƒ—โƒ—โƒ— X ๐‘โƒ—โƒ—).๐‘Žโƒ— = ( i + 11j +7k).( i -2j + 3k ) = 0
2. If vectors ๐‘Žโƒ— = 2i + 2j +3k , ๐‘โƒ—โƒ— = -I + 2j + k and ๐‘โƒ— = 3i + j are such that ๐‘Žโƒ— +
๐œ‡๐‘โƒ—โƒ— is perpendicular to ๐‘โƒ— , then find the value of ๐œ‡.
Ans.
(๐‘Žโƒ— + ๐œ‡๐‘โƒ—โƒ—). ๐‘โƒ—= 0
Hence ๐œ‡ = 8.
3. Find the angle between the vectors 2i-3j+6k and 2i-3j-5k
โƒ—โƒ—
๐‘Žโƒ—โƒ—.๐‘
โƒ—โƒ—|
โƒ—โƒ—||๐‘
Ans cos๐œƒ = |๐‘Ž
=
โˆ’17
7โˆš38
-1 โˆ’17
Hence ๐œƒ = cos (
7โˆš38
)
4. Find the value of x for which the vector x(I + j +k) is a unit vector.
Ans if it is a unit vector then |๐‘ฅ๐‘– + ๐‘ฅ๐‘— + ๐‘ฅ๐‘˜| = 1
โˆš๐‘ฅ 2 + ๐‘ฅ 2 + ๐‘ฅ 2 = 1
1
So x = ±
โˆš3
5. Find the unit vector perpendicular to two vectors ๐‘Žโƒ— = i -2j + 3k and ๐‘โƒ—โƒ— =
2i + 3j -5k
Ans โž
๐‘›=
โƒ—โƒ—
โƒ—โƒ—โƒ—โƒ— ๐‘‹ ๐‘
๐‘Ž
โƒ—โƒ—|
โƒ—โƒ—โƒ—โƒ— ๐‘‹ ๐‘
|๐‘Ž
๐‘–
๐‘—
๐‘˜
โƒ—โƒ—
โƒ—โƒ—โƒ—โƒ—
๐‘Ž X ๐‘ = |1 โˆ’2 3 | = i + 11j +7k
2 3 โˆ’5
โƒ—โƒ—โƒ—โƒ— ๐‘‹ ๐‘โƒ—โƒ—| = โˆš12 + 112 + 72 = โˆš171
|๐‘Ž
๐‘– + 11๐‘— +7๐‘˜
So โž
๐‘› =
โˆš171
6. For what value of , are the vectors 2i + ๐œ‡๐‘— + ๐‘˜ ๐‘Ž๐‘›๐‘‘ ๐‘– โˆ’ 2๐‘— + 3๐‘˜
perpendicular to each other .
(2i + ๐œ‡๐‘— + ๐‘˜). ( ๐‘– โˆ’ 2๐‘— + 3๐‘˜) = 0
5
2โˆ’2๐œ‡ + 3 =0 so ๐œ‡ =
Ans
2
7. Find a unit vector in the direction of sum of the vectors ๐‘Žโƒ— = i-2j+7k and ๐‘โƒ—โƒ—
= 2i +2j โ€“ 3k.
Ans ๐‘โƒ—โƒ—โƒ— = ๐‘Žโƒ— +๐‘โƒ—โƒ— = 3i +4k
๐‘โƒ—
Hence โž
๐‘› = |๐‘โƒ—| =
3๐‘–+4๐‘˜
5
.
8. If |๐‘Žโƒ—| = 2, |๐‘โƒ—โƒ—| = 5 and angle between them is 60o find |๐‘Žโƒ—๐‘‹๐‘โƒ—โƒ—|
Ans
|๐‘Žโƒ—๐‘‹๐‘โƒ—โƒ—| = |๐‘Žโƒ—||๐‘โƒ—โƒ—|sin600
= 2X5X
โˆš3
2
= 5โˆš3
9. Evaluate I X(jXk) + j.(I X k) โ€“k.(I X i)
Ans i X i + j X (-j) โ€“ k.0 = 0 โ€“j2 โ€“ 0 = -1
10. For what value of ๐›ผ, vectors I + j-2k , i- 3j + 4k and 2i + j + ๐›ผk are
coplanar.
1 1 โˆ’2
Ans |1 โˆ’3 4 | = 0
2 1
๐›ผ
-3๐›ผ โˆ’ 4 โˆ’ ๐›ผ + 8 โˆ’ 14 = 0
โˆ’5
๐›ผ =
2
11. Find a vector whose magnitude is 3 units and which is perpendicular to
๏ฒ
๏ฒ
๏ฒ
๏ƒ™
๏ƒ™
๏ƒ™
the vectors a and b where a = (3 i ๏€ซ j ๏€ญ 4 k ) ,
๏ƒ™
๏ƒ™
๏ƒ™
๏ƒ™
๏ƒ™
๏ƒ™
๏ฒ
๏ƒ™
๏ƒ™
๏ƒ™
b = (6 i ๏€ซ 5 j ๏€ญ 2 k )
Ans: (2 i ๏€ญ 2 j ๏€ซ k ) or - (2 i ๏€ญ 2 j ๏€ซ k )
โƒ—โƒ— , โƒ—โƒ—
โƒ—โƒ— and โƒ—โƒ—
โƒ—โƒ—.
Let aโƒ—โƒ— = โƒ—i + 4jโƒ— + 2k
b = 3iโƒ— โˆ’ 2jโƒ— + 7k
b = 2iโƒ— โˆ’ โƒ—j + 4k
Find a vector โƒ—โƒ—
d which is perpendicular to both aโƒ—โƒ— andโƒ—โƒ—โƒ—โƒ—โƒ—
b and โƒ—โƒ—โƒ—โƒ—.d
c โƒ—โƒ— = 18.
Sol. Let โƒ—โƒ—
d = x โƒ—i + y โƒ—j+zโƒ—โƒ—โƒ—
k
โƒ—โƒ— = 18.
We haveโƒ—โƒ—โƒ—.
a โƒ—โƒ—
d = 0 , โƒ—โƒ—
b. โƒ—โƒ—
d =0 , cโƒ—.d
Which gives
x + 4y + 2z = 0
3x โˆ’ 2y + 7z = 0
2xโˆ’y + 4z = 18
By solving these equations we get
x , y and z then we find โƒ—โƒ—
d
12.If ๐‘Žโƒ—, ๐‘โƒ—โƒ— ๐‘Ž๐‘›๐‘‘ ๐‘โƒ— are unit vectors such that ๐‘Žโƒ— + ๐‘โƒ—โƒ— + ๐‘โƒ— = โƒ—0โƒ— , find the
value of๐‘Žโƒ—. ๐‘โƒ—โƒ— + ๐‘โƒ—โƒ—. ๐‘โƒ— + ๐‘โƒ—. ๐‘Žโƒ—.
Hint- Take dot product of ๐‘Žโƒ— + ๐‘โƒ—โƒ— + ๐‘โƒ— = โƒ—0โƒ— with ๐‘Žโƒ—, ๐‘โƒ—โƒ— ๐‘Ž๐‘›๐‘‘ ๐‘โƒ— and solve.
โˆ’3
Answer
2
13. Find a unit vector perpendicular to each of the vectors (๐‘Žโƒ—+b) and (๐‘Žโƒ—-๐‘โƒ—โƒ—)
where ๐‘Žโƒ— = ๐‘–ฬ‚ + ๐‘—ฬ‚ + ๐‘˜ฬ‚ and ๐‘โƒ—โƒ— = ๐‘–ฬ‚ + 2 ๐‘—ฬ‚ + 3๐‘˜ฬ‚ .
Hint- Evaluate (๐‘Žโƒ—+ ๐‘โƒ—โƒ—) ๐‘Ž๐‘›๐‘‘ ( ๐‘Žโƒ—- ๐‘โƒ—โƒ—) .get the cross product of these vectors
and divide it by its modulus.
1
Answer
(โˆ’2๐‘–ฬ‚ + 4 ๐‘—ฬ‚ โˆ’ 2๐‘˜ฬ‚)
24
โˆš
๏ฒ
๏ฒ
๏ฒ
๏ฒ ๏ฒ
๏ฒ
๏ฒ
๏ฒ
a
๏€ฝ
4
i
๏€ซ
5
j
๏€ญ
k
;
c
๏€ฝ
3
i
๏€ซ
5
j ๏€ญ k , find a
b
๏€ฝ
ij
๏€ญ
4
j
๏€ซ
5
k
14. If
and
๏ฒ
vector d which is perpendicular to both a and b and satisfying
๏ฒ๏ฒ
c.d ๏€ฝ 21.
15. Let ๐‘Žโƒ— = ๐‘–ฬ‚ + 4๐‘—ฬ‚ + 2๐‘˜ฬ‚ , ๐‘โƒ—โƒ— = 3๐‘–ฬ‚ โˆ’ 2 ๐‘—ฬ‚ + 7๐‘˜ฬ‚ and ๐‘โƒ— = 2๐‘–ฬ‚ โˆ’ ๐‘—ฬ‚ + 4๐‘˜ฬ‚ .Find a
vector ๐‘‘โƒ— which is perpendicular to both the vectors ๐‘Žโƒ— ๐‘Ž๐‘›๐‘‘ ๐‘โƒ—โƒ—, ๐‘Ž๐‘›๐‘‘
๐‘โƒ—. ๐‘‘โƒ— =15.
Answer
1
3
(160๐‘–ฬ‚ โˆ’ 5 ๐‘—ฬ‚ + 70๐‘˜ฬ‚)
16. If vectors a, b, c satisfy the condition
๏€จ a ๏€ซ b ๏€ซ c ๏€ฉ =0and ๏ƒด a๏ฒ ๏ƒด= 1,
๏ฒ๏ฒ ๏ฒ๏ฒ ๏ฒ๏ฒ
a
find the value of .b ๏€ซ b.c ๏€ซ c.a
๏ฒ
๏ฒ
b
๏ƒด ๏ƒด= 4,๏ƒด c ๏ƒด= 2 than
Sol: We have
๏€จa ๏€ซ b ๏€ซ c ๏€ฉ
2
2
๏€ฝ a ๏€ซ b ๏€ซ c ๏€ซ 2ab ๏€ซ 2bc ๏€ซ 2ca ๏€ฝ 12 ๏€ซ 42 ๏€ซ 22 ๏€ซ 2(ab ๏€ซ bc ๏€ซ ca )
Since
2
2
๏€จ a ๏€ซ b ๏€ซ c ๏€ฉ =0, we have
0 ๏€ฝ 21 ๏€ซ 2(ab ๏€ซ bc ๏€ซ ca ) ๏ƒž ab ๏€ซ bc ๏€ซ ca ๏€ฝ
๏€ญ21
๏€ญ21
๏ƒž๏ญ๏€ฝ
2
2 .
THREE DIMENSIONAL GEOMETRY
SHORTEST DISTANCE
Q1. Find the shortest distance between the lines whose vector equations
are โ†’ = (๐‘–ฬ‚ + 2๐‘—ฬ‚ + 3๐‘˜ฬ‚) + ๐œ†(๐‘–ฬ‚ โˆ’ 3๐‘—ฬ‚ โˆ’ 2๐‘˜ฬ‚) and
๐‘Ÿ
๐‘Ÿโƒ— = (4๐‘–ฬ‚ + 5๐‘—ฬ‚ + 6๐‘˜ฬ‚) + ๐œ‡ (2๐‘–ฬ‚ + 3๐‘—ฬ‚ + ๐‘˜ฬ‚ )
Sol. Here,
โƒ—โƒ—โƒ—โƒ—โƒ—1 = ๐‘–ฬ‚ + 2๐‘—ฬ‚ + 3๐‘˜ฬ‚ , โƒ—โƒ—โƒ—โƒ—โƒ—
๐‘Ž
๐‘Ž2 = 4๐‘–ฬ‚ + 5๐‘—ฬ‚ + 6๐‘˜ฬ‚
โƒ—โƒ—โƒ—โƒ—
๐‘1 = ๐‘– โˆ’ 3๐‘—ฬ‚ + 2๐‘˜ฬ‚ , โƒ—โƒ—โƒ—โƒ—โƒ—
๐‘2 = 2๐‘–ฬ‚ + 3๐‘—ฬ‚ + ๐‘˜ฬ‚
So, โƒ—โƒ—โƒ—โƒ—โƒ—
๐‘Ž2 โˆ’ ๐‘Ž
โƒ—โƒ—โƒ—โƒ—โƒ—1 = 3๐‘–ฬ‚ + 3๐‘—ฬ‚ + 3๐‘˜ฬ‚
And โƒ—โƒ—โƒ—โƒ—
๐‘1 × โƒ—โƒ—โƒ—โƒ—โƒ—
๐‘2 = โˆ’๐‘Ž๐‘–ฬ‚ + 3๐‘—ฬ‚ + 9๐‘˜ฬ‚
Shortest distance ๐‘‘ = |
โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—โƒ—
โƒ—โƒ—โƒ—โƒ—โƒ—
โƒ—โƒ—โƒ—โƒ—โƒ—
โƒ—โƒ—โƒ—โƒ—โƒ—โˆ’๐‘Ž
(๐‘Ž
2
1 ) โˆ™ (๐‘
1 ×๐‘
2)
|
โƒ—โƒ—โƒ—โƒ—โƒ—
โƒ—โƒ—โƒ—โƒ—โƒ—
|๐‘
1 ×๐‘
2|
3
=
โˆš19
units.
Q2. Find the shortest distance between the lines
Sol: The equations of the given lines are
It is known that the shortest distance between the lines,
and
Given by,
, is
Comparing the given equations, we obtain
Substituting all the values in equation (1), we obtain
Therefore, the shortest distance between the two lines is
3 2
units.
2
Q3. Find the shortest distance between the lines:
๏€จ
๏€ฉ ๏€จ
๏€ฉ
๏€จ
๏€ฉ ๏€จ
๏€ฉ
r ๏€ฝ i ๏€ซ j ๏€ญ k ๏€ซ ๏ฌ 3 i ๏€ญ j and r ๏€ฝ 4 i ๏€ญ k ๏€ซ ๏ญ 2 i ๏€ซ 3k .
Sol: Here
๏‚ฎ
๏‚ฎ
๏‚ฎ
๏‚ฎ
๏‚ฎ
๏‚ฎ
๏‚ฎ
a1 ๏€ฝ i ๏€ซ j ๏€ญ k
๏‚ฎ
๏‚ฎ
๏‚ฎ
b1 ๏€ฝ 3 i ๏€ญ j
๏‚ฎ
a2 ๏€ฝ 4 i ๏€ญ k
๏‚ฎ
๏‚ฎ
b2 ๏€ฝ 2 i ๏€ซ 3 k
So,
๏‚ฎ
๏‚ฎ
๏‚ฎ
๏‚ฎ
a2๏€ญ a1 = 3 i ๏€ญ j
And
๏‚ฎ
๏‚ฎ
๏‚ฎ
๏‚ฎ
๏‚ฎ
i
j
k
๏‚ฎ
๏‚ฎ
๏‚ฎ
b1๏‚ด b2 ๏€ฝ 3 ๏€ญ 1 0 ๏€ฝ ๏€ญ3 i ๏€ญ 9 j ๏€ซ 2 k
2 0 3
๏‚ฎ
๏‚ฎ
b1๏‚ด b2 ๏€ฝ 94 .
hence
Now we have the formula
๏‚ฎ
S.D =
๏‚ฎ
๏‚ฎ
๏‚ฎ
(a ๏€ญ a ) ๏‚ท (b ๏‚ด b )
1
2
2
1
๏‚ฎ
๏‚ฎ
(b ๏‚ด b )
1
๏‚ฎ
2
๏‚ฎ
๏‚ฎ
๏‚ฎ
๏‚ฎ
= (3 i ๏€ญ j ) ๏‚ท ( ๏€ญ 3 i ๏€ญ 9 j ๏€ซ 2 k ) / 94
= 0
Q4. Find the shortest distance between the two lines
๏‚ฎ
๏ƒ™
๏ƒ™
๏ƒ™
๏ƒ™
๏ƒ™
๏ƒ™
๏‚ฎ
๏ƒ™
๏ƒ™
๏ƒ™
๏ƒ™
๏ƒ™
r ๏€ฝ 6 i ๏€ซ 2 j ๏€ซ 2 k ๏€ซ ๏ฌ ( i ๏€ญ 2 j ๏€ซ 2 k ) and r ๏€ฝ ๏€ญ4 i ๏€ญ k ๏€ซ ๏ญ (3 i ๏€ญ 2 j ๏€ญ 2 k ) .
Ans: 9
Q5. Find the shortest distance between the lines
rโƒ— = (iฬ‚ + 2jฬ‚ + 3kฬ‚) + ๏ฌ(iฬ‚ โˆ’ 3jฬ‚ + 2kฬ‚)andrโƒ— = (4iฬ‚ + 5jฬ‚ + 6kฬ‚) + ๏ฌ(2iฬ‚ + 3jฬ‚ + kฬ‚).
Q6. Find the shortest distance between the lines
x ๏€ญ3 y ๏€ญ5 z ๏€ญ7
x ๏€ซ1 y ๏€ซ1 z ๏€ซ1
๏€ฝ
๏€ฝ
๏€ฝ
๏€ฝ
1
๏€ญ2
1 and 7
๏€ญ6
1 .
EQUATION OF A PLANE
Q1. Find the equation of the plane passing through the points (0,-1,0),(1,1,1)
and (3,3,0).
Sol: points (0,-1,0) ,(1,1,1) ,(3,3,0).
Equation of plan passing through point (0,-1,0)
A(x-0) + B(y+1) + C(z-0) = 0 โ€ฆโ€ฆโ€ฆ.(i)
Point (1, 1, 1)and (3,3,0) satisfy equ.(i) we get
A + 2B + C = 0โ€ฆโ€ฆโ€ฆ.(ii)
3A + 4B + 0.C = 0โ€ฆโ€ฆ.(iii)
Solve eque. (i)@ (ii)
A
B
C
๏€ฝ ๏€ฝ
๏€ฝ๏ฌ๏ƒž A
๏€ญ4 3 ๏€ญ2
A = - 4๏ฌ , B = 3๏ฌ , C = - 2๏ฌ
Putting in (1)
-4 ๏ฌ x + 3 ๏ฌ (y + 1) - 2 ๏ฌ z = 0
-4x + 3 (y + 1) - 2z = 0
4x + 3y + 2z-3 = 0 Ans.
Q2. Find the equation of the plane determined by the points (3,-1,2),(5,2,4)
and (-1,-1,6).
Answer: 3x-4y+3z=19.
Q3. Find the equation of the plane passing through the points (2,1,0),(3,-2,-2)
and (3,1,7).
Answer: 7x+3y-z=17.
Q4. Find the equation of plane passing through the line of intersection of the
planes x+2y+3z =4 and 2x+y-z+5 =0 and perpendicular to the plane
5x+3y-6z+8 =0.
Sol: The required plane is (x+2y + 3z ) + k (2x + y โ€“ z +5 )= 0
Or (1+2k)x +(2+k)y +(3-k)z-4+5k=0 :
Since it is perpendicular to 5x +3y-6z+8=0,
5(1+2k) +3 (2+k) -6 (3-k)=0, i.e k= 7/19,
The equation of the plane is : 33x+45y +50z = 41 .
Q5. Find the equation of the plane through the intersection of the planes 3x โ€“
y+2z-4 = 0 and x +y+z-2 = 0 and the point (2, 2, 1)
Ans 7x โ€“5y+4z-8 =0
[Hint Use (3x โ€“y+2z-4) +k(x +y+z-2) = 0 and find k by using given point.]
Q6. Find the equation of the plane through the line of intersection of the
planes ๐‘ฅ + ๐‘ฆ + ๐‘ง = 1 and 2๐‘ฅ + 3๐‘ฆ + 4๐‘ง = 5 which is perpendicular to the
plane x-y+z=0.
Ans: ๐‘ฅ โˆ’ ๐‘ง + 2 = 0
Hint: Use(x + y + z โˆ’ 1) + k(2x + 3y + 4z โˆ’ 5)= 0 and find K using formula
a1a2 + b1b2 + c1c2 = 0
Q7. Find the Cartesian as well as vector equations of the planes, through the
intersection of planes r.(2i ๏€ซ 6 j ) ๏€ซ 12 ๏€ฝ 0and r.(3i ๏€ญ j ๏€ซ 4kห†) ๏€ฝ 0 which are
at a unit distance from the origin.
Hint: convert into cartesian form.
Q8. Find the equation of the plane through the intersection of the planes 2๐‘ฅ +
๐‘ฆ โˆ’ 3๐‘ง + 4 = 0 and 3๐‘ฅ + 4๐‘ฆ + 8๐‘ง โˆ’ 1 = 0 and making equal intercepts
on the coordinate axes.
Ans: 5๐‘ฅ + 5๐‘ฆ + 5๐‘ง = 3
Q9. Find the equation of the plane passing through the line of intersection of
the planes
Ans: y โˆ’ 3z + 6 = 0
and
and parallel to x-axis.
Q10.Find the equation of the plane which contains the line of intersection of
the planes
perpendicular to the plane
Ans: 33x+45y +50z = 41
,
and which is
IMAGE OF A POINT IN A PLANE
Q1 Find the coordinates of the foot of the perpendicular drawn from origin to
the plane 2x โ€“ 3y + 4z -6 = 0. Also find the image of the origin in plane.
Ans. Let L be the foot of the perpendicular from the origin to the plane
๐‘ฅโˆ’0 ๐‘ฆโˆ’0 ๐‘งโˆ’0
Equation of OL is
=
=
=๐œ‡
2
โˆ’3
4
Therefore L (2µ,-3µ,4µ)
SO 2(2µ) โ€“ 3(-3µ) + 4(4µ) -6=0
6
µ=
29
12 โˆ’18 24
Foot of the perpendicular L ( ,
, )
29 29 29
Let P (๐›ผ, ๐›ฝ, ๐›พ) ๐‘๐‘’ ๐‘กโ„Ž๐‘’ ๐‘–๐‘š๐‘Ž๐‘”๐‘’ ๐‘œ๐‘“ ๐‘‚(0,0,0)
๐›ผ+0 ๐›ฝ+0 ๐›พ+0
12 โˆ’18 24
(
,
,
)=( ,
, )
2
2
2
29 29 29
12 โˆ’18 24
Therefore image is ( ,
29
29
, )
29
Q2. Find the co-ordinate of the foot of the perpendicular and distance of the
point (1,3,4) from the plane 2๐‘ฅ โˆ’ ๐‘ฆ + ๐‘ง + 3 = 0. Find also the image of
the point in the plane.
Sol. The given plane is 2x โ€“ y+z +3 =0
Let P (1, 3, 4) be a given point
M be the foot of perpendicular from P to the plane
Let Pโ€™ (ฮฑ, ฮฒ, ๐›พ) be the image of P.
The equation of PM is
๐‘ฅโˆ’1
๐‘ฆโˆ’3
๐‘งโˆ’4
=
=
โ€ฆโ€ฆโ€ฆ (i)
2
โˆ’1
1
Any point on eqn. (i) is
(1+2๐œ†, 3-๐œ†, 4+๐œ†)
If 2(1+2๐œ†) โˆ’ (3-๐œ†) + (4+๐œ†) + 3 =0
Finding ๐œ†= -1
Co-ordinate of M is (-1, 4, 3)
Perpendicular distance |PM| =โˆš6 unit
Now M is the mid-point of PPโ€™
If Pโ€™ is (ฮฑ, ฮฒ,๐›พ) then
ฮฑ = -3, ฮฒ=5, ๐›พ = 2
Hence Pโ€™ image is (-3, 5, 2)
Q3. Find the image of the point (1, 3, 4) in the plane x โ€“ y + z =5.
Answer: (3, 1, 6)
Q4. Find the foot of perpendicular and image of the point (1, 3, 4) in the plane
2x โ€“ y + z + 3 = 0.
Q5. Find the foot of perpendicular and image of the point P(1, 2, 4) in the plane
2x + y โ€“ 2z + 3 = 0.
Questions related Bays Theorem
1. There are three coins. One is a two headed coin (having head on both
faces), another is biased coin that comes up head 75% of the time and
third is an unbiased coin. One of the three coins is chosen at random and
tossed, it shows head, what is the probability that it was two headed
coin?
2. In a bolt factory machines A, B and C manufacture respectively 25% ,
35% and 40% of the total bolts of their output 5, 4 and 2 percent are
respectively defective bolts. A bolt is drawn at random from the product.
If the bolt drawn is found to be defective, what is the probability that it
is manufactured by the machine B?
3. An insurance company insured 2000 scooter drivers, 4000 car drivers
and 6000 truck drivers. The probability of an accident involving a
scooter, a car and truck is 0.01 and 0.03 and 0.15 respectively. One of
the insured person meets with an accident. What is the probability that
he is a scooter driver?
4. An insurance company insured 2000 scooters and 3000 motor cycles.
The probability of an accident involving a scooter is 0.01 and that of a
motor cycle is 0.02. An insured vehicle met with an accident. Find the
probability that the accidental vehicle was a motor cycle.
5. Two groups are competing for the position on the Board of directors of
corporation. The probabilities that the first and the second groups will
win are 0.6 and 0.4 respectively. Further,if the first group wins, the
probability of introducing a new product is 0.7 and thecorresponding
probability is 0.3 if the second group wins. Find the probability that the
productintroduced by the second group. โ€œWinners donโ€™t do different
things. They do things differently.โ€ Point out the importance of
innovative and creative thinking.
6. Given three identical boxes I, II and III , each containing two coins. In
box I, both coins are gold coins, in box II ,both coins are silver coins and
in box III, there is one gold and one silver coin. A person chooses a box
at random and takes out a coin. If the coin is of gold , what is the
probability that the other coin in the box is also of gold ?
7. A man is known to speak truth 3 out of 4 times. He throws a die and
reports that it is a six. Find the probability that it is actually six.
8. In answering on a multiple choice test , a student either knows the
answer or guesses . Let 3/4 be the probability that he knows the
answer and ¼ be the probability that he guesses. Assuming that a
student who guesses at the answer will be correct with probability ¼.
What is the probability that the student knows the answer given that he
answered it correctly?
9. A laboratory blood test is 99% effective in detecting a certain disease
when it is in fact, present. However the test also yields a false positive
result for 0.5% of healthy person tested. If 0.1 percent of the population
actually has the disease, what is the probability that a person has the
disease given that his test result is positive?
10. A card from a pack 52 cards is lost . From the remaining of the pack ,
two cards are drawn and are found to be both diamonds. Find the
probability that actually there was a head.
Answers of questions related Bays Theorem
1. Let
E1 : Coin chosen is two headed
E2 : Coin chosen is biased
E3 : Coin chosen is un biased
P(E1) = P(E2) = P(E3) =
1
3
A = Tossed coin shows head up
75
P(A/E1) =1 ,P(A/E2) =
P(E1/A) =
1
4
2
P(๐ธ1 ) P(A/๐ธ1 )
P(E1)P(A/๐ธ1 )+ P(E2)P(A/๐ธ2 )+P(E3) P(A/๐ธ3 )
=1
3
2. Let
100
3
= P(A/E3) =
1
×1
3
1 3
×
3 4
×1+
+
1
3
×
1
=
1
2
9
4
=
9
4
E1 : the bolt is manufactured by machine A
E2: the bolt is manufactured by machine B
E3: the bolt is manufactured by machine C
P (E1) =
25
,
100
P(E2) =
35
,
100
P(E3) =
40
100
E = the bolt is defective
P(E/E1) =
P(E2/E) =
= 25
100
=
5
100
,P(E/E2) =
4
P(E/E3) =
100
2
100
P(๐ธ2 ) P(E/๐ธ2 )
P(E1)P(E/๐ธ1 )+ P(E2)P(E/๐ธ2 )+P(E3) P(E/๐ธ3 )
×
5
+
100
35
×
100
35
×
100
140
125+140+80
=
4
100
4
100
140
345
+
=
40
2
×
100
100
28
69
3. Let
E1: the event that the insured person is a scooter driver
E2: the event that the insured person is a car driver
E3: the event that the insured person is a truck driver
P(E1) =
P(E2) =
2000
2000+4000 +6000
4000
12000
=
1
2000
=
12000
and P(E3) =
3
=
1
6
6000
12000
,
=
1
2
A= the event that the insured person meets an accident
P(A/E1) =0.01 ,P(A/E2) = 0.03 P(A/E3) = 0.15
Required probability
P(E1/A) =
=1
6
=
P(๐ธ1 ) P(A/๐ธ1 )
P(E1)P(A/๐ธ1 )+ P(E2)P(A/๐ธ2 )+P(E3) P(A/๐ธ3 )
× 0.01 +
1
× 0.01
6
1
1
× 0.03 +
3
2
0.01
× 0.15
0.01
=
0.01+ 0.06 + 0.45 0.52
=
1
52
4. Let
E1: the event that the scooter is insured
E2: the event that the motor cycle is insured
P(E1) =
2000
2000+3000
2
=
5
3000
, P(E2) =
=
5000
3
5
,
A = the event that the motor cycle met with an accident
P (A/E1) =0.01, P (A/E2) = 0.02
Required probability
P(๐ธ2 ) P(A/๐ธ2 )
P (E2 /A) =
=
P(E1)P(A/๐ธ1 )+ P(E2)P(A/๐ธ2 )
3
× 0.02
5
2
3
× 0.01 + × 0.02
5
5
0.06
=
=
0.02+ 0.06
0.06
=
0.08
6
8
=
3
4
5. Let E1 : the event that the I group wins
E2 :the event that the II group wins
P(E1) =
6
, and
P(E2) =
10
4
10
A= the event that the new product is introduced
7
3
10
10
P(A/E1) = ,P(A/E2) =
Required probability
P(E2 /A) =
=6
10
=
×
P(๐ธ2 ) P(A/๐ธ2 )
P(E1)P(A/๐ธ1 )+ P(E2)P(A/๐ธ2 )
4
3
×
10 10
7
4
3
+
×
10
10 10
12
42+ 12
=
12
54
=
2
9
Rote learning must be avoided and learning by doing should be
promoted.
6. Let E1 ,E2 , E3 be the events that boxes I ,II, III are chosen respectively
P( E1 ) = P( E2 ) = P( E3 ) =1/3
Let A be the event that the coin is of gold
P(A/ E1 ) =
2
2
1
, P(A/ E2 ) = 0 , P(A/ E3) =
2
,
By Bayโ€™s theorem
P(E1/A ) =
=
1
3
๐ด
๐ธ1
๐ด
๐ด
๐‘ƒ(๐ธ1 )๐‘ƒ(
)+๐‘ƒ(๐ธ2 )๐‘ƒ(
๐ธ1
๐ธ2
๐‘ƒ(๐ธ1 )๐‘ƒ(
×1 +
1
3
1
×1
3
1
3
×0 +
×
)
๐ด
๐ธ3
) +๐‘ƒ(๐ธ3 )๐‘ƒ(
)
1
2
2
=
3
7. Let E1 ,E2 are the events that six occurs and six does not occur in
throwing a die respectively.
P( E1 ) =
1
6
,P( E2 ) =
5
6
Let A be the event that the man reports that six occurs on the die
3
1
4
4
P(A/ E1 ) = , P(A/ E3) =
,
By Bayโ€™s theorem
P(E1/A ) =
=
๐‘ƒ(๐ธ1 )๐‘ƒ(
๐‘ƒ(๐ธ1 )๐‘ƒ(
๐ด
๐ธ1
๐ด
๐ธ1
)
)+๐‘ƒ(๐ธ2 )๐‘ƒ(
๐ด
๐ธ2
)
3
8
8. Let E1 ,E2are the events that a student knows the answer and he
guesses at the answer respectively.
P( E1 ) =
3
,P( E2 ) =
4
1
4
Let A be the event that the man reports that six occurs on the die
P(A/ E1 ) = 1, P(A/ E2) =
1
4
,
By Bayโ€™s theorem
P (E1/A) =
=
๐‘ƒ(๐ธ1 )๐‘ƒ(
๐‘ƒ(๐ธ1 )๐‘ƒ(
๐ด
๐ธ1
๐ด
๐ธ1
)
)+๐‘ƒ(๐ธ2 )๐‘ƒ(
๐ด
๐ธ2
)
12
13
9. Let E1 , E2 are the events that person has the disease and person is
healthy respectively.
1
P ( E1) =0.1%=
100
,P( E2 ) =0.1%=
999
1000
Let A be the event that the man reports that six occurs on the die
P(A/ E1 ) =
99
100
, P(A/ E2) = 0.5%=
5
1000
,
By Bayโ€™s theorem
P (E1/A ) =
=
๐‘ƒ(๐ธ1 )๐‘ƒ(
๐ด
๐‘ƒ(๐ธ1 )๐‘ƒ(
๐ธ1
๐ด
๐ธ1
)
)+๐‘ƒ(๐ธ2 )๐‘ƒ(
๐ด
๐ธ2
)
198
1197
10. Let E1 , E2 are the events that lost is diamond and lost card in not
diamond respectively.
P ( E1 ) =
13
52
=
1
4
,P( E2 ) =
3
4
Let A be the event that the two cards drawn from the remaining cards
are diamond
P(A/ E1 ) =
๐‘(12,2) 12×11
=
๐‘(51,2) 51×50
, P(A/ E2) =
๐‘(13,2)
๐‘(51,2)
=
13×12
,
51×50
By Bayโ€™s theorem
P (E1/A ) =
๐‘ƒ(๐ธ1 )๐‘ƒ(
๐ด
๐‘ƒ(๐ธ1 )๐‘ƒ(
๐ธ1
๐ด
๐ธ1
)
๐ด
)+๐‘ƒ(๐ธ2 )๐‘ƒ(
๐ธ2
11
=
) 50
QUESTIONS BASED ON Probability Distribution
1. Find the probability distribution of number of successes in two tosses of a die, where a
success is defined as
(a) Number greater than 4
(b) 6 appear on at least one die.
2. A random variable X has the following probability distribution
X
0
1
2
3
4
5
6
7
P(X)
0
k
2k
2k
3k
K2
2K2
7K2+k
Determine
(i)
K
(ii)
P(X<3 )
(iii)
P(X>6);
(iv)
P(0<X<3)
3. Let a pair of dice be thrown and the random variable X be the sum of the numbers that
appear on the two dice. Find the mean or expectation of X
4. Three balls are drawn without replacement from a bag containing 4 white and 5 red
balls. Find the probability distribution of number of red balls.
5. There is a group of 20 persons who are rich, out of these 5 are helpful to poor people. 3
persons are selected at random, write the probability distribution of selected person who
are helpful to poor. Also find the mean of the distribution.
6. There is a group of 50 people who are patriotic out of which 20 believe in non-violence.
Two persons are selected at random out of them. Write the probability distribution for the
selected person who are non-violent. Also find expectation of the distribution.
7. Three rotten apples are mixed with 7 fresh apples. Find the probability distribution of
number of rotten apples, if three apples are drawn one by one with replacement.
8. A biased die is twice as likely to show an even number as an odd number. The die is
rolled three times. If occurrence of an even number is considered as a success, then write
the probability distribution of number of successes. Also find the mean number of
successes.
9. Two cards are drawn simultaneously (or successively without replacement).From a well
shuffled pack of 52 cards. Find mean, variance and standard deviation of number of kings.
10. Find the mean number of heads in three tosses of a fair coin.
Solution of questions based on Probability Distribution
Ans1.
(i) The sample space of the random experiment โ€˜a die is tossedโ€™ is S= {1, 2, 3, 4, 5, 6}.
Therefore n(S) = 6. Let s denote the success i.e., getting a number greater than 4 on
the dice and f, the failure.
P(s) = P (a number greater than 4) = P({5,6}) =
1
2
6
=
1
3
2
โˆด P (f) = 1 โˆ’ P(s) = 1 โˆ’ 3 = 3
Let X denote the number of successes in two tosses of a die, then X can take
values 0, 1, 2.
P(X = 0) = P(no success) = P({ff}) =
2
3
2
×3 =
1
4
9
2
P(X = 1) = P(one success) = P({sf, fs}) =3 × 3 +
P(X = 2) = P(two successes) = P({ss}) =
1
3
1
×3 =
2
3
1
1
×3 =
4
9
9
Therefore the probability distribution of X is
X
0
1
2
1
4
4
9
9
9
(ii) We know that when a dice is through, sample space is S = {1, 2, 3, 4, 5, 6}.
Therefore n(S) = 6
P(X)
Let E be the event of getting a 6 on the dice.
โˆด P (E) =
1
6
Let s denote the success i.e., getting at least 6 on the dice
when it is tossed two
times and f, the failure.
P(s) = P({(1,6), (2,6), (3,6), (4,6), (5,6), (6,6), (6,1), (6,2), (6,3), (6,4), (6,5)})
11
= 36
.
11
25
โˆด P(f) = 1 โˆ’ P(s) = 1 โˆ’ 36 = 36
Let X denote the number of successes in two tosses of a die , then X can take
values 0, 1.
Therefore the probability distribution of X is
X
0
25
36
P(X)
1
11
36
Ans2.
(i) We know that for a probability distribution โˆ‘ ๐‘ƒ(๐‘‹) = 1
Or
P(X =0) +P(X =1) +P(X =2)+P(X =3)+P(X =4)+P(X =4)+P(X =6)+P(X =7) = 1
โˆด
0 + k
+ 2k + 2k + 3k +
k 2 + 2 k2 + (7 k2 +k) = 1
or
10 k2 +9k โˆ’1 = 0
10 k2 +10k โˆ’1k โˆ’1 = 0
10k( k + 1) โˆ’1( k + 1) = 0
( k + 1) (10 k โˆ’ 1) = 0
Either k + 1 = 0 or 10 k โˆ’ 1 = 0
But k = โˆ’1 rejected , since P(X =1) = k and hence must be > 0 by def of P.D.
โˆด
(ii)
10 k โˆ’ 1 = 0
or k =
+ k + 2k
3
= 3k =
10
[โˆต ๐‘˜ =
1
by (1) ]
10
P(X > 6) = P(X =7) = 7 k2 +k
1 2
1
= 7 (10) + 10
(iv)
โ€ฆโ€ฆโ€ฆโ€ฆ..(1)
P(X < 3) = P(X =0) +P(X =1) +P(X =2)
=0
(iii)
1
10
7
1
= 100 + 10 =
17
100
[โˆต ๐‘˜ =
1
10
by (1) ]
P(0< X < 3) = P(X =1)+P(X =2)
= k + 2k
= 3k
=
3
10
[โˆต ๐‘˜ =
1
10
by (1) ]
Ans3.
The sample space of the experiment is S= {(1,1), (1,2),(1,3), (1,4), (1,5),
(1,6),(2,1),โ€ฆโ€ฆโ€ฆโ€ฆโ€ฆ,(6,1) (6,2),(6,3), (6,4), (6,5), (6,6)}.
Therefore n(S)= 36
Let X denote the sum of numbers obtained on two dice , then X can take
values 2,3,4,5,6,7,8,9,10,11 or 12.
Now P(X=2) = P({(1,1)}) =
1
36
2
P(X=3) = P({(1,2),(2,1)}) = 36
3
P(X=4) = P({(1,3),(2,2),(3,1)}) = 36
4
P(X=5) = P({(1,4),(2,3),(3,2),(4,1)}) = 36
5
P(X=6) = P({(1,5),(2,4),(3,3),(4,2),(5,1)}) = 36
6
P(X=7) = P({(1,6),(2,5),(3,4),(4,3),(5,2),(6,1)}) = 36
5
P(X=8) = P({(2,6),(3,5),(4,4),(5,3),(6,2)}) = 36
4
P(X=9) = P({(3,6),(4,5),(5,4),(6,3)}) = 36
3
P(X=10) = P({(4,6),(5,5),(6,4)}) = 36
2
P(X=11) = P({(5,6),(6,5)}) = 36
1
P(X=12) = P({(6,6)}) = 36
Therefore the probability distribution of X is
X
2
3
4
5
6
7
8
9
10
11
12
P(X)
or pi
1
36
2
36
3
36
4
36
5
36
6
36
5
36
4
36
3
36
2
36
1
36
Therefore
1
2
3
4
5
6
5
4
µ = โˆ‘ xi pi = 2 × 36 +3 × 36 +4 × 36 +5 × 36 +6 × 36 +7 × 36 +8 × 36 +9 × 36
3
2
1
+10 × 36 +11 × 36 +12 × 36
=
2+6+12+20+30+42+40+36+30+22+12
36
= 7
Hence the mean is 7.
Ans4.
Let X denotes the number of red balls drawn, then X can take values 0,1,2,3. If W
and R denote the event, drawing a white ball and red ball respectively. Then
P(X=0) = P({(WWW)}) =
4
9
3
2
×8×7
P(X=1) = P({(RWW), (WRW), (WWR)})
=
24
504
1
= 21
5
=
9
4
3
8
7
× ×
4
+
9
5
3
4
8
7
9
× × +
3
5
8
7
4
4
× ×
=
60+60+60
9×8×7
=
180
504
=
5
14
P(X=2) = P({(WRR), (RWR), (RRW)})
=
4
9
5
4
×8×7
5
+
5
P(X=3) = P({(RRR)}) =
9
9
4
4
5
×8×7+
4
3
9
60
×8×7 =
80+80+80
9×8×7
=
240
504
10
= 21
5
× 8 × 7 = 504 = 42
Hence the probability distribution for X is
X
0
1
2
3
P(X)
1
21
5
14
10
21
5
42
Ans5.
Let X denotes the number of people who helpful to poor people, then X can
take values 0,1,2,3. If A and B denote the event, people who helpful to poor people
and people who not helpful to poor people respectively. Then
5
1
1
3
P(A) = 20
= 4
and P(B) = 1 โˆ’ 4 = 4
3
3
3
27
P(X=0) = P({(BBB)}) = 4 × 4 × 4
= 64
P(X=1) = P({(ABB), (BAB), (BBA)})
1
3
3
3
1
3
3
3
1
= 4×4×4
+ 4×4×4+ 4×4×4
P(X=2) = P({(BAA), (ABA), (AAB)})
3
1
1
1
3
1
1
1
3
= 4×4×4 + 4×4×4+ 4×4×4
P(X=3) = P({(AAA)}) =
1
1
1
27
= 64
9
= 64
1
× 4 × 4 = 64
4
Hence the probability distribution for X is
X
0
1
2
3
P(X)
27
64
27
64
9
64
1
64
Therefore
27
27
9
1
µ = โˆ‘ xi pi = 0 × 64 + 1× 64+ 2 × 64+ 3 × 64
=
0+27+18+3
64
48
3
= 64 = 4 = 0.75
Hence the mean is 0.75.
Ans6.
Let X denotes the number of people who patriotic and believe in nonviolence, then X can take values 0, 1, 2. If A and B denote the people who believe in
non-violence and people who believe in violence respectively.
20
2
2
3
Then
P(A) = 50
= 5
and P(B) = 1 โˆ’ 5 = 5
P(X=0) = P({(BB)}) =
3
5
3
×5
9
=
P(X=1) = P({(AB), (BA)})
2
3
3
2
=5×5 + 5×5 =
P(X=2) = P ({(AA)})
2
2
4
= 5×5
= 25
25
12
25
Hence the probability distribution for X is
X
0
9
25
P(X)
1
12
25
2
4
25
Therefore
9
12
4
µ = โˆ‘ xi pi = 0 × 25 + 1× 25+ 2 × 25
=
0+12+8
25
20
4
= 25 = 5 = 0.8
Hence the mean is 0.8.
Ans7.
Let X denotes the number of rotten apples, then X can take values 0,1,2,3. If
A and B denote the drawn apple is rotten and drawn apple is fresh respectively.
3
3
7
Then
P(A) = 10
and P(B) = 1 โˆ’ 10 = 10
7
7
7
343
P(X=0) = P({(BBB)}) = 10 × 10 × 10
= 1000
P(X=1) = P({(ABB), (BAB), (BBA)})
3
7
7
7
3
7
7
7
3
441
= 10 × 10 × 10 + 10 × 10 × 10 + 10 × 10 × 10
= 1000
P(X=2) = P({(BAA), (ABA), (AAB)})
7
3
3
3
7
3
3
3
7
189
= 10 × 10 × 10 + 10 × 10 × 10 + 10 × 10 × 10 = 1000
P(X=3) = P({(AAA)}) =
3
3
3
27
× 10 × 10 = 1000
10
Hence the probability distribution for X is
X
0
1
2
3
343
441
189
27
1000
1000
1000
1000
Ans8.
Let A denote the event โ€˜occurrence of an even numberโ€™ and B denote the
โ€˜occurrence of an odd numberโ€™ if a dice is through.
According to question P(A) = 2 P(B). But there are 3 even and 3 odd numbers so
P(X)
P(A) + P(B) = 1 or 2P(B) + P(B) = 1 or 3 P(B) = 1 or P(B) =
then
1
3
and P(A) =
2
3
Let X denotes the number of occurrence of an even number when a dice is rolled,
X can take values 0,1,2,3.
P(X=0) = P({(BBB)}) =
1
×
3
1
×
3
1
1
=
3
27
P(X=1) = P({(ABB), (BAB), (BBA)})
2
1
1
1
2
1
1
1
2
= 3×3×3 + 3×3×3+ 3×3×3
P(X=2) = P({(BAA), (ABA), (AAB)})
1
2
2
2
1
2
2
2
= 3×3×3 + 3×3×3+ 3×3×
P(X=3) = P({(AAA)}) =
2
3
×
2
3
×
2
3
8
6
= 27
1
3
12
= 27
= 27
Hence the probability distribution for X is
X
0
1
2
1
6
12
27
27
27
1
6
12
8
Therefore µ = โˆ‘ xi pi = 0 × 27 + 1× 27+ 2 × 27+ 3 × 27
P(X)
=
0+6+24+24
27
3
8
27
54
= 27 = 2
Hence the mean is 2.
Ans9.
Let X denotes the number of king drawn from a well shuffled deck of 52
cards, then X can take values 0,1,2.
If A and B denote the event that the card
drawn is a king and B the event that the card drawn is not a king respectively.
48
47
2256
188
P(X=0) = P({(BB)}) =
×
=
=
{ since the first card is not
52
51
2652
221
replaced} P(X=1) = P({(AB), (BA)})
4
48
48
4
32
= 52 × 51 + 52 × 51 = 221
P(X=2) = P({(AA)})
4
3
1
= 52 × 51 = 221
Hence the probability distribution for X is
X
0
1
2
188
221
P(X)
32
221
1
221
Therefore
188
32
1
mean (µ) = โˆ‘ xi pi = 0 × 221 + 1× 221+ 2 × 221 =
188
32
34
221
2
= 13
2 2
1
36
4
Variance = โˆ‘ (๐‘ฅ๐‘–2 ) pi โˆ’(µ)2= {02 × 221 +12 × 221+ 22× 221} โˆ’ (13) = 221 โˆ’ 169 =
400
2873
400
Standard deviation = โˆšVariance = โˆš2873
Ans10.
Let X denotes the number of heads in the three tosses of a fair coin, then X
can take values 0,1,2,3. If H and T denote the event getting a head when we toss a
1
1
coin and the event getting a Tell respectively. P(H)= 2 and
P(T)= 2
1
1
1
1
P(X=0) = P({(TTT)}) = 2 × 2 × 2
= 8
P(X=1) = P({(HTT), (THT), (TTH)})
1
1
1
1
1
1
1
1
1
= 2×2×2 + 2×2×2+ 2×2×2
P(X=2) = P({(THH), (HTH), (HHT)})
1
1
1
1
1
1
1
1
1
= 2×2×2 + 2×2×2+ 2×2×2
P(X=3) = P({(HHH)}) =
1
2
1
1
×2×2
3
=8
3
=8
1
=
8
Hence the probability distribution for X is
X
0
1
2
3
P(X)
1
8
3
8
3
8
1
8
Therefore
1
3
3
1
mean (µ) = โˆ‘ xi pi = 0 × 8 + 1× 8+ 2 × 8 + 3 × 8 =
12
8
3
=2
BINOMIAL DISTRIBUTION
1. If a fair coin is tossed 10 times, find the probability of
a) Exactly six heads
b) At least 6 heads
c) At most six heads
2. A pair of dice is thrown four times. If getting a doublet is considered as success, find
probability of two success.
3. A box containing 100 bulbs, 10 are defective find the probability that out of assemble of 5
bulbs none is defective.
4. The probability that a student is not a swimmer is 1/5. Find the probability that out of 6
students 4 are swimmers.
5. Find the mean of the binomial distribution B(4,1/3)
6. The probability of a shooter hitting a target is ¾. How many minimum number of times
must he fire so that the probability of hitting the target at least once is more than 0.99?
7. How many times must a man toss a fair coin so that the probability of having at least one
head is more than90%?
8. It is known that 10% of certain articles manufactured are defective. What is the probability
that in a random sample of 12 such article 9 are defective?
9. A person buys a lottery ticket in 50 lotteries, in each of which his chance of winning a
prize is 1/100. What is the probability that he will win a prize( a) at least once (b) exactly
once (c) at least twice.
10. Suppose X has a binomial distribution B(6,1/2).Show that X=3 is the most likely
outcomes.
_________________________________________________________________________
MULTIPLICATION THEOREM ON PROBABILITY/INDEPENDENT EVENTS
1. A fair die tossed thrice. Find the probability of getting an odd number at least once.
2. Probability of solving specific problem independently by A and B are 1/2 and 1/3
respectively. If both try to solve the problem independently, find the probability that (1) the
problem is solved (2) exactly one of them solved the problem
3. Event A and B are such that P(A)= 1/2 , P(B)=7/12 and P(not A or not B)=1/4. State whether
A and B are independent.
4. Two cards are drawn at random and without replacement from a pack of 52 cards. Find the
probability that both the cards are black.
5. The probabilities of A, B and C hitting a target are 1/3,2/7 and 3/8 respectively. If all the
three tried to shoot the target simultaneously, find the probability that exactly one of them
can shoot it.
6. A husband and a wife appear for interview for two vacancies for the same post. The
probability of husbandโ€™s selection is 1/7 and that of wifeโ€™s is 1/5.What is the probability that
(1) only one of them will be selected (2) at least one of them will be selected.
7. In a hurdle race a player has to cross 10 hurdles. The probability that he will clear a hurdle is
5/6. What is the probability that he will clear fewer than 2 hurdles?
8. A coin is tossed once. If it shows a head, it is tossed again but if it shows a tail, then a die is
thrown. If all possible outcomes are equally likely, find the probability that the die shows a
number greater than 4, if it is known that the first throw of coin results a tail.
9. Three persons A B and C fire a target in turn, starting with A. Their probability of fitting the
target are 0.5, 0.3 and o.2 respectively. Find the probability of at most one hit.
10. Two balls are drawn at random with replacement from a box containing 10 black and 8 red
balls. Find the probability that (1) both balls are red (2) one of them is black and other is red.
MODEL ANSWERS:
BIONOMIAL DISTRIBUTION
1.
n=10, p=1/2
P(X=x) =nCxqn-xpx
(i)P(X=6) =10C6 (1/2)10=105/512
(ii) P(Xโ‰ฅ6)=P(X=6)+P(X=7)+P(X=8)+PX=9)+P(X=10)
=10C6(1/2)10+10C7(1/2)10+ 10C8(1/2)10 +10C9(1/2)10 +10C10(1/2)10
=193/512
(iii)P(Xโ‰ค6) =P(X=0)+P(X=1)+P(X=2)+P(X=3)+P(X=4)+P(X=5)+P(X=6)
=10C0(1/2)10+10C1(1/2)10+ 10C2(1/2)10 +10C3(1/2)10 +10C4(1/2)10
+10C5(1/2)10+10C6(1/2)10
=53/64
2. n=4, p=
6 1
= {(1,1), (2,2), (3,3), (4,4)(5,5), (6,6)}
36 6
1 5
q= 1- 6=6
P(X=x) =nCxqn-xpx
P(X=2) =4C2(5/6)2 (1/6)2
=25/216
3. n=5, p= 10/100 =1/10
q=1-1/10 =9/10
P(X=0)=qn=(9/10)5
4. n=5,
probability that a student is not a swimmer =1/5
p =P(a student can swim)=1-1/5 =4/5
q=1/5
P(X=4)=5C4 (1/5) (4/5)4
5. n=4, p=1/3, q= 1-1/3 =2/3
P(X=x) =nCxqn-xpx
xi
P(xi)
xi P(xi)
0
4C0(2/3)4
0
1
4C1(2/3)3 (1/3)
32/81
2
4C2(2/3)2 (1/3)2
48/81
3
4C3(2/3) (1/3)3
24/81
4
4C4(1/3)4
4/81
Total
108/81
Mean=108/81 =4/3
6.
p=3/4
q=1/4
P(X=x) =nCxqn-xpx
P(X=x) =nCx (1/4)n-x (3/4)x
P(Hitting the target at least once)> 0.99
ie, P(xโ‰ฅ1) > 0.99
ie, 1-P(x=0) >0.99
ie, 1-nC0 (1/4)n> 0.99
ie,, (1/4)n< 0.01
ie,4n> 100
The minimum value of n to satisfy the inequality is 4
Therefore the shooter must fire 4 times.
7.
p=1/2
q=1/2
P(X=x) =nCxqn-xpx
P(X=x) =nCx (1/2)n-x (1/2)x
P(X=x) =nCx (1/2)n
P( at least one head)> 0.9
ie, P(xโ‰ฅ1) > 0.9
ie, 1-P(x=0) >0.9
ie, 1-nC0 (1/2)n> 0.9
ie,, (1/2)n< 0.1
ie,2n> 10
The minimum value of n to satisfy the inequality is 4
The man must toss the coin at least 4 times.
8. n=12, p=10/100 =1/10
q = 1-1/10 =9/10
P(X=x) =nCxqn-xpx
P(X=9) =12C9 (9/10)3 (1/10)x
=22x93/1011
9. p =1/100 q=99/100, n=50
P(X=x) =nCxqn-xpx
P(winning atleast once) = 1-P(not winning)
=1-P(x=0)
=1-50C0 (99/100)50
=1- (99/100)50
P(exactly once) =P(x=1)
=50C1 (99/100)49(1/100)
½ (99/100)49
P(atleast twice)= 1-P(X=0)-P(X=1)
1-( 1- (99/100)50+ ½ (99/100)49)
1- 149/100(99/100)49
10. n=6, p=1/2, q= 1/2
P(X=x) =nCxqn-xpx
xi
P(xi)
0
6C0(1/2)6 = 1/64
1
6C1(1/2)6 =6/64
2
6C2(1/2)6 =15/64
3
6C3(1/2)6 =20/64
4
6C4(1/2)6 =15/64
5
6C5(1/2)6 =6/64
6
6C6(1/2)6 =1/64
Clearly P( X=3 ) is maximum. Therefor X=3 is the most likely outcome.