* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download 1 Guided Notes for lesson P.2 – Properties of Exponents If a, b, x, y
Location arithmetic wikipedia , lookup
Abuse of notation wikipedia , lookup
System of polynomial equations wikipedia , lookup
Large numbers wikipedia , lookup
Positional notation wikipedia , lookup
Principia Mathematica wikipedia , lookup
Elementary mathematics wikipedia , lookup
Bra–ket notation wikipedia , lookup
History of mathematical notation wikipedia , lookup
Guided Notes for lesson P.2 – Properties of Exponents If a, b, x, y and a, b, 0 , and m, n Z then the following properties hold: 1. Negative Exponent Rule: b n 1 1 and n b n Answers must never contain negative exponents. n b b Examples: a) 53 b) 1 4 2 2. Zero Exponent Rule: b0 1 Examples: a) 7 0 b) 5 c) 50 0 3. Product Rule: bm g bn bm n - keep the base and ________ the exponents Examples: a) 22 g 23 4. Quotient Rule: b) x 3 g x 7 bm b m n - keep the base and ____________________ the exponents. n b Examples: 212 a) 4 2 b) 1 x2 x5 5. Power to a Power Rule bm bm n - keep the base and __________________ the exponents. n Examples: a) 2 2 5 b) x 3 4 6. Product to a power: ab a nbn - raise both bases to the same power. n Note well: a b a n bn and a b a n bn n n Examples: a) 2 y b) 3x 2 y 5 4 n 2 an a 7. Quotient to a power: n - raise both bases to the same power. b b Examples: 2 a) 5y 4 x 3 b) 2 3y 2 2 Simplifying Exponential Expressions 1) No parentheses. 2) No powers raised to a powers. 3) Each based occurs only once. 4) No negative exponents. 5) Simplify numerical expressions. Examples: Simplify the expression. a) 2x y b) 3x y c) 7 xy 2 x y d) 6x y 3xy e) 35 x 2 y 4 5 x 6 y 8 f) 100 x 2 y 6 20 x 4 y 3 8 4 2 4 4x 2 d 3 g) 7 4 y g 5 6 3 4 2 5 x 8 h) 4 2y 3 5 3 5 5 3 Definition: A number is written in _____________________________ if it is of the form _____________ where 1 a 10 and n Z . Examples : Write in standard form (decimal form). a) 6.4 105 b) 1.25 107 c) 2.17 103 d) 6.018 105 Example 2: Write in scientific notation. b) 0.000000000000802 a) 34,970,000,000,000 2 10 4 10 2 4 10 10 6 To multiply numbers written in scientific notation: 1. Multiply the decimal parts first. (use your calculator, if necessary) 2. Using the rules of exponents, multiply the powers of ten. (add the exponents) 3. Be sure your final answer is in scientific notation. a) 3 10 2 10 5 7 d) 8 103 4 105 b) 5 103 3 105 e) 9 10 3 10 7 8 4 7 6 8 1013 c) 6 10 7 10 f) 6 10 2.3 10 2 6 8 4 7 4 10 2 10 4 2 10 10 15 To divide numbers written in scientific notation: 1. Divide the decimal parts first. (use your calculator, if necessary) 2. Using the rules of exponents, divide the powers of ten. (subtract the exponents) 3. Be sure your final answer is in scientific notation. 15 2 108 Examples: Find the quotient, express answers in scientific notation. a) 8 105 2 103 b) 6 1012 3 108 c) 9 104 3 107 d) 8.24 1024 5.15 1018 e) 3 105 6 108 f) 2 103 5 1012 5 7 7 Guided Notes for lesson P.3 – More with Exponents If b and b 0 , and m, n Z then the following properties hold: 1 If n is even, b 0 8. Fractional Exponents: b n n b If n is odd, b 1 1 If n is even, b 0 bn n b If n is odd, b and Examples: a) 64 1 2 b) 125 1 3 c) 16 1 d) 27 3 e) 64 m 9. Fractional Exponents: b b n n m b n m If n is even, b 0 and b n If n is odd, b m 1 n bm 1 4 1 3 1 b n m Examples: a) 27 2 3 3 b) 4 2 c) 8 5 3 4 3 4 e) d) 81 6 1000 3 If n is even, b 0 If n is odd, b Examples: Simplify the expression. Express your answer using a radical when your final answer yields a fractional exponent. 1 3 a) 5 x 2 7 x 4 5 1 b) 2x 3 y 6 7 c) 14 32 x y d) 3 7 x2 y4 32 x 3 1 16 x 4 e) x x 3 f) 7 6 12 x x 4 5 3 7 Examples: Factor the expression and simplify. This is a skill in preparation for calculus. 3 a) x 1 2 1 3x x 1 2 2 1 4 b) x 2 4 3 1 c) 2 x 8 x 2 2 8 x 2 2 8 1 8x 2 x 4 3 3 Guided Notes for lesson P.7 – Absolute Value Equations Absolute Value: Definition: a means the distance the number a is from ________ on a number line. Solving Absolute Value Equations: If X is any algebraic expression and c Z , then the solutions to X c are found by solving the equations _______ and _______. Example Solve the equation. a) x 5 b) x 3 7 c) x 8 4 d) 2 x 3 15 e) f) 4 5 x 7 1 x 7 4 3 9 Guided Notes for lesson P.9 – Inequalities and Absolute Value Equations and Inequalities To solve an inequality means to find all the possible values of the variable that makes the inequality true. To solve an inequality you use the same inverse operation(s) to both sides of the inequality with one slight glitch. Keep in mind you want the variable all alone on one side of the inequality. When an inequality is multiplied or divided by a positive number the inequality sign remains unchanged. Example to illustrate: 50 35 true 5 6 true 50 35 2 5 2 6 multiply by 2 divide by 5 5 5 10 < 12 true 10 < 7 true When an inequality is multiplied or divided by a negative number the inequality sign is reversed. Example to illustrate: 5 6 true 50 35 true 2 5 2 6 multiply by 2 50 35 divide by 5 5 5 10 < 12 false 10 > 7 false 10 12 true 10 7 true Examples: Solve each of the following and graph your solution on a number line. a) x5 2 c) 4 n 16 b) d) 10 3 x 5 n 8 2 e) x 22 10 f) 13x 208 g) 6 x 15 57 h) 4 x 40 7 x 65 i) 12 2 x 13 117 15 x j) 3 5x 2 9 i) 2 1 3x 8 11 Three ways to display solutions to inequalities: Set builder Notation (used for Alg 2) Interval Notation (used in pre-calc on up) xaxb xaxb xxa xxa xxb xxb x x 12 Graph (used for either Alg 2 or pre-calc on up) Connectors of sets of numbers: Set builder Notation Symbol Interval Notation Symbol Intersection (and) (what is in both) Union (or) (what is in either or both) Set builder Notation Interval Notation x 1 x 4 2 x 8 x 1 x 2 7 x 9 13 Graph Solving Absolute Value Inequalities Solution: If X is any algebraic expression and c Z , then the solutions to X c are found by solving _______ and _______. Examples: Solve the inequality and graph the solution set. a) x 5 4 b) 2 x 3 1 c) 2 5 3x 7 13 14 Solution: If X is any algebraic expression and c Z , then the solutions to X c are found by solving __________ and __________. Examples: Solve the inequality and graph the solution set. a) x 7 10 b) 1 x 3 8 4 c) 5 2 x 7 15 Guided Notes for lesson P.3A – Radicals Definition: n Date: _________ a is called the _____________________ nth root or _____________________. a is called the ________________ and n is called the ________________. Note Well: If n is even, a 0. If n is odd, a . If a, b and b 0 , and m, n Z then the following properties hold: 1. Product Rule: n 2. Quotient Rule: n 3. Power Rule 1: n 4. Power Rule 2: n To simplify n ab n a gn b . a b n n Note Well n a b n a n b and n a b n a nb a b _____________________________ an _____________________________ a a m m n a m _______________________________________________________________________ _____________________________________________________________________________________ _____________________________________________________________________________________ 16 Example: Simplify the radical. Express the answer in simplest radical form. a) 32 b) d) 3 48 e) g) 3 250x 4 h) j) 3 75 c) 375 f) 3 686 50x 5 y 6 i) 5 64x 9 y12 49 x 5 64 y 9 k) 700 3 54 x 6 8 y7 Definition: Like radicals are radicals with the same _____________________ and ___________________ Rule: You may only add or subtract like radicals. 17 Example: Simplify the expression. a) 8 3 + 5 3 b) 7 3 5 113 5 c) 8 12 3 d) 3 8x 4 3 x 4 3 27 x Example: Multiply. Express the answer in simplest radical form, if necessary. a) 8 3 g c) 1 15 2 2 5 3 5 b) 3 2 2 8 3 d) 4 7 4 7 Definition: The irrational numbers a b and a b are called _______________________ and when multiplied together will always yield a _________________ number. Why? 18 e) 10 2 2 2 3 3 f) Example: Divide. Express the answer in simplest radical form, if necessary. 48 54 a) 12 3 c) 4 45 6 60 2 5 10 3 48 b) 53 2 d) 19 15 180 5 Definition: To _____________________________________________________ means to find an equivalent fraction with a denominator that is a rational number. Why was/is that important? 1 2 2 2 Example: Rationalize the denominator. a) c) e) 2 5 b) 2 4 11 d) 3 10 2 10 f) 20 10 3 3 3 3 1 x h x x h x Guided Notes for lesson 10.5 – The Binomial Theorem Definition: A _______________ is a two termed algebraic expression. Definition: When any binomial is raised to a positive integral power, the result is called an ____________ Illustration: Expand x y A few things you should notice in the expansion of x y : 3 3 1) the x’s decrease in power x 3 , x 2 , x1 , x 0 term by term. x y 3 x y x y x y x y x 2 2 x1 y 1 y 2 2) the y’s increase in power y 0 , y1 , y 2 , y 3 term by term. x 3 2 x 2 y1 xy 2 x 2 y1 2 xy 2 y 3 x 3 3 x 2 y 1 3 x1 y 2 y 3 3) the exponents on x and y always add up to 3 for each term. 4) the number of terms (4) is one greater than the exponent 3. 5) there are coefficients on the two middle terms Where the coefficients of a binomial expansion come from? Definition: The coefficient of any term of binomial expansion is called a binomial coefficient and is found n n! by provided n, r ¢ and n r . r r ! n r ! n C is used as well to denote . A combination of n things taken r at a time. n r r Examples: Evaluate by hand 3 a) 2 8 b) 5 7 c) 1 Example: Evaluate with your calculator 9 a) 9 12 b) 7 5 c) 0 21 The Binomial Theorem: For any monomial expression a any monomial expression b, and n, r ¢ : a b n n n 0 n n 1 1 n n 2 2 n 2 n 2 n 1 n 1 n 0 n a b a b a b ... a b a b a b 0 1 2 n n n Examples: Expand the expression. (write small) a) x 3 b) 4 x 2 remember that x 2 x ( 2) 3 3 3 c) 2x y make sure it’s the 2 and the x that are raised to the exponents. 5 22 d) 3x 4 y e) x 2 3 6 y3 4 Consider x y x 3 3x 2 y 3xy 2 y 3 3 Another way to aid you with expansion of x y is to use Pascal’s Triangle 1 1 1 3 1 1 2 3 1 3 1 x 3 3x 2 y 3xy 2 y 3 Example: Expand x 3 y using Pascal’s Triangle. 5 23 Consider the expansion of x y x 3 3x 2 y 3xy 2 y 3 . If we just wanted the second term of its expansion without expanding it, how could we find it? 3 31 1 It would be x y 3x 2 y 1 3 For any monomial expression a any monomial expression b, and n, r ¢ The rth term of a Binomial Expansion without expanding is: n n r 1 r 1 b r 1 a Examples: Find the given term of the epansion with out expanding it. a) x 2 c) 3x 5 e) x 3 5 (third term) 6 (sixth term) b) x 6 d) 2 x 7 2 y 5 (third) 4 24 8 (fourth term) 9 (second term) Good luck to: _____________________________ GMP 4: Chapter PA Test: Sections: 10.5, P.2, P.3, and P.9 Multiple Choice Questions: For 1-18, circle the best answer to the question. When you see the saw graphic, SHOW ALL WORK in the space provided. Correct answers with no work will receive minimal credit. Incorrect answers with work will receive partial credit. Incorrect answers with no work will receive no credit. You may use a calculator. Each question is worth 9 points. 1) What is the solution of the inequality x 3 5 ? a) x 8 x 2 b) x 2 x 8 c) x x 8or x 2 d) x x 2 or x 8 2) What is the solution of the inequality 2 x 3 4 ? 1 7 a) x x 2 2 1 b) x x 2 7 2 1 c) x x or x 2 7 2 3) Which graph represents the solution to the inequality 1 2 x 7 ? a) b) c) d) 25 7 1 d) x x or x 2 2 4) Which graph represents the solution to the inequality 2 x 3 7 ? a) b) c) d) 10 5) Evaluate the binomial coefficient: . 5 a) 120 b) 252 c) 30,240 d) 3,628,800 c) 2 d) 1 4 6) Evaluate the binomial coefficient: . 1 a) 24 b) 4 7) Expand 5x 2 using the binomial theorem. 3 a) 125x 3 8 b) 125x 3 150 x 2 16 x 8 c) 125x 3 150 x 2 60 x 8 d) 125x3 30 x 2 30 x 8 26 8) Expand x 2 2 y using the binomial theorem. 4 a) x8 8x6 y 24 x 4 y 4 8x 2 y 3 16 y 4 b) x8 2 x6 y 24 x 4 y 2 16 x 2 y 3 16 y 4 c) x 4 8x3 y 24 x 2 y 2 32 xy 3 16 y 4 d) x8 8x6 y 24 x 4 y 2 32 x 2 y 3 16 y 4 9) The fifth term in the expansion of 2x y is 6 a) 240x 2 y 4 c) 60x 2 y 4 b) 240x 2 y 4 d) 60x 2 y 4 9) The last term in the expansion of x 3 y is 4 a) 108xy 3 b) 81y 4 c) 3y 4 d) 243y 5 10) The middle term in the expansion of x y is 4 a) 4x 3 y b) 4xy 3 c) 6x 2 y 2 27 d) 6x 2 y 2 11) Simplify a) 50 10 12) Simplify a) 9 20 500 b) 10 5 c) 5 10 d) 10 50 c) 6 10 d) 3 40 c) 20 6 3 6 d) 16 3 4 c) 5a 4bc 2 3ac d) 5a 7c3 3ac 30 g 12 b) 12 10 13) Simplify 5 3 16 2 3 54 a) 16 3 14) Simplify a) 15a 4bc 2 5a 5c3 b) 16 3 2 75a 9b2c5 b) 3a 4bc 2 5ac 28 15) Simplify 5 2 3 2 4 a) 11 2 14 16) Simplify a) 1 b) 11 2 8 a) 12 3 c) 14 2 20 d) 4 2 14 c) 2 3 d) 5 3 c) 4 2 3 d) 6 2 3 128 72 8 b) 2 17) Simplify 12 3 3 b) 2 3 142 15 , where N is the 7r number of rotations per minute required to simulate earth's gravity, and r is the radius of the space station. If the number of rotations per minute is 10, which of the following is a reasonable estimate for the radius of the space station? 18) A Space station rotates in order to simulate gravity, such that N a) 135m b) 5.4m c) 10m 29 d) 44m Free Response Questions: For 19-43. When you see the saw graphic, SHOW ALL WORK in the space provided. Correct answers with no work will receive minimal credit. Incorrect answers with work will receive partial credit. Incorrect answers with no work will receive no credit. You may use a calculator. Each question is worth 7.5 points. For 19-22, simplify the expression completely with only positive exponents. 19) 2x y 6x y 6 2 30 x3 y11 z 6 20) 5 x5 y 8 z 5 5 20) _____________________ 19) _____________________ 21) 4x 2 y8 z 9 4 12 x5 y 6 22) 11 2 6x y 21) _____________________ 3 22) _____________________ 23) Write 4.56 106 in standard form without the use of exponents. 23) ___________________ 24) Write 6,400,000 in scientific notation. 24) ___________________ 30 6.0 10 2.0 10 Evaluate 4.0 10 8.0 10 3 25) 5 7 2 (express answer in scientific notation) 25) _____________________ For 26-28, simplify and express answer in radical form, if necessary. 1 1 26) 10 x 3 5 x 2 1 27) 1 8x 5 26) ___________________ 28) 81x 4 y 10 72 x 4 1 2 28) ___________________ 31 27) ___________________ For 29-34, solve the inequality. Graph your solution on a number line. 29) n 24 9 31) 2.6 y 1.3 33) 4 p 1 9 30) x 14 54 32) 8 34) 2d 10 6 7 4d 32 k 4 For 35-36, solve algebraically for x. 35) x 6 8 35) _______________________ 36) 2 5 x 1 10 36) _______________________ For 37-38, solve algebraically for x. Express your answer in interval notation. 37) x 7 1 4 38) 3 7 x 9 37) __________________________ 38) __________________________ 33 For 39-40, expand the expression completely. 39) 3x 5 y 4 39) ________________________________________________ 40) x 3 y2 3 40) ________________________________________________ 34 41) Express in simplest radical form. a) 48x5 y9 b) a) ________________________________ 3 40x 7 y8 b) _____________________________ 42) Simplify the expression. 6 a) 2 45 3 125 405 b) a) _______________________ b) _______________________ c) 2 5 2 c) _______________________ d) 11 9 11 3 5 2 5 d) _______________________ 35 Bonus) Find the exact value of: 13 2 7 3 2 (+5) Bonus) ___________________ 36