Download Introduction Into Functional Programming

Document related concepts

Scala (programming language) wikipedia , lookup

Currying wikipedia , lookup

Closure (computer programming) wikipedia , lookup

Combinatory logic wikipedia , lookup

Falcon (programming language) wikipedia , lookup

Standard ML wikipedia , lookup

C Sharp (programming language) wikipedia , lookup

Transcript
Introduction Into Functional Programming
Lecture given at the
American University in Bulgaria (Blagoevgrad)
Prof. Dr. Jürgen Vollmer
<[email protected]>
April 15, 2011
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / /
1(112)
April 15, 2011
Why another programming language?
A computer scientist ...
... is not defined by β€œspeaking” one or two special programming languages,
every hacker can do so.
Computer scientists are characterized by mastering the principle of
programming and by the ability to express them self in
programming languages [P EPPER 2003].
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ What is it?
2(112)
April 15, 2011
Characteristics: functional & imperative languages
Differences
Property
Idea
Operation
Result
Notation
Objects
Languages
Functional
Input / output relation,
functions
function application
y = sin(x)
is β€œtimeless”
mathematical
mathematical
L ISP , ML, H ASKELL ,
M IRANDA
Imperative
Memory, instructions,
commands
Assignment
x := x + 1
depends on the
β€œstate” (memory) which
changes over time
machine instruction
Bits & Bytes
A LGOL , F ORTRAN ,
C OBOL , PASCAL , C,
J AVA
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ What is it?
3(112)
April 15, 2011
Properties of functional programming languages
Advantages
I
Programs are functions
I
Functions are data
I
Side effects are limited
I
Automatic garbage collection
Drawbacks
I
Unfamiliar β€œway of thinking”
I
Typically interpreted
I
Quite often inefficient execution
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ What is it?
4(112)
April 15, 2011
Properties of functional programming languages
Range of applications
I
Creating prototypes
I
Artificial intelligence
I
Automatic proof systems
Haskell
I
I
Web server mohws [M ARLOW 2002]
http://code.haskell.org/mohws/README
I
Web Authoring System Haskell WASH [T HIEMANN 2002]
I
http://www.informatik.uni-freiburg.de/~thiemann/haskell/WASH
Unix X-Windows system xmonad [S TEWART and J ANSSEN
2007],
http://en.wikipedia.org/wiki/Xmonad
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ What is it?
5(112)
April 15, 2011
Textbooks and more literature
Textbooks
I
Peter H. S ALUS: Functional and Logic Programming Languages, 1998
I
Kenneth C. L OUDEN: Programming Languages, Principles and
Practice, chapter 11, 2002
I
Michael L. S COTT: Programming Languages Pragmatics, chapter 10,
2009
I
Patrick Henry W INSTON and Bertold Klaus Paul H ORN: LISP, 1989
Fundamentals Papers
I
John Warner B ACKUS: Can Programming Be Liberated From the Von
Neumann Style? A Functional Style and its Algebra of Programs,
1978
I
John H UGHES: Why Functional Programming Matters, 1989
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ What is it?
6(112)
April 15, 2011
MIT CADR Lisp-Machine, 1977/1978
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ What is it?
7(112)
April 15, 2011
George Orwell
If thought can corrupt language,
so the language can corrupt our thoughts.
(Politics and the English Language)
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Models of computation
8(112)
April 15, 2011
Models of computation
Definition (Computation)
A computation, in the sense of computer science is the execution of
some instructions by a machine, returning some results.
Definition (Computation Model)
Memory oriented models β‡’ x := x + 1;
Programming languages: C, C++, C#, Java, Perl, . . .
Functional models β‡’ f (x) = x 2 + 2x + 3
Programming languages: Lisp, ML, Haskell, . . .
Logical models β‡’ Brother (x,y) :- Father(x,z), Father(y,z).
Programming languages: Prolog, Make, . . .
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Models of computation
9(112)
April 15, 2011
Memory Oriented Computation Model
Example (Imperative programming: Calculate 1 + 2 + · · · + n)
1. In the drawer with the name i the number n is β€œput”.
2. In the drawer with the name result, the number 0 is β€œput”.
3. Take the numbers from the drawers i and result. β€œPut” the sum of
both numbers into the result drawer.
The number in the i drawer remains unchanged.
4. Take the number for the i drawer and put the decremented by 1
number back.
5. Take the number for the i drawer.
5.1 If the number is equal to 0 terminate. The result of the computation is
contained in the result drawer.
5.2 Otherwise continue with step 3.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Models of computation
10(112)
April 15, 2011
Functional Computation Model
Example (Calculate the sum of the numbers 1, 2, . . . , n)
Use the formula:
1+2+···+n =
n × (n + 1)
2
for the calculation.
Example (Calculate the product n! of a positive natural number n
(factorial function))
n! =
1
(n βˆ’ 1)! × n
if n = 1
if n > 1
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Models of computation
11(112)
April 15, 2011
Definitions
Definition (Function)
I
I
I
A function is a relation between a given set of elements called the
domain and a set of elements called the codomain.
The function associates each element in the domain with at most one
element in the codomain.
If f the name of the function, one can write
y = f (x)
or
f :X β†’Y
I
I
I
x is called an independent variable and y is called dependent
variable.
If f is not defined for all x ∈ X , then f is called a partial function .
If f is defined for all elements of X , then f is called a total function.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Programs as Functions
12(112)
April 15, 2011
Definitions
Definition (Program)
A program is the textual description of a specific calculation.
A program can be seen as a black box.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Programs as Functions
13(112)
April 15, 2011
Definitions
Definition (Progr. lang.: Object, Declaration, Definition, Usage)
A programming language deals with objects like variables, procedures,
functions, data types, files etc.
Declaration
I
I
gives a name to an object
attaches properties to an object
Definition
assigns a value to an object
Usage
access of an object
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Programs as Functions
14(112)
April 15, 2011
Definitions
Definition (Function: Declaration, Definition, Application (Call))
Functions are programming language objects:
function declaration
I
I
name and signature and other properties
formal parameters
function definition
I
I
program text specifying the β€œwhat” and β€œhow”
Note:
function value: β€œprogram code” and not the β€œcomputed value”
function usage: function application, (evaluation, call)
1. replace formal parameters by actual parameters
2. execute calculation given in the definition, using passed parameters
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Programs as Functions
15(112)
April 15, 2011
Definitions
Definition (Variable)
I
Imperative languages
I
I
I
(imperative) variable is a name of a memory cell
Memory contents is changed by means of
assignment operator =
(C, Java)
assign statement
:= (Pascal, Modula)
In mathematics
a (mathematical) variable always designates an arbitrary, but
immutable value.
Example (Variable)
Imperative β€œx = x + 1;”
Mathematical β€œLet x be so that
√
x = 2”
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Programs as Functions
16(112)
April 15, 2011
Definitions
Definition (Purely Functional Language)
Waived a functional programming language on any kind of assignment, it
is called a purely functional language.
Most functional languages, however, have some β€œkind” of assignment,
i. e. of state information that may be changed.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Programs as Functions
17(112)
April 15, 2011
Loops?
Question
Can a purely functional programming language have a while or for loop?
Answer
NO!
Why:
I
I
I
The body of the loop is executed as long as the loop-condition
evaluates to β€œtrue”.
To terminate the loop, the condition must be evaluated to β€œfalse”
eventually.
The loop must contain some imperative variables whose value is
changed, so that the condition may be evaluated to β€œfalse”.
SOS!!! HELP!!!!!!!
How can we program without the presence of loops?????
=β‡’ Recursion!
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Programs as Functions
18(112)
April 15, 2011
L. P ETER D EUTSCH und R OBERT H ELLER
To Iterate is Human, to Recurse is Divine
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Recursion
19(112)
April 15, 2011
To Iterate is Human, to Recurse is Divine
Recursion is . . .
I
an approach to solve problems, which
I
I
I
delivers simple solutions
for some issues,
which would otherwise be difficult to solve!
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Recursion
20(112)
April 15, 2011
To Iterate is Human, to Recurse is Divine
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Recursion
21(112)
April 15, 2011
To Iterate is Human, to Recurse is Divine
Example (Painting a Matryoshka)
1. Paint the doll.
2. If doll can be opened, then
2.1 disassemble the doll, and
2.2 paint that (inner) doll.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Recursion
22(112)
April 15, 2011
To Iterate is Human, to Recurse is Divine
Example (Searching an Encyclopedia)
1. Flip the book open in the middle
2. If the word is contained on the pages, then
2.1 we’re done; else:
2.2 If the searched word is β€œless” then the shown ones, then
2.2.1 continue search within the left half of the book; otherwise
2.2.2 continue search within with the right half of the book.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Recursion
23(112)
April 15, 2011
To Iterate is Human, to Recurse is Divine
Example (Towers of Hanoi)
Rules:
1. At a time, only one plate will be moved;
2. A plate may never be layed on a smaller one
To play in your browser:
http://www.mah-jongg.ch/towerofhanoi
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Recursion
24(112)
April 15, 2011
To Iterate is Human, to Recurse is Divine
Algorithm: Towers of Hanoi
Input
A tower of Hanoi with n plates on a pile Start.
Output
A sequence of moves, which move the plates to the goal pile (Z),
obeying the two rules. The β€œhelper” pile H may be used.
Method β€œMove n plates from S to Z , using helper pile H”
How it’s onging now???????
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Recursion
25(112)
April 15, 2011
To Iterate is Human, to Recurse is Divine
Example (Tower of Hanoi with three plates)
β€œMove n plates from S to Z , using helper pile H”
1. If n = 1
1.1 then move plate from S to Z , finished;
1.2 else
1.2.1 move n βˆ’ 1 plates from S to H using helperpile Z .
1.2.2 print:: β€œremaining plate from S to Z .”
1.2.3 move n βˆ’ 1 plates from H to Z using helper pile S.
V(3, B β†’A, C)
A
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Recursion
B
C
26(112)
April 15, 2011
To Iterate is Human, to Recurse is Divine
Recursion: The General Approach
I
If the problem size is β€œsmall enough”
β‡’ solve it directly.
I
Otherwise
Divide it into one or several small subproblems to
β‡’ Solve each subproblem recursively.
I Join the partial results to get the complete solution.
I
Recursion: How to design it?
I
I
Identify the recursion base, i. e. those cases for which the task can
be solved β€œdirectly” without using the recursive algorithm.
Develop a method to partition the problem.
I
I
I
The sub problems must be smaller in size.
The sub problems should led to the recursion base.
Develop a method to combine the sub solutions in order to get the
complete solution.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Recursion
27(112)
April 15, 2011
To Iterate is Human, to Recurse is Divine
Recursion 6= Top-Down
Top-down: break down a system into its compositional sub-systems
Top-Down
partition into sub tasks
β‡’ solve them using different methods.
Recursion
partition set of input data
β‡’ use same method on smaller problem input size
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Recursion
28(112)
April 15, 2011
To Iterate is Human, to Recurse is Divine
Example (Length of a Character String)
Recursion base
If the string is empty, its length is 0, otherwise
Recursion
Compute the length L of the string without the first letter;
the combined result is L + 1.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Recursion
29(112)
April 15, 2011
Iteration vs. Recursion
Definition (Greatest Common Divisor, Greatest Common
Factor)
The greatest common divisor or greatest common factor of two
natural numbers is the largest positive integer that divides the numbers
without a remainder.
Algorithm: Greatest Common Divisor, iterative
1
2
3
4
5
6
7
8
9
i n t gcd ( i n t a , i n t b )
{
while ( b != 0 ) {
int t = b;
b = a % b;
a = t;
}
return a ;
}
Example (gcd (12, 34); iterative)
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Recursion
30(112)
April 15, 2011
Iteration vs. Recursion
Theorem (Greatest Common Divisor)
Let a, b ∈ N then
gcd(a, b) =
a
gcd(b, a mod b)
if b = 0
otherwise
=β‡’
Algorithm: Greatest Common Divisor, recursive
1
2
3
4
5
6
7
8
i n t gcd ( i n t a , i n t b )
{
i f ( b == 0 ) {
return a ;
} else {
r e t u r n gcd ( b , a % b ) ;
}
}
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Recursion
31(112)
April 15, 2011
Properties
Definition (Referential Transparency)
Depends the outcome of the evaluation of an expression or function only
on the values of the actual parameters, that computation is called to be
referential transparent. In other words, a program that has always the
same effects and output on the same input.
Note
I
In mathematics, each evaluation is referential transparent.
I
In imperative programming computations are often not referential
transparent.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Properties of Functional Programming
2011
32(112)
April 15,
Properties
Consequences of Referential Transparency
I
The order of evaluation of the current parameters is irrelevant:
In contrast to:
foo (2 * i++, 2 * ++i, i)
I
Function calls return to each call with the same arguments, the same
results.
Algorithm: Function with an internal state
1
2
3
4
5
6
int i = 0;
i n t bar ( i n t j )
{
i ++;
return j + i ;
}
I
Note: functions like random() or date() are not referential
transparent!
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Properties of Functional Programming
2011
33(112)
April 15,
Properties
Consequences of Referential Transparency
I
Referentially transparent programs are easier to understand because
there is no β€œcontext” and no β€œcall history”.
I
This property also sometimes called value semantics, as opposed
to pointer semantics or memory semantics of imperative
programming languages.
I
In functional languages, variables identify only values.
I
In imperative languages, variables identify only memory cells.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Properties of Functional Programming
2011
34(112)
April 15,
Properties
Definition (Strict / Lazy Evaluation)
Functional programming languages can be distinguished in terms of their
evaluation strategies of the actual parameters:
I
Using strict evaluation the values of all actual parameters are
computed before the function is called.
This corresponds to behavior of imperative programming languages.
I
Using lazy evaluation the values of an actual parameter is computed
only if it is really needed by the function.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Properties of Functional Programming
2011
35(112)
April 15,
36(112)
April 15,
Evaluation Strategies
Algorithm: Strict / Lazy Evaluation in C
1
2
3
4
5
6
7
8
i n t cond ( i n t a , i n t b , i n t c )
{
if (a) {
return b ;
} else {
return c ;
}
}
9
10
11
r e s = cond ( x < y , x , pow ( s i n ( x ) + cos ( y ) , 2 . 8 ) ) ;
12
13
14
r e s = ( x < y ) ? x : ( pow ( s i n ( x ) + cos ( y ) , 2 . 8 ) ) ) ;
15
16
17
r e s = ( x != 0 ) ? ( y / x ) : 0 ;
18
19
20
21
i f ( c o n d i t i o n && f ( . . . ) ) { . . . } else { . . . }
i f ( c o n d i t i o n | | f ( . . . ) ) { . . . } else { . . . }
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Properties of Functional Programming
2011
Evaluation Strategies
Comparison Strict vs. Lazy Evaluation of Function Arguments
strict
Usually more efficient than lazy, as no β€œunevaluated expression”
have to be passed to the function.
But compilers may apply sophisticated strictness analyses on the
programs in order to perform strict evaluation of arguments
whenever possible.
lazy
Lazy evaluation allows passing of cyclical or potential infinite data
structures to functions.
The parameter passing mechanism, β€œcall-by-name” offered by
languages like Algol, or the C preprocessor, implement that kind of
demand driven evaluation of arguments.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Properties of Functional Programming
2011
37(112)
April 15,
Definitions
Definition (First and Higher Order Programming Languages)
I
I
Programming languages that permit only the declaration and call of
functions, are called first order languages.
Programming languages
I
I
I
which deal with functions as ordinary values,
allow functions to be passed as arguments to other functions
permit functions to be returned as values from functions
are called higher order languages.
I
Functions in higher order languages are called first-class values.
They are is no difference to other first class values such as numbers,
characters, arrays, etc.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Functions as Data
38(112)
April 15, 2011
Definitions
Definition (Function Composition)
Given two functions f : X β†’ Y and g : Y β†’ Z , then
g β—¦f : X β†’ Z
(β€œg composed with f”, or β€œg after f”) is a function and is defined as
(g β—¦ f )(x) = g(f (x))
Example (Function composition)
g β—¦ f , the composition of f and g, for example, (g β—¦ f )(c) = #.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Functions as Data
39(112)
April 15, 2011
Definitions
Remarks
I
g β—¦ f is a β€œautonomous” function, and not just a β€œnested call” of two
functions.
I
β—¦ is an operator over functions, i. e. it accepts two functions as an
argument and returns a function.
Theorem (Function composition)
Function composition is associative.
(h β—¦ g) β—¦ f = h β—¦ (g β—¦ f )
Proof:
show that for any x the left and right side of the proposition hold
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Functions as Data
40(112)
April 15, 2011
Summary
1. Functions have a clear distinction between input parameters and
output results.
2. There are no memory variables, and therefore no assignments.
3. There are no loops but recursion.
4. Functions are referentially transparent:
I
I
the result depends only on the input parameters;
functions have no internal state.
5. Functions are first class values.
6. Evaluation of the input parameters may be strict or lazy.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Introduction/ Functions as Data
41(112)
April 15, 2011
B RIAN K ERNIGHAN
The only way to learn a new programming language is
to write programs in it.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/
42(112)
April 15, 2011
Haskell
Haskell [H UDAK, P EYTON J ONES, and WADLER 1992],
[http://www.haskell.org]
I
Haskell is a standardized, general-purpose purely functional
programming language, with non-strict semantics and strong static
typing.
I
Named after H ASKELL B ROOKS C URRY (1900 – 1982)
I
Defined in 1990, open source, allows rapid development of robust,
concise, correct software.
I
Haskell has strong support for integration with other languages,
built-in concurrency and parallelism, debuggers, profilers, rich
libraries and an active community.
I
Haskell is based on the Lambda Calculus, therefore its logo
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/
43(112)
April 15, 2011
Haskell
Development Environments
The Glasgow Haskell Compiler (GHC) is a development environment for
Haskell and consists of an
I
Interpreter
I
Compiler
I
Debugger
I
Library
GHC may be downloaded from http://haskell.org/ghc for all usual operating
systems (Linux, Mac, Windows)
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/
44(112)
April 15, 2011
Haskell
Manuals and Text Books
I
A Gentle Introduction to Haskell 98 [H UDAK, P ETERSON, and FASEL
1999] and [http://www.haskell.org/tutorial]
I
Yet Another Haskell Tutorial [DAUMEÉ III 2002] and
[http://darcs.haskell.org/yaht/yaht.pdf]
I
A web site with lots of links to Haskel tutorials
[http://www.haskell.org/haskellwiki/Tutorials]
I
Report on the programming language Haskell: a non-strict, purely
functional language version 1.2 [H UDAK, P EYTON J ONES, and
WADLER 1992] and
[http://www.haskell.org/haskellwiki/Language_and_library_specification]
I
The main Haskell web site: [http://www.haskell.org]
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/
45(112)
April 15, 2011
46(112)
April 15, 2011
Haskell
Definition (Haskell-Program)
A Haskell-Program consists of
I
values (Data),
I
function definitions and
I
one result expression.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/
Predefined Data Types
Definition (Data Type)
A data type describes a (finite or infinite) set of values.
The name of a data type begins with a capital letter.
Definition (Predefined Data Types)
Predefined data types are:
Int
Float
Double
Char
String
Bool
integral numbers of arbitrary size
floing point numbers
floing point numbers
(Unicode)-characters
character strings of arbitrary length
boolean truth values
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Values and Functions
47(112)
April 15, 2011
Values
Definition (Atomic Values)
An atomic value is a value of a one of the predefined data types.
Example (Atomic Values)
5
3.141
’a’
"Hello World!"
True, False
an integral number
a floating point number
a character
a character string
truth values
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Values and Functions
48(112)
April 15, 2011
Functions
Definition (Computation)
A computation is the evaluation of an expression to values.
Example (Computation)
2 × sin(45β—¦ ) β‡’ 2
| {z }
| × 0.7071
{z } β‡’ 1.4142
|
{z
}
expression
expression
value
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Values and Functions
49(112)
April 15, 2011
Functions
Definition (Function, - Definition, - Call, - Application)
I
A function maps values onto values.
I
A Haskell-function is defined by one or more equations.
An equation has the form: head = body
I
The function head consists of the function’s name followed by the
formal parameters.
I
The function body is an expression.
I
Names of functions and formal parameters start with a small letter.
I
function call (application):
name arg1 arg2 ...
argn
Algorithm: Haskell: Definition and call of a function: increment
1
2
4
5
6
βˆ’βˆ’ D e f i n i t i o n
increment x = x + 1
βˆ’βˆ’ C a l l / A p p l i c a t i o n
increment 2
==> 3
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Values and Functions
50(112)
April 15, 2011
Functions
Definition (Bracketing, Operator Precedence)
I
Parentheses are only given if necessary.
I
Operator precedence: A function call has a higher precedence than
all other operators.
I
Arithmetic and logical operatores have usual priorities.
I
+ - * / are left-associative.
I
Unary minus must be enclosed in parentheses: 1 * (-2)
Algorithm: Haskell: Bracketing, Operator Precedence
1
2
3
4
5
6
7
8
9
βˆ’βˆ’ F u n c t i o n A p p l i c a t i o n
i n c r e m e n t 2 βˆ— 10
==> 30
i n c r e m e n t ( 2 βˆ— 10)
==> 21
increment increment 2
==> E r r o r
increment ( increment 2)
==> 4
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Values and Functions
51(112)
April 15, 2011
Functions
Algorithm: Haskell: Definition factorial function using two equations
1
2
fac_1 1 = 1
fac_1 n = fac_1 ( nβˆ’1) βˆ— n
Algorithm: Haskell: Definition factorial function using using case distinction
1
2
3
fac_2 n
| n <= 1
= 1
| otherwise = fac_2 ( nβˆ’1) βˆ— n
Observation
The call of the function fac_1 does not terminate for arguments < 1!
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Values and Functions
52(112)
April 15, 2011
The First Self-Written Haskell Function
Greatest Common Divisor
Input
Two different positive integers n and m.
Output
The (gcd) (gcd) of n and m.
Algorithm E UCLID’s algorithm using subtraction:
1. Let n, the larger of the two numbers; if not interchange n and m.
2. Assign n := n βˆ’ m
3. Compare the numbers n and m:
3.1 If n and m are not equal, then proceed with step 1.
3.2 If they are equal then terminate the algorithm: this number is the
greatest common divisor.
Algorithm: Haskell: gcd n m
1
2
3
4
6
7
βˆ’βˆ’ E u c l i d ’ s a l g o r i t h m : n and m are p o s i t i v e numbers
gcd_sub n m | n == m
= n
βˆ’βˆ’ base o f t h e r e c u r s i o n
| n > m
= gcd_sub ( nβˆ’m) m
βˆ’βˆ’ r e c u r s i o n
| otherwise = gcd_sub (mβˆ’n ) n
βˆ’βˆ’ r e c u r s i o n
βˆ’βˆ’ Note : t h e name gcd i s a p r e d e f i n e d f u n c t i o n
βˆ’βˆ’ C a l l : gcd_sub 30 12 ==> 5
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Values and Functions
53(112)
April 15, 2011
Using the Interpreter: ghci
Algorithm: Haskell: Definition of the factorial function in file fac.hs
1
2
3
fac n
| n <= 1
= 1
| otherwise = f a c ( nβˆ’1) βˆ— n
Invocation of the interpreter:
> ghci fac.hs
GHCi, version 6.10.1: http://www.haskell.org/ghc/ :? for help
Loading package ghc-prim ... linking ... done.
Loading package integer ... linking ... done.
Loading package base ... linking ... done.
[1 of 1] Compiling Main
( fac.hs, interpreted )
Ok, modules loaded: Main.
*Main> fac 5
120
*Main> :load fac.hs
[1 of 1] Compiling Main
( fac.hs, interpreted )
Ok, modules loaded: Main.
*Main>
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Compiler & Interpreter: ghc / ghci
54(112)
April 15, 2011
Using the Interpreter: ghci
Commands of the ghci-interpreter
Invocation of the interpreter: ghci file
Command
:help
statement
:
:{\n... lines ...\n:}\n
:type expr
:info name
:load file
:break name
:!Shell-Command
:quit
Arrow keys
Meaning
Show some help text
Evaluate statement
Repeat the last command
Multi-line command
Show the type of zhe expression expr
Show some information about name
Load file
Place a breakpoint for the function name
Execute Shell-Command
Quit the session
Show and edit the commands given last
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Compiler & Interpreter: ghc / ghci
55(112)
April 15, 2011
Simple Data Types
Definition (Tuple)
I
The data type tuple is defined by a the cartesian (cross) product of
one or several other types:
T1 × T2 × · · · × Tn
I
Elements of a tuple are noted within parentheses:
(e1 , e2 , . . . , en )
where ei ∈ Ti .
Algorithm: Haskell: Tupel
3
βˆ’βˆ’ A f u n c t i o n may have a t u p l e as argument ( s )
sum_prod ( x , y ) =
βˆ’βˆ’ as w e l l as r e t u r n i n g i t as r e s u l t :
( x+y , xβˆ—y )
5
βˆ’βˆ’ C a l l :
7
βˆ’βˆ’ Access o f p a r t s o f an t u p l e :
my_fst ( x , y ) = x
βˆ’βˆ’ r e t u r n s t h e f i r s t element o f t h e t u p l e
my_snd ( x , y ) = y
βˆ’βˆ’ r e t u r n s t h e second element
1
2
8
9
sum_prod ( 2 , 3 ) ==> ( 5 , 6 )
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
56(112)
April 15, 2011
User Defined Data Types
Definition (User Defined Data Type)
The keyword data introduces the definition of a user defined data type
syntactically.
1
2
3
data Name = C o n s t r u c t o r
| C o n s t r u c t o r Type . . . .
....
I
A constructor creates a value with that name (Constructor).
I
Constructors may have parameters using tuples specified by the
given Types.
I
Constructors implicitly define functions.
I
The names of the data type and the constructors must begin with a
capital letter.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
57(112)
April 15, 2011
User Defined Data Types
Definition (Enumeration Type)
An enumeration defines a finite set of values, which are named by the
given identifiers.
Algorithm: Haskell: enumeration data type Day, and a function nextDay using it
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
data Day = Monday
| Tuesday
| Wednesday
| Thursday
| Friday
| Saturday
| Sunday
βˆ’βˆ’ Determine t h e n e x t weekday :
nextDay Monday
= Tuesday
βˆ’βˆ’ read : t h e day f o l l o w i n g Mo. i s Tu .
nextDay Tuesday
= Wednesday
nextDay Wednesday = Thursday
nextDay Thursday = F r i d a y
nextDay F r i d a y
= Saturday
nextDay Saturday = Sunday
nextDay Sunday
= Monday
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
58(112)
April 15, 2011
User Defined Data Types
Algorithm: Haskell: a user defined data type Shape
1
2
3
4
5
data Shape =
|
|
|
|
Rectangle F l o a t F l o a t
C i r c l e Float
E l l i p s e Float Float
T r i a n g l e Float Float
Polygon [ ( Float , F l o a t ) ]
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
59(112)
April 15, 2011
User Defined Data Types
Definition (Recursive Data Type)
A recursive data type has in its definition a self-reference.
Definition (List)
A list of items is either
1. empty, i. e. it contains no elements; or
2. a list consists of a β€œfirst element”, named head and the β€œrest of the
list”, named tail of the list.
Algorithm: Haskell: recursive data type (list of numbers: IntList)
1
2
4
5
6
7
8
data I n t L i s t = N i l
| Cons I n t I n t L i s t
βˆ’βˆ’ N i l : Not I n L i s t
βˆ’βˆ’ Cons : L i s t βˆ’C o n s t r u c t o r
βˆ’βˆ’ N i l and Cons are c o n s t r u c t o r s
βˆ’βˆ’ N i l c o n t r u c t o r has no arguments
βˆ’βˆ’ Cons t a k e s two arguments :
βˆ’βˆ’
a number ( o f t y p e I n t )
βˆ’βˆ’
a l i s t ( w i t h t h e t y p e I n t L i s t d e f i n e d here )
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
60(112)
April 15, 2011
User Defined Data Types
Definition (Binary Tree)
A binary tree of items is either
1. empty, i. e. it contains no elements and is called a leaf ; or
2. a tree consists of a node , which has two children which are itself
trees.
Algorithm: Haskell: recursive data type (binary tree of numbers: IntTree)
1
2
data I n t T r e e = Leaf
| Node I n t I n t T r e e I n t T r e e
βˆ’βˆ’ has no c h i l d r e n
βˆ’βˆ’ ( i n n e r ) node
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
61(112)
April 15, 2011
User Defined Data Types
Definition (Value Constructor)
A value constructor is a function, which creates a value of the
constructor’s data type. Value constructors may have arguments.
Algorithm: Haskell: value constructors
1
2
βˆ’βˆ’ Value o f t h e data t y p e Day
Monday
4
5
6
7
8
βˆ’βˆ’ Values o f t h e t y p e IntList
Nil
Cons 1 N i l
Cons 1 ( Cons 2 N i l )
Cons 1 ( Cons 2 ( Cons 3 N i l ) )
10
11
12
13
14
15
16
βˆ’βˆ’ Values o f t h e t y p e IntTree
Leaf
Node 1 Leaf Leaf
Node 1 ( Node 2 Leaf Leaf ) Leaf
βˆ’βˆ’
Node 1
βˆ’βˆ’
/
\
βˆ’βˆ’ Node 2 Leaf
βˆ’βˆ’
/
\
βˆ’βˆ’ Leaf Leaf
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
62(112)
April 15, 2011
Functions over Recursive Data Types
Definition (Function Definition based on (recursive) Data
Types)
In the head of a function definition
I
a formal parameter, or
I
a value constructor of a given data type
may be given.
Definition (Function Evaluation based on (recursive) Data
Types)
Semantics of the evaluation a function:
I
The equations defining the function are β€œchecked” in their textual
order.
I
If the passed actual parameter matches the pattern given as
formal parameter of an equation, the right hand side of the equation
defines the result of this function call.
I
The patterns may be arbitrary complex.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
63(112)
April 15, 2011
User Defined Data Types
Algorithm: Haskell: a user defined data type Shape and the function area
1
2
3
4
5
7
8
9
10
11
12
13
15
16
data Shape =
|
|
|
|
Rectangle F l o a t F l o a t
C i r c l e Float
E l l i p s e Float Float
T r i a n g l e Float Float
Polygon [ ( Float , F l o a t ) ]
βˆ’βˆ’ compute t h e area o f t h e Shape :
area : : Shape βˆ’> F l o a t
area ( Rectangle h e i g h t w i d t h ) = h e i g h t βˆ— w i d t h
area ( C i r c l e
diameter )
= diameter βˆ— diameter βˆ— pi / 4
area ( E l l i p s e
height width ) = height
βˆ— width
βˆ— pi / 4
area ( T r i a n g l e h e i g h t w i d t h ) = h e i g h t
βˆ— width
/ 2
area ( Polygon
list )
= 0 βˆ’βˆ’ more complex f o r m u l a
βˆ’βˆ’ A p p l i c a t i o n
βˆ’βˆ’ area ( C i r c l e 1 )
==>
0.7853982
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
64(112)
April 15, 2011
Functions over Recursive Data Types
Algorithm: Haskell: length of a list: length_IntList
1
2
data I n t L i s t = N i l
| Cons I n t I n t L i s t
4
5
length_IntList Nil
= 0
l e n g t h _ I n t L i s t ( Cons number l i s t ) = 1 + l e n g t h _ I n t L i s t
list
Algorithm: Haskell: Calling length_IntList
1
2
3
4
5
6
length_IntList Nil
==> 0
l e n g t h _ I n t L i s t ( Cons 1 N i l )
==> 1
l e n g t h _ I n t L i s t ( Cons 1 ( Cons 2 N i l ) )
==> 2
Algorithm: Haskell: sum_IntList: Sum of all elements of an IntList
1
2
3
4
5
6
sum_IntList Nil
= 0
s u m _ I n t L i s t ( Cons number l i s t ) = number + s u m _ I n t L i s t l i s t
βˆ’βˆ’ C a l l i n g t h e f u n c t i o n w i t h i n t h e I n t e r p r e t e r
s u m _ I n t L i s t Cons 1 ( Cons 2 ( Cons 3 N i l ) )
==> 6
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
65(112)
April 15, 2011
Functions over Recursive Data Types
Algorithm: Haskell: Sum of all nodes in a tree binary: sum_t
1
2
data I n t T r e e = Leaf
| Node I n t I n t T r e e I n t T r e e
4
5
βˆ’βˆ’ sum o f t h e numbers i n a l l nodes
sum_t Leaf = 0
βˆ’βˆ’ t h e empty t r e e
7
8
9
10
βˆ’βˆ’ The sum o f a
βˆ’βˆ’
t h e number
βˆ’βˆ’
sum o f i t s
βˆ’βˆ’
sum o f i t s
12
sum_t ( Node number l e f t r i g h t ) = number + sum_t l e f t + sum_t r i g h t
14
15
16
17
18
βˆ’βˆ’ o r u s i n g a n o t h e r s y n t a x :
sum_t2 t r e e =
case ( t r e e ) of
Leaf
βˆ’> 0
( Node number l e f t r i g h t ) βˆ’> number + sum_t2 l e f t + sum_t2 r i g h t
20
21
22
23
24
βˆ’βˆ’ C a l l o f t h e f u n c t i o n s :
βˆ’βˆ’ sum_t ( Node 1 Leaf Leaf )
1
βˆ’βˆ’
==>
βˆ’βˆ’ sum_t ( Node 1 ( Node 2 Leaf Leaf ) Leaf )
3
βˆ’βˆ’
==>
tree is
g i v e n i n t h e node p l u s
" l e f t " children plus
" right " children .
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
66(112)
April 15, 2011
Lists
Definition (Built in Syntax for Lists)
To represent lists a special syntax is used in Haskell:
I [ ] constructor for the empty list.
I : constructor a list element, consisting of a data item and a list.
I head : tail value constructor
I All data elements of the list must have the same type.
I The :-operator is right-associative
1:2:3:[] has to read as 1:(2:(3:[])).
Example (Lists)
1:[]
β‡’β€œlist with one element”
1:2:[]
β‡’β€œlist with two elements”
1:2:3:[]
β‡’β€œlist with three elements”
[1, 2, 3]
β‡’β€œlist with three elements”
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
67(112)
April 15, 2011
Lists
Algorithm: Haskell: functions over lists (length, sum, append, reverse)
1
2
3
5
6
7
9
10
11
13
14
15
16
18
19
20
βˆ’βˆ’ l e n g t h o f a l i s t
my_length [ ]
= 0
my_length ( hd : t l )
= 1 + my_length t l
βˆ’βˆ’ ( hd = head , t l = t a i l )
βˆ’βˆ’ sum over a l l l i s t elements
my_sum
[]
= 0
my_sum
( hd : t l )
= hd + my_sum t l
βˆ’βˆ’ append an element a t t h e end o f a l i s t
my_append x [ ]
= x:[]
my_append x ( hd : t l ) = hd : ( my_append x t l )
βˆ’βˆ’ r e v e r t i n g a l i s t
βˆ’βˆ’ Idea: β€œappend hd at the end of the reverted list tl.”
my_reverse [ ]
= []
my_reverse ( hd : t l ) = my_append hd ( my_reverse t l )
βˆ’βˆ’ f u n c t i o n c a l l
βˆ’βˆ’ my_reverse [ 1 , 2 , 3 ]
βˆ’βˆ’
==> [ 3 , 2 , 1 ]
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
68(112)
April 15, 2011
Data Type (Signature) of Functions
Definition (Data Type (Signature) of Functions)
I
A function with only one argument and one result has the data type
1
I
T1 βˆ’> T2
If the function has more than one argument, it is written using the
Curry-notation:
1
T1 βˆ’> T2 βˆ’> T3 βˆ’> · · · βˆ’> Tn
Note: the β†’ operator is right-associative:
T1 β†’ T2 β†’ T3 β†’ · · · β†’ Tn
has to be read as:
(T1 β†’ (T2 β†’ (T3 β†’ · · · (Tnβˆ’1 β†’ Tn ) · · · )))
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
69(112)
April 15, 2011
Data Type (Signature) of Functions
Notes
I
The Haskell data type
T1 β†’ T2 β†’ T3 β†’ · · · β†’ Tn
is semantically equivalent to the usual mathematics notation:
T1 × T2 × . . . Ti β†’Ti+1 × Ti+2 × · · · × Tn
Haskell does not specify, which arguments are input and output
arguments.
I
Haskell, however, regards that mathematical type definition as the
type of a function with only one input and one output parameter, but
both are tuples!
1
(T1 , T2 , . . . , Ti ) βˆ’> (Ti+1 , Ti+2 , . . . , Tn )
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
70(112)
April 15, 2011
Data Type (Signature) of Functions
Algorithm: Type of a function
1
2
4
5
7
8
10
11
13
14
15
17
18
f : : I n t βˆ’> I n t βˆ’> I n t
f x y = x + y
: type f
f : : I n t βˆ’> I n t βˆ’> I n t
: type f 1 2
f 1 2 : : Int
: type f 1
f 1 : : I n t βˆ’> I n t
g = f 1
: type g
g : : I n t βˆ’> I n t
g 2
==> 3
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
71(112)
April 15, 2011
Data Type (Signature) of Functions
Definition (Partial Evaluation, Ξ·-Reduction)
Let f be a function f :: T1 β†’ T2 β†’ · · · β†’ Tn β†’ T with n arguments.
If f is evaluated with m < n actual parameters, then result is a function
f 0 :: Tm+1 β†’ · · · β†’ Tn β†’ T
which takes only n βˆ’ m parameters.
This is called a partial evaluation of a function.
In mathematics that is named as Ξ·-reduction (eta-reduction).
Algorithm: Example of partial evaluated functions
1
2
4
5
6
(+1)
(^2)
βˆ’βˆ’
βˆ’βˆ’
Increment
Square
βˆ’βˆ’ c a l l i n g such f u n c t i o n s :
(+1) 2
βˆ’βˆ’ ==> 3
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
72(112)
April 15, 2011
User Defined Data Types
Problem:
1
2
3
4
data I n t L i s t =
|
data F l o a t L i s t
|
Nil
IntCons I n t I n t L i s t
= Nil
FloatCons F l o a t F l o a t L i s t
Definition (Type Variables, Polymorphs Data Types)
I
Type variables are place holders for data types, which may occur in
user defined data types.
I
Types using in their definition type variables are named polymorph
types.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
73(112)
April 15, 2011
User Defined Data Types
Algorithm: Haskell: a polymorph list and a function operating on it (my_length)
1
2
4
5
7
8
10
11
12
data C o n s L i s t t = N i l
| Cons t ( C o n s L i s t t )
βˆ’βˆ’ t i s a t y p e v a r i a b l e
βˆ’βˆ’ my_length determines t h e l e n g t h o f a l i s t
my_length : : C o n s L i s t t βˆ’> I n t
βˆ’βˆ’ Type o f t h e f u n c t i o n
my_length N i l
= 0
my_length ( Cons hd t l ) = 1 + my_length t l
βˆ’βˆ’ c a l l i t :
βˆ’βˆ’
my_length
βˆ’βˆ’ ==> 3
( Cons 3 ( Cons 2 ( Cons 1 N i l ) ) )
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
74(112)
April 15, 2011
User Defined Data Types
Algorithm: Haskell: a polymorph list and a function operating on it (my_add)
1
2
4
5
6
7
data C o n s L i s t t = N i l
| Cons t ( C o n s L i s t t )
βˆ’βˆ’ should add a l l v a l u e s o f t y p e t , e . g . I n t , i n t h e l i s t
my_add : : C o n s L i s t t βˆ’> t
my_add N i l
= 0
my_add ( Cons hd t l ) = hd + my_add t l
Outcome of ghci when compiling my_add
[1 of 1] Compiling Main
( error-func-cons-list-sum.hs, interpreted )
error-func-cons-list-sum.hs:6:24:
Could not deduce (Num t) from the context ()
arising from the literal β€˜0’ at error-func-cons-list-sum.hs:6:24
Possible fix:
add (Num t) to the context of the type signature for β€˜my_add’
In the expression: 0
In the definition of β€˜my_add’: my_add Nil = 0
Failed, modules loaded: none.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
75(112)
April 15, 2011
User Defined Data Types
Type System
I
I
I
I
Haskell’s type system determines facts about types used in functions
my_add Nil = 0
therefore the function returns a number.
my_add (Cons hd tl) = hd + my_add tl
therfore hd must be a number, but that’s not specified in the function’s
type.
Type classes, as shown below, will help to solve these problems.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
76(112)
April 15, 2011
Generalization of Types
Definition (Type Class)
Comparable to object oreiented programming languages, Haskell provides
the concept of type clases.
I
A type class defines functions and their types, which must be
provided by all instances of that type class.
I
A type class my restrict properties of their type instances.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
77(112)
April 15, 2011
78(112)
April 15, 2011
Generalization of Types
Definition (Type Class Eq )
The standard type class Eq is defined as:
1
2
1
2
3
class Eq a where
( = = ) , ( / = ) : : a βˆ’> a βˆ’> Bool
instance Eq ( Float , F l o a t ) where
( x , y ) == ( u , v ) = x == u && y == v
v1 / = v2 = not ( v1 == v2 )
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
Generalization of Types
Algorithm: Haskell: Polymorphic definition of list equality as instance of the type class Eq
1
2
3
4
5
instance Eq t => Eq [ t ] where
[ ] == [ ] = True
[ ] == _ = False
( x : xs ) == ( y : ys ) | x == y
= xs == ys
| otherwise = False
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
79(112)
April 15, 2011
Generalization of Types
Inhertiance
Haskell provides the concept of inhertiance as known from object
oreinted languages. In the following example, the type class Ord inherits
properties and operators from the super class Eq.
1
2
class Eq a => Ord a where
( < ) , ( <=) , ( >=) , ( > ) : : a βˆ’> a βˆ’> Bool
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
80(112)
April 15, 2011
Generalization of Types
Definition (Standard Type Classes)
Haskell provides many standard type classes, the most important are:
Class Operations on the elements of instance types
Eq
Values are comparable on equality == and inequality /=
Ord
Values are totally orderd and may be compared using <, <=, >, >=
Instances of Ord must also be instances of Eq
Enum Privides the syntax notation of value intervals [a..b].
Instances of Enum must also be instances of Ord
Num
Values represent numbers (e.g. Int, Float).
Arithmetic operatores are defined for them.
Show Values may be converted automatically to strings, e.g. for output.
Read Strings may be converted automatically to values (e.g. for input).
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
81(112)
April 15, 2011
Data Types: Summary
Definition (Data Type)
A data type is a set of values together with operations and properties on
the values.
Definition (Type Constructors)
A type constructor is a β€œstatement” of a programming language which is
used to create new data types from already given data types.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
82(112)
April 15, 2011
Data Types: Summary
Type Constructors in Haskell
Synonym defines another name for a type
1
type T = . . .
Tupel, cartesian product mathematically: T1 × T2 × · · · × Tn
1
2
type T = ( T1 , T2 , . . . , Tn ) βˆ’βˆ’ named t y p l e data t y p e
(e1 , e2 , . . . , en )
βˆ’βˆ’ a t u p l e v a l u e c o n s t r u c t o r
Union type mathematically: T1 βˆͺ T2 βˆͺ · · · βˆͺ Tn
1
2
3
4
5
data T =
|
|
|
Ti x y z
T1 X Y Z . . . βˆ’βˆ’ d e f i n i t i o n
T2 . . .
...
Tn . . .
βˆ’βˆ’ v a l u e c o n s t r u c t o r w i t h parameters
Calling a value constructor Ti x y z which is parameterized with values
x ∈ X , y ∈ Y , z ∈ Z , ... creates a value of type Ti
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
83(112)
April 15, 2011
Data Types: Summary
Type Constructors in Haskell
List, [T] mathematically: T βˆ—
1
2
[T]
βˆ’βˆ’ d e f i n i t i o n
[e1 , e2 , . . . , en ] βˆ’βˆ’ v a l u e c o n s t r u c t o r o f a l i s t w i t h n elements
Function type, T1 β†’ T2 mathematically a function with domain T1 and
codomain T2
1
2
3
f : : T1 βˆ’> T2
f x = .......
βˆ’βˆ’ d e f i n i t i o n
βˆ’βˆ’ I m p l e m e n t a t i o n by g i v i n g e q u a tu i o n s
βˆ’βˆ’ w i t h p a t t e r n matching
Polymorphic types instead of a type a type variable may be used
1
2
type A s s o c i a t i v e L i s t a b = [ ( a , b ) ]
βˆ’βˆ’ a and b are t y p e v a r i a b l e s
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
84(112)
April 15, 2011
Data Types: Summary
Type Constructors in Haskell
Type classes
1
2
3
4
class Eq a where
( = = ) : : a βˆ’> a βˆ’> Bool
( / = ) : : a βˆ’> a βˆ’> Bool
x / = y = not ( x == y )
5
6
7
8
9
10
11
13
14
15
17
18
19
βˆ’βˆ’
βˆ’βˆ’
βˆ’βˆ’
βˆ’βˆ’
== i s an overloaded o p e r a t o r
a i s a type v a r i a b l e
an a b s t r a c t i m p l e m e n t a t i o n
o f /= u s i n g ==
βˆ’βˆ’ Extending a t y p e :
data T =
...
...
d e r i v i n g Eq
βˆ’βˆ’ now T i n h e r i t s t h e o p e r a t o r s and
βˆ’βˆ’ f u n c t i o n s d e f i n e d by Eq
βˆ’βˆ’ I m p l e n t i n g t h e o p e r a t i o n s o f T
instance Eq T where
x == y = . . . . .
βˆ’βˆ’ R e s t r i c t i o n s on t h e t y p e v a r i a b l e s t1
f : : Eq t 1 => t 1 βˆ’> t 2
βˆ’βˆ’ t1 has t o be a member
βˆ’βˆ’ o f t h e t y p e c l a s s Eq
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
85(112)
April 15, 2011
Predefined Functions and Operators for Lists
Algorithm: Haskell:Predefined Functions and Operators for Lists (head, tail, ++)
1
2
3
4
5
7
8
9
11
12
13
14
βˆ’βˆ’ Head o f a l i s t
head : : [ t ] βˆ’> t
head ( hd : t l ) = hd
βˆ’βˆ’ Note :
βˆ’βˆ’
head [ ]
r e s u l t s in a runtime e r r o r
βˆ’βˆ’ T a i l o f a l i s t
t a i l : : [ t ] βˆ’> [ t ]
t a i l ( hd : t l ) = t l
βˆ’βˆ’ Concatenation o f l i s t s
( + + ) : : [ t ] βˆ’> [ t ] βˆ’> [ t ]
[ ] ++
list = list
( hd : t l ) ++ l i s t = hd : ( t l ++ l i s t )
17
βˆ’βˆ’ A p p l i c a t i o n o f t h e o p e r a t o r s and f u n c t i o n s
[ 1 , 2 , 3 ] ++ [ 3 , 4 , 5 ] βˆ’βˆ’ => [ 1 , 2 , 3 , 3 , 4 , 5 ]
19
head ( [ 1 , 2 , 3 ] ++ [ 3 , 4 , 5 ] )
βˆ’βˆ’ => 1
21
t a i l ( [ 1 , 2 , 3 ] ++ [ 3 , 4 , 5 ] )
βˆ’βˆ’ => [ 2 , 3 , 4 , 5 ]
16
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
86(112)
April 15, 2011
Predefined Functions and Operators for Lists
A
B
C
Algorithm: Haskell: Tower of Hanoi using lists
1
2
3
5
6
8
9
10
11
12
14
15
move [ from
to ]
βˆ’βˆ’ hanoi : : count
hanoi : :
I n t βˆ’>
[ ( Char , Char ) ]
hanoi ( n ) = moveit ( n , ’ B ’ , ’ A ’ , ’C ’ )
[ ( Char , Char ) ]
moveit : : ( I n t , Char , Char , Char ) βˆ’>
βˆ’βˆ’
count from t o
helper
move from t o
moveit ( 0 , _ , _ , _ ) = [ ]
moveit ( n , from , to , u s i n g ) =
moveit ( n βˆ’ 1 , from , using , t o )
++ [ ( from , t o ) ]
++ moveit ( n βˆ’ 1 , using , to , from )
βˆ’βˆ’ c a l l : hanoi 3
βˆ’βˆ’ r e s u l t s i n : [ ( 1 , 3 ) , ( 1 , 2 ) , ( 3 , 2 ) , ( 1 , 3 ) , ( 2 , 1 ) , ( 2 , 3 ) , ( 1 , 3 ) ]
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Data Types
87(112)
April 15, 2011
Higher Order Functions
Definition (Functions are Values)
Funktionen are values an may be
I
passed as actual arguments to other functions;
I
the result of evaluating an expression.
In imperative languages that concept is known under the name function
pointer.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Functions as Values
88(112)
April 15, 2011
Higher Order Functions
Algorithm: Haskell: Functions as values (twice)
1
2
3
5
6
7
8
βˆ’βˆ’ Apply a f u n c t i o n t w i c e onto an argument :
t w i c e _ s i m p l e : : ( t βˆ’> t ) βˆ’> t βˆ’> t
twice_simple f x = f ( f x )
fac
fac
|
|
: : I n t βˆ’> I n t
βˆ’βˆ’ compute t h e f a c t o r i a l number
n
n <= 1
= 1
otherwise = f a c ( nβˆ’1) βˆ— n
10
11
12
βˆ’βˆ’ Apply fac onto t h e r e s u l t o f fac :
βˆ’βˆ’ t w i c e _ s i m p l e f a c 3
βˆ’βˆ’
==> 720
14
15
16
βˆ’βˆ’ t w i c e r e t u r n s a new f u n c t i o n ( new s y n t a x ) :
t w i c e : : ( t βˆ’> t ) βˆ’> ( t βˆ’> t )
βˆ’βˆ’ Note : t h e d i f f e r e n t t y p e
twice f = f . f
18
19
20
βˆ’βˆ’ c a l l i t :
βˆ’βˆ’ t w i c e f a c 3
βˆ’βˆ’
==> 720
22
23
βˆ’βˆ’ what ’ s about :
βˆ’βˆ’
twice ( fac 3)
????
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Functions as Values
89(112)
April 15, 2011
Higher Order Functions
Algorithm: Haskell: Applying a function to all elements of a list (map, filter)
1
2
3
5
6
7
9
10
11
12
14
15
16
18
19
21
22
map : : ( a βˆ’> b ) βˆ’> [ a ] βˆ’> [ b ]
map f [ ]
= []
map f ( hd : t l ) = f hd : map f t l
βˆ’βˆ’ Example : square a l l elements o f a l i s t
map ( ^ 2 ) [ 1 , 2 , 3 , 4 ]
==> [ 1 , 4 , 9 , 1 6 ]
f i l t e r : : ( t βˆ’> Bool ) βˆ’> [ t ] βˆ’> [ t ]
filter f []
= []
f i l t e r f ( hd : t l ) | f hd
= hd : f i l t e r f t l
| otherwise = f i l t e r f t l
βˆ’βˆ’ Example : remove a l l even numbers o f a l i s t
f i l t e r odd [ 1 , 2 , 3 , 4 , 5 , 6 , 7 ]
==> [ 1 , 3 , 5 , 7 ]
βˆ’βˆ’ Example x 4 f o r each element x o f a l i s t :
square_square l i s t = map ( t w i c e ( ^ 2 ) ) l i s t
square_square [ 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 1 0 ]
==> [1 ,16 ,81 ,256 ,625 ,1296 ,2401 ,4096 ,6561 ,10000]
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Functions as Values
90(112)
April 15, 2011
Haskell-Syntax
Definition (If-expresssion)
1
2
3
if
...
then . . .
else . . .
4
5
6
7
8
9
βˆ’βˆ’ Example :
min a b = i f
then
else
βˆ’βˆ’ r e t u r n s t h e
a < b
a
b
s m a l l e r o f both v a l u e s
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Some Algorithms over Lists
91(112)
April 15, 2011
92(112)
April 15, 2011
Search the Minimum in a list
Algorithm: Haskell: Search the minimum in a list
1
2
3
4
5
7
m i n _ l i s t : : Ord t => [ t ] βˆ’> t
min_list [ x ]
= x
m i n _ l i s t ( hd : t l ) = i f hd < m i n _ l i s t t l
then hd
else m i n _ l i s t t l
βˆ’βˆ’ C a l l : m i n _ l i s t [ 9 , 1 , 3 , 2 ]
Algorithm: Haskell: Search the minimum in a list, simlyfied by using let
1
2
3
4
5
6
8
m i n _ l i s t : : Ord t => [ t ] βˆ’> t
min_list [ x ]
= x
m i n _ l i s t ( hd : t l ) = l e t t l _ m i n = m i n _ l i s t t l
in
if
hd < t l _ m i n
then hd
else t l _ m i n
βˆ’βˆ’ C a l l : m i n _ l i s t [ 9 , 1 , 3 , 2 ]
Time complexity of the algorithm is O(n2 ). Why?
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Some Algorithms over Lists
Search the Minimum in a list
Algorithm: Haskell: Search the minimum in a list (linear time complexity)
1
2
3
5
6
7
8
9
11
m i n _ l i s t : : Ord t => [ t ] βˆ’> t
min_list [ x ]
= x
m i n _ l i s t ( hd : t l ) = m i n _ l i s t 1 hd t l
m i n _ l i s t 1 : : Ord t => t βˆ’> [ t ] βˆ’> t
min_list1 x [ ]
= x
m i n _ l i s t 1 x ( hd : t l ) = i f
x < hd
then m i n _ l i s t 1 x t l
else m i n _ l i s t 1 hd t l
βˆ’βˆ’ C a l l : m i n _ l i s t [ 9 , 1 , 3 , 2 ]
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Some Algorithms over Lists
93(112)
April 15, 2011
Sorting
Algorithm: Insertion Sort
I
Function: insertIntoList element list
Add an β€œelement” into an already sorted β€œlist”, so that the resulting list
remains sorted.
I
Function: iSort list
Sort the (unsorted) β€œlist” by:
1. start with L the list empty, it’s already sorted;
2. use insertIntoSortedList to add the elements of the unsorted β€œlist”
into an already sorted result list L.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Some Algorithms over Lists
94(112)
April 15, 2011
Sorting
Algorithm: Haskell: polymorphic sorting of a list: insertion sort
1
2
3
4
5
7
8
10
11
12
14
15
i n s e r t I n t o L i s t : : Ord t => t βˆ’> [ t ] βˆ’> [ t ]
insertIntoList e [] = [e]
i n s e r t I n t o L i s t e ( hd : t l )
| e < hd
= e : hd : t l
| otherwise = hd : i n s e r t I n t o L i s t e t l
βˆ’βˆ’ c a l l :
βˆ’βˆ’ i n s e r t I n t o L i s t 7 [ 2 , 3 , 6 , 9 ]
i S o r t : : Ord t => [ t ] βˆ’> [ t ]
iSort [ ]
= []
i S o r t ( hd : t l ) = i n s e r t I n t o L i s t hd ( i S o r t t l )
βˆ’βˆ’ c a l l :
βˆ’βˆ’ i S o r t [ 1 0 , 8 , 4 , 1 , 2 , 3 ]
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Some Algorithms over Lists
95(112)
April 15, 2011
Sorting
Algorithm: Quicksort
Input
A listeL of items, which may be compared pairwise.
Output
A sorted list L0 , consisting of the elements of L.
Method
1. The empty list is already sorted
2. Otherwise:
2.1 Chose an element p from L, the so called pivot element.
2.2 Partition L into two sub lists Lleft and Lright , so that
I
I
all elements of Lleft are ≀ p.
all elements of Lright are > p.
2.3 Sort Lleft and Lright .
2.4 The result list L0 is the concatenation of Lleft , p, Lright .
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Some Algorithms over Lists
96(112)
April 15, 2011
Sorting
Algorithm: Haskell: Quicksort
1
2
3
4
5
7
8
q u i c k s o r t : : Ord t => [ t ] βˆ’> [ t ]
quicksort [ ]
= []
q u i c k s o r t ( hd : t l ) = q u i c k s o r t ( f i l t e r ( < hd ) t l )
++ [ hd ]
++ q u i c k s o r t ( f i l t e r ( >= hd ) t l )
βˆ’βˆ’ C a l l :
quicksort [4 ,8 ,1 ,10 ,1 ,22 ,0 ,22]
βˆ’βˆ’ ==> [ 0 , 1 , 1 , 4 , 8 , 1 0 , 2 2 , 2 2 ]
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Some Algorithms over Lists
97(112)
April 15, 2011
Syntax
Definition (Let-expression, Where-Clauses)
Haskell allows the declaration of local names, which are valid only within a
function.
The keyword let defines a name in the expression:
1
2
3
l e t n1 = . . . .
n2 = . . . .
i n . . . n1 . . . . n2 . . .
The keyword where is part of the syntax of a function definition and case
expressions:
1
f
. . . = . . . n1 . . . . n2 . . .
where n1 = . . . .
n2 = . . . .
f
...
2
3
5
6
7
8
| . . . n1 . . . = . . . n2 . . .
| . . . n1 . . . = . . . n2 . . .
where n1 = . . . .
n2 = . . . .
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Some Algorithms over Lists
98(112)
April 15, 2011
Quicksort using the new syntax
Algorithm: Haskell: Quicksort – more readable using let
1
2
3
4
5
6
7
q u i c k s o r t : : Ord t => [ t ] βˆ’> [ t ]
quicksort [ ]
= []
q u i c k s o r t ( hd : t l ) =
l e t p i v o t = hd
l e f t = quicksort ( f i l t e r (< pivot ) t l )
r i g h t = q u i c k s o r t ( f i l t e r ( >= p i v o t ) t l )
i n l e f t ++ [ p i v o t ] ++ r i g h t
Algorithm: Haskell: Quicksort – more readable using where
1
2
3
4
5
6
7
q u i c k s o r t : : Ord t => [ t ] βˆ’> [ t ]
quicksort [ ]
= []
q u i c k s o r t ( hd : t l ) = l e f t ++ [ p i v o t ] ++ r i g h t
where
p i v o t = hd
l e f t = quicksort ( f i l t e r (< pivot ) t l )
r i g h t = q u i c k s o r t ( f i l t e r ( >= p i v o t ) t l )
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Some Algorithms over Lists
99(112)
April 15, 2011
Lazy Evaluation
Question
What does the following function compute?
Algorithm: Haskell: the function bottom
1
2
4
5
βˆ’βˆ’ D e f i n i t i o n :
bottom = bottom
βˆ’βˆ’ C a l l
bottom
The call of bottom does not terminate!
Definition (Bottom, βŠ₯ )
The β€œvalue” of a non-terminating expression is named bottom and is
denoted by βŠ₯ .
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Lazy Evaluation
100(112)
April 15, 2011
Lazy Evaluation
Question
What does the following functions compute?
Algorithm: Haskell: using the function bottom
1
2
3
4
6
7
8
βˆ’βˆ’ D e f i n i t i o n s :
bottom = bottom
f x = 1
g x = x
βˆ’βˆ’ C a l l s
f 100
f bottom
βˆ’βˆ’
βˆ’βˆ’
t e r m i n a t e s and r e t u r n s 1
t e r m i n a t e s and r e t u r n s 1
g 100
g bottom
βˆ’βˆ’
βˆ’βˆ’
t e r m i n a t e s and r e t u r n s 100
does n o t t e r m i n a t e
10
11
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Lazy Evaluation
101(112)
April 15, 2011
Lazy Evaluation
Definition (Strict, and Lazy Function evaluation)
I
A function f is named strict, if f βŠ₯ evaluates to βŠ₯.
This means, that applying f to a non-terminating argument, f does
terminate itself.
I
A function is named lazy (not strict), if f βŠ₯ is not equal to βŠ₯.
With other words f βŠ₯ terminates.
Note
I
In imperative programming languages (C, C++, Java), functions are
always evaluated strictly.
I
Haskell allows the lazy evaluation of function arguments.
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Lazy Evaluation
102(112)
April 15, 2011
Lazy Evaluation
Question
What does the following functions compute?
Algorithm: Haskell: using lazy evaluation
1
2
3
5
6
7
9
10
12
13
14
15
ones = 1 : ones
βˆ’βˆ’ C a l l
ones
βˆ’βˆ’ doesn ’ t t e r m i n a t e and r e t u r n s a l i s t o f 1
numsFrom n = n : numsFrom ( n +1)
βˆ’βˆ’ C a l l
numsFrom 5
βˆ’βˆ’ doesn ’ t t e r m i n a t e and r e t u r n s l i s t o f numbers 5 , 6 , 7 , . . .
βˆ’βˆ’ S i m p l i f y t o :
[5 . . ]
βˆ’βˆ’ doesn ’ t t e r m i n a t e and r e t u r n s l i s t o f numbers 5 , 6 , 7 , . . .
squares = map ( ^ 2 ) [ 0 . . ]
βˆ’βˆ’ A u f r u f
squares
βˆ’βˆ’ doesn ’ t t e r m i n a t e an r e t u r n s l i s t o f square numbers
βˆ’βˆ’ 0 , 1 , 4 , 9 , 16 , . . .
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Lazy Evaluation
103(112)
April 15, 2011
Lazy Evaluation
Question
How can we get a finite slice from those infinite lists?
Algorithm: Haskell: beginning of a list
1
2
3
5
6
7
9
10
11
13
14
16
17
βˆ’βˆ’ I n p u t : a number n and a l i s t l
βˆ’βˆ’ Output : t h e l i s t c o n s i s t i n g o f t h e f i r s t n elements o f l
my_take : : I n t βˆ’> [ t ] βˆ’> [ t ]
my_take 0 _
= []
my_take _ [ ]
= []
my_take n ( h : t ) = h : my_take ( nβˆ’1) t
βˆ’βˆ’ C a l l
my_take 2 [ 1 , 2 , 3 , 4 ]
==> [ 1 , 2 ]
my_take 10 [ 1 , 2 , 3 , 4 ]
==> [ 1 , 2 , 3 , 4 ]
my_take 2 [ 1 . . ]
==> [ 1 , 2 ]
why????
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Lazy Evaluation
104(112)
April 15, 2011
Lazy Evaluation
Answer to the question
How can we get a finite slice from those infinite lists?
Algorithm: Haskell: List of the first n square numbers
1
2
3
= map ( ^ 2 ) [ 0 . . ]
squares
βˆ’βˆ’ C a l l
squares
βˆ’βˆ’ doesn ’ t t e r m i n a t e an r e t u r n s l i s t o f square numbers
βˆ’βˆ’ 0 , 1 , 4 , 9 , 16 , . . .
4
6
7
take 5 squares
βˆ’βˆ’ ==> [ 0 , 1 , 4 , 9 , 1 6 ]
βˆ’βˆ’ Terminates
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Lazy Evaluation
105(112)
April 15, 2011
Lazy Evaluation
Order of function equations
Consider the following two definitions of take:
1
2
3
4
6
7
8
9
11
12
13
15
16
my_take1 : :
my_take1 0
my_take1 _
my_take1 n
I n t βˆ’> [ t ] βˆ’> [ t ]
_
= []
[]
= []
( h : t ) = h : my_take1 ( nβˆ’1) t
my_take2 : :
my_take2 _
my_take2 0
my_take2 n
I n t βˆ’> [ t ] βˆ’> [ t ]
[]
= []
_
= []
( h : t ) = h : my_take2 ( nβˆ’1) t
βˆ’βˆ’ C a l l :
my_take1
my_take2
0 bottom
0 bottom
my_take2
my_take2
bottom [ ]
bottom [ ]
βˆ’βˆ’ =>
βˆ’βˆ’ =>
βˆ’βˆ’ =>
βˆ’βˆ’ =>
terminates with [ ]
does n o t t e r m i n a t e
does n o t t e r m i n a t e s
terminates with [ ]
Which implementation should be used for standard take?
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Lazy Evaluation
106(112)
April 15, 2011
Lazy Evaluation
The sieve of Eratosthenes
1. Write down all numbers 2, 3, 4, 5, 6, 7, ...n.
2. Remove from the list all multiples of 2.
3. Start from the beginning of the list and look for the first not yet
considered number;
remove all multiples of that numer from the list.
4. Continue with 3, as long as there are numbers not considered
Algorithm: Haskell: The sieve of Eratosthenes
1
2
3
5
6
8
9
primes : : [ I n t ]
primes = s i e v e [ 2 . . ]
where s i e v e ( p : xs ) = p : s i e v e ( d e l e t e p xs )
d e l e t e : : I n t βˆ’> [ I n t ] βˆ’> [ I n t ]
d e l e t e x xs = f i l t e r ( t e s t x ) xs
t e s t : : I n t βˆ’> I n t βˆ’> Bool
t e s t p x = x β€˜modβ€˜ p / = 0
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Lazy Evaluation
107(112)
April 15, 2011
Lazy Evaluation
Algorithm: Haskell: The sieve of Eratosthenes – shorter
1
2
3
primes : : [ I n t ]
primes = s i e v e [ 2 . . ]
where s i e v e ( p : xs ) = p : s i e v e [ x | x<βˆ’xs , x β€˜modβ€˜ p / = 0 ]
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ Lazy Evaluation
108(112)
April 15, 2011
More Topics
I
Still more syntax to simplify list handling
I
Overloading
I
Monadd
I
Input / Output
I
....
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ And There is Still More ...
109(112)
April 15, 2011
References I
B ACKUS, John Warner [Aug. 1978]. Can Programming Be Liberated From
the Von Neumann Style? A Functional Style and its Algebra of Programs.
In: Communications of the ACM 16.8, pp. 613–641 [cit. on p. 7].
DAUMEÉ III, Hal [2002]. Yet Another Haskell Tutorial. Tech. rep. Yale
University. URL: http://darcs.haskell.org/yaht/yaht.pdf [cit. on p. 47].
H UDAK, Paul, John P ETERSON, and Joseph H. FASEL [Oct. 1999]. A
Gentle Introduction to Haskell 98. Tech. rep. Yale University. URL:
http://www.haskell.org/tutorial [cit. on p. 47].
H UDAK, Paul, Simon P EYTON J ONES, and Philip WADLER [May 1992].
Report on the programming language Haskell: a non-strict, purely
functional language version 1.2. In: ACM SIGPLAN Notices 27.5, pp. 1
–164. URL: http://www.haskell.org/haskellwiki/Language_and_library_specification
[cit. on pp. 45, 47].
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ And There is Still More ...
110(112)
April 15, 2011
References II
H UGHES, John [1989]. Why Functional Programming Matters. In:
Computer Journal 32.2, pp. 98–107. URL:
http://www.cs.chalmers.se/\~rjmh/Papers/whyfp.html [cit. on p. 7].
L OUDEN, Kenneth C. [2002]. Programming Languages, Principles and
Practice. 2nd ed. Thomson Press [cit. on p. 7].
M ARLOW, Simon [July 2002]. Developing a high-performance web server
in Concurrent Haskell. In: Journal of Functional Programming 12.4+5,
pp. 359–374. URL: http://www.haskell.org/~simonmar/papers/web-server-jfp.pdf
[cit. on p. 7].
P EPPER, Peter [2003]. Funktionale Programmierung in OPAL, ML,
HASKELL und GOPHER. 2nd ed. Springer Verlag, Heidelberg, New York
[cit. on p. 3].
S ALUS, Peter H. [1998]. Functional and Logic Programming Languages.
Vol. 4. Handbook of Programming Languages. Macmillan Technical
Publishing, Indianapolis, Indiana [cit. on p. 7].
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ And There is Still More ...
111(112)
April 15, 2011
References III
S COTT, Michael L. [2009]. Programming Languages Pragmatics. 3rd ed.
Morgan Kaufmann Publishers [cit. on p. 7].
S TEWART, Don and Spencer J ANSSEN [Sept. 2007]. XMonad: A Tiling
Window Manager. In: Haskell ’07: Proceedings of the ACM SIGPLAN
workshop on Haskell workshop, Freiburg Germany. URL:
http://www.cse.unsw.edu.au/~dons/papers/haskell51d-stewart.pdf [cit. on p. 7].
T HIEMANN, Peter [2002]. WASH/CGI: Server-side Web Scripting with
Sessions and Typed, Compositional Forms. In: Practical Aspects of
Declarative Languages: 4th International Symposium, PADL 2002, volume
2257 of LNCS. Springer Verlag, Heidelberg, New York, pp. 192–208. URL:
http://www.informatik.uni-freiburg.de/~thiemann/papers/padl02.pdf [cit. on p. 7].
W INSTON, Patrick Henry and Bertold Klaus Paul H ORN [1989]. LISP.
3rd ed. english edition. Addison-Wesley [cit. on p. 7].
Prof. Dr. Jürgen Vollmer: Introduction Functional Programming / Haskell/ And There is Still More ...
112(112)
April 15, 2011