Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Statistics for HEP Roger Barlow Manchester University Lecture 2: Distributions Slide 1 The Binomial 0.4 n trials r successes Individual success probability p 0.2 n! P(r ; n, p) p r (1 p) n r r!(n r )! 0 0 1 2 3 Mean 4 5 r Variance V=<(r- )2>=<r2>-<r>2 =<r>=rP( r ) =np(1-p) = np Met with in Efficiency/Acceptance calculations Slide 2 1-p p q Binomial Examples p=0.1 n=5 1 n=50 n=20 0.3 0.2 0.2 0.5 0.1 0.1 0 0 0 r n=10 r r p=0.2 0.4 0.3 0.3 0.2 p=0.5 p=0.8 0.4 0.3 0.2 0.2 0.1 0.1 0.1 0 0 0 Slider 3 r r Poisson 0. 3 =2.5 0. 2 0. 1 0 Mean r =<r>=rP( r ) = ‘Events in a continuum’ e.g. Geiger Counter clicks Mean rate in time interval Gives number of events in data P(r ; ) e r r! Variance V=<(r- )2>=<r2>-<r>2 Slide 4 = Poisson Examples 0. 8 =2.0 =1.0 =0.5 0. 3 0.4 0. 6 0. 2 0.3 0. 4 0.2 0. 2 0. 1 0.1 0 0 0 =5.0 r 0.2 0.2 =10 =25 r 0.1 0.1 0 0 0 r Slide 5 r r Binomial and Poisson From an exam paper A student is standing by the road, hoping to hitch a lift. Cars pass according to a Poisson distribution with a mean frequency of 1 per minute. The probability of an individual car giving a lift is 1%. Calculate the probability that the student is still waiting for a lift (a) After 60 cars have passed (b) After 1 hour a) 0.9960=0.5472 Slide 6 b) e-0.6=0.5488 Poisson as approximate binomial Poisson mean 2 Use: MC simulation (Binomial) of Real data (Poisson) Binomial: p=0.1, 20 tries Binomial: p=0.01, 200 tries 0.3 0.2 0.1 0 r Slide 7 Two Poissons 2 Poisson sources, means 1 and 2 Combine samples e.g. leptonic and hadronic decays of W Forward and backward muon pairs Tracks that trigger and tracks that don’t What you get is a Convolution P( r )= P(r’; 1 ) P(r-r’; 2 ) Turns out this is also a Poisson with mean 1+2 Avoids lots of worry Slide 8 The Gaussian Probability Density 1 P( x; , ) 2 ( x ) 2 / 2 2 e Mean =<x>=xP( x ) dx = Slide 9 Variance V=<(x- )2>=<x2>-<x>2 = Different Gaussians There’s only one! Width scaling factor Normalisation (if required) Slide 10 Falls to 1/e of peak at x= Location change Probability Contents 68.27% within 1 95.45% within 2 99.73% within 3 90% within 1.645 95% within 1.960 99% within 2.576 99.9% within 3.290 These numbers apply to Gaussians and only Gaussians Slide 11 Other distributions have equivalent values which you could use of you wanted Central Limit Theorem Or: why is the Gaussian Normal? If a Variable x is produced by the convolution of variables x1,x2…xN I) <x>=1+2+…N II) V(x)=V1+V2+…VN III) P(x) becomes Gaussian for large N There were hints in the Binomial and Poisson examples Slide 12 CLT demonstration Convolute Uniform distribution with itself Slide 13 CLT Proof (I) Characteristic functions Given P(x) consider ~ ikx ikx e e P( x)dx P (k ) (k ) The Characteristic Function For convolutions, CFs multiply ~ ~ ~ If f ( x) g ( x) h( x) then f (k ) g (k ) h (k ) Logs of CFs Add Slide 14 CLT proof (2) Cumulants CF is a power series in k <1>+<ikx>+<(ikx)2/2!>+<(ikx)3/3!>+… 1+ik<x>-k2<x2>/2!-ik3<x3>/3!+… Ln CF can then be expanded as a series ikK1 + (ik)2K2/2! + (ik)3K3/3!… Kr : the “semi-invariant cumulants of Thiele” Total power of xr If xx+a then only K1 K1+a If xbx then each Kr brKr Slide 15 CLT proof (3) • The FT of a Gaussian is a Gaussian e x 2 / 2 2 e k 2 2 / 2 Taking logs gives power series up to k2 Kr=0 for r>2 defines a Gaussian • Selfconvolute anything n times: Kr’=n Kr Need to normalise – divide by n Kr’’=n-r Kr’= n1-r Kr • Higher Cumulants die away faster If the distributions are not identical but Slide 16 similar the same argument applies CLT in real life Examples • Height • Simple Measurements • Student final marks Slide 17 Counterexamples • Weight • Wealth • Student entry grades Multidimensional Gaussian P( x, y; x , y , x , y ) 1 x y 2 ( x x ) 2 / 2 x e 2 ( y y ) 2 / 2 y 2 e P ( x, y; x , y , x , y , ) 1 x y 2 1 Slide 18 2 e 1 ( x ) 2 / 2 ( y ) 2 / 2 2 ( x )( y ) / x x y y x y x y 2 2 (1 ) Chi squared xi i i i 1 n 2 2 Sum of squared discrepancies, scaled by expected error Integrate all but 1-D of multi-D Gaussian n / 2 2 2 n2 2 / 2 P( ; n) e (n / 2) Slide 19 Mean n Variance 2n CLT slow to operate Generating Distributions Given int rand()in stdlib.h float Random() {return ((float)rand())/RAND_MAX;} float uniform(float lo, float hi) {return lo+Random()*(hi-lo);} float life(float tau) {return -tau*log(Random());} float ugauss() // really crude. Do not use {float x=0; for(int i=0;i<12;i++) x+=Random(); return x-6;} float gauss(float mu, float sigma) {return mu+sigma*ugauss();} Slide 20 A better Gaussian Generator float ugauss(){ static bool igot=false; static float got; if(igot){igot=false; return got;} float phi=uniform(0.0F,2*M_PI); float r=life(1.0f); igot=true; got=r*cos(phi); return r*sin(phi);} Slide 21 More complicated functions 25 Find P0=max[P(x)]. Overestimate if in doubt Repeat : Repeat: Generate random x Find P(x) Generate random P in range 0-P0 till P(x)>P till you have enough data 20 15 10 5 0 1 Slide 22 3 5 7 9 11 13 15 17 If necessary make x non-random and compensate 19 Other distributions Uniform(top hat) =width/12 Breit Wigner (Cauchy) Has no variance – useful for wide tails Landau Has no variance or mean e Not given by .Use CERNLIB Slide 23 e Functions you need to know • Gaussian/Chi squared • Poisson • • Binomial Everything else Slide 24