Download the Picodroid Extension Activities

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Periodic table wikipedia , lookup

Dubnium wikipedia , lookup

Tennessine wikipedia , lookup

Ununennium wikipedia , lookup

Extended periodic table wikipedia , lookup

Unbinilium wikipedia , lookup

Transcript
Picodroid – Standards and Extensions
Next Generation Science Standards
Middle School Standards (Grades 6-8)

MS-PS1-1: Develop models to describe the atomic composition of simple molecules and
extended structures.
High School Standards (Grades 9-12)


HS-PS1-1: Use the periodic table as a model to predict the relative properties of elements based
on the patterns of electrons in the outermost energy level of atoms.
HS-PS1-2: Construct and revise an explanation for the outcome of a simple chemical reaction
based on the outermost electron states of atoms, trends in the periodic table, and knowledge of
the patterns of chemical properties.
Extension Activities



Build an Element Game: This activity will require the use of three different types of balls
(anything a PE department would have available: soccer balls, basketballs, etc.), each of which
would represent a different subatomic particle. Students should be put into groups of about
four or five to complete this activity. The teacher will chose an element, depending on the
number of balls available, and students will need to build the element chosen. Students should
use their periodic tables to determine how many protons, neutrons, and electrons they will
need to build this atom. The first group of students to get the correct arrangement wins. Repeat
this for several different elements and have a reward for the overall winners.
o Extension Extension: Teachers can also have students build ions and isotopes by
changing the number or electrons and neutrons.
o Teachers could use their electron “balls” to illustrate chemical bonding.
If access to PE balls is not available, students could complete this activity on a smaller scale using
M&Ms. Different colors of M&Ms represent different subatomic particles, students then need to
build the atom of different elements using their M&Ms.
PhET Simulations (http://phet.colorado.edu/): Build an Atom, Isotopes, and Atomic Mass. These
simulations allow students to see how adding protons, neutrons, and electrons changes an
atom. They help to illustrate the concepts of atomic mass, subatomic particle properties,
isotopes, and ions.
Atoms are a Mystery: The Picodroid game and PhET simulations use models to represent
particles that cannot directly be seen. Scientists can gather data and draw conclusions about
things like protons, neutrons, and electrons, without needing to see them. This activity will have
NIU STEM Outreach
http://niu.edu/stem
1


students draw conclusions about certain objects without being able to see them. Place several
(5-10) common classroom or household objects in boxes that are sealed shut and cannot be
seen through. Place the same, or almost the same, objects that were placed in the boxes on a
table where students can see them. Put students into groups of two or three and assign each
group a box. Students should be told that the objects inside the boxes are similar to the objects
that they see on the table, they should have access to these objects during the testing phase of
this activity. Before giving the students a box, they need to work together to devise a detailed
plan for how they can identify the objects in the box without looking inside of it. Once they have
laid out their plan, they will perform the tests outlined in their plan. They can then pick up their
mystery box, they can compare the mass of their box to the mass of the objects on the table,
they can shake the box to see the sounds the objects make and to try and determine the
shape/composition of the object. The teachers may also want to provide some empty boxes so
students get a feel for the mass of the box itself. Students should outline the results of each of
their tests, and then use their conclusions to try and identify what is in their mystery box. At the
end of the testing phase, groups can share their prediction as to the identity of the object in
their box with the rest of the class.
The Progression of Our Understanding of the Atom: For this activity, students will complete a
project that describes the way our understanding of atomic structure has progressed over time.
Students should work in groups of 4-5. Assign each group a model of atomic structure from the
past: The Dalton Model, The Thompson Model, The Rutherford Model, The Bohr Model, and
Modern Atomic Theory. Their project should focus on when each model was created, how each
scientist pictured what the structure of the atom looked like, how it varied from the models that
came before/after it, and what scientific advances brought about the change in the way
scientists understood the structure of the atom. Student groups should create a presentation
and perhaps even build an actual model of the atom according to their assigned theory. Groups
should share their findings with the rest of the class, in the correct order that atomic theory has
progressed.
Big Ideas, Small Particles: The Picodroid game illustrates that electrons are smaller than protons
and neutrons, but it does not accurately show just how much smaller it is. In reality it would
take more than 1830 electrons to equal the mass of one proton/neutron (neutrons are slightly
bigger). Find some way to illustrate this to students using a concept they are familiar with. Some
examples are listed below:
o One ear of corn has approximately 700 kernels of corn on it. The mass of an electron
would be the equivalent of one kernel of corn, the mass of the proton and neutron
would be more than two and half ears of corn each. If a hydrogen atom was built using
corn, it would have a single kernel representing its electron, and over five ears of corn
representing its nucleus.
o If one electron was identified as the equivalent of $1, the protons and neutrons would
be the equivalent of more than $1830 dollars each. In a hydrogen atom, an electron
would be the equivalent of $1, the nucleus would hold about $3660.
Continue this activity by having a discussion of this concept allowing students to come up with
their own examples. Teachers can further link this topic to the concept of how the atomic mass
of an element depends on the number of protons and neutrons, and considers the mass of the
electron negligible.
NIU STEM Outreach
http://niu.edu/stem
2

Get to Know the Atom Group Game: Place
students in groups of 3. Each member in
the group is assigned either a proton,
neutron, or electron. Each student is
responsible for researching the charge,
mass, and location of their assigned
subatomic particle. This should only take a
few minutes, and they should be able to
use nearly any search engine to find
correct answers. The students will then
meet back up and complete a compare
and contrast activity. They should be able
to identify the similarities and differences
between each of the subatomic particles.
A further idea is to have the students
complete a Venn diagram similar to the
example shown.

BEFF (Best Element Friend Forever) Project: Assign each student an element from the periodic
table. The students will need to research everything there is to know about their assigned
element (become the element’s best friend). Areas of research could include:
o Who discovered your element?
o When was your element discovered?
o What is the atomic structure for your element (number protons, neutrons, electrons)?
o How did your element get its name?
o What are some come common uses for your element/what common substances contain
your element?
o What are some fun, interesting, or important facts about your element?
Students should present their element to their classmates. They can create posters detailing the
details of their element, and they can even create a 3-D model of what they element might look
like at the atomic level.
Big People, Small Particles Research Project: Have students complete a project where they
research possible career fields that deal with really small particles. They should find out what
types of chemists and physicists work with extremely small particles, what their work entails,
what equipment they use, etc.

NIU STEM Outreach
http://niu.edu/stem
3