* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download PHYS101
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Classical central-force problem wikipedia , lookup
Relativistic mechanics wikipedia , lookup
Internal energy wikipedia , lookup
Eigenstate thermalization hypothesis wikipedia , lookup
Hunting oscillation wikipedia , lookup
IntroductoryPhysics PHYS101 Dr RichardH.CyburtOfficeHours TRF9:30-11:00am AssistantProfessorofPhysics F12:30-2:00pm Myoffice:402cintheScienceBuilding Myphone:(304)384-6006 Meetingsmayalsobearrangedatothertimes, byappointment Myemail:[email protected] Inpersonoremailisthebestwaytogetahold Checkmyscheduleonmyofficedoor. ofme. PHYS101 PHYS101:IntroductoryPhysics 400 Lecture:8:00-9:15am,TRScienceBuilding Lab1:3:00-4:50pm,FScienceBuilding304 Lab2:1:30-3:20pm,MScienceBuilding304 Lab3:3:30-5:20pm,MScienceBuilding304 Lab20:6:00-7:50pm,MScienceBuilding304 PHYS101 MasteringPhysicsOnline GotoHYPERLINK"http://www.masteringphysics.com."www.masteringphysics.com. ◦ UnderRegisterNow,selectStudent. ◦ Confirmyouhavetheinformationneeded,thenselectOK!Registernow. RCYBURTPHYS101),andchooseContinue. ◦ Enteryourinstructor’sCourseID( ◦ EnteryourexistingPearsonaccountusername andpassword andselectSignin. ◦ YouhaveanaccountifyouhaveeverusedaPearsonMyLab &Masteringproduct,suchasMyMathLab,MyITLab,MySpanishLab,or MasteringChemistry. ◦ Ifyoudon’thaveanaccount,select Create andcompletetherequiredfields. ◦ Selectanaccessoption. ◦ Entertheaccesscodethatcamewithyourtextbookorwaspurchasedseparatelyfromthebookstore. PHYS101 Midterm2 Therewillbeabonusassignment,basedonyourexam ◦ ◦ ◦ ◦ Willearnyouextrapointsonyourexam Itwillbeonlineasahomework Youmustdobetteronthisassignment,thanyourtesttogetbonuspoints Bonus=30%x(Homework– Midterm) BonusHomeworkisOnline,dueOct17,12:59pm (justbeforelabsstartfortheday) AfterBonusHWisdue,therewillbeasignoutsheetinmyoffice ◦ Youmustsigntogetyourexam PHYS101 IntroductoryPhysics PHYS101 DouglasAdams Hitchhiker’sGuidetotheGalaxy PHYS101 You’realreadyknowphysics! Youjustdon’tnecessarilyknowtheterminologyand languageweuse!!! PhysicsofNASCAR PhysicsofAngerBirds PHYS101 ThankstomywifeandtheOED plusquamperfection, n. [‘ Utterperfection.’] Pronunciation: Brit. /ˌplʌskwampəˈfɛkʃn/, U.S. /ˈˌpləsˌkwæmpərˈfɛkʃ(ə)n/ Origin:A borrowingfromLatin.Etymon:Latin plūs quam. Etymology: < German Plusquamperfektion (1603as plusquamperfection inthepassagetranslatedinquot. 1670)< classicalLatin plūs quam morethan(see plusquam- comb.form)+German Perfektion perfection n. Comparepost-classicalLatin plusquam perfectio(1687in thepassagetranslatedinquot. 1688;8thcent.inaBritishsourceingrammaticalsense). Alchemy.Now hist. and rare. Utterperfection.1657 tr. B.Valentinus LastWill&Test. iii. 117 Thisliquoristhetrueprimamateria,and firstseedofMetalsandMinerals,whichbyVulcansArtisbroughttoaplusquam perfection[Ger. plusquamperfection],intoa transcendentfix'd Medicine,outofwhichisgeneratedthetruePhilosophick stone. 1670 D.Cable tr. B.Valentinus OfNat.&Supernat.Things iii.57 Ifit..be broughttoaperfectripeness,untothePlusquam perfection [Ger. plusquamperfection],nothingmaycomparetherewith. 1688 C.Packe tr. F.M.vanHelmont 153Chymical Aphorisms 22Aph.135 Whereforethisoughttobedonetothematterofour Menstruum,foritscompleat Depuration,equallyastoGold,forits plusquam perfection[L. adejus plusquam pefectionem]. 1713 RosieCrucianSecrets(MSHarl.6485)f.268, Itisaheavenlybalsambecauseitsfirstprinciplesandoriginalcomethfromheaven, madeformalinearthorunderground,andisafterwards,beingexactlyprepared,broughtintoaplusquam perfection. PHYS101 Inclass!! PHYS101 Thislecturewillhelpyouunderstand: TheBasicEnergyModel Work KineticEnergy PotentialEnergy PHYS101 Section10.1TheBasic EnergyModel ©2015PearsonEducation,Inc. TheBasicEnergyModel Everysysteminnaturehasaquantitywecallitstotal energy E. ©2015PearsonEducation,Inc. FormsofEnergy Someimportantformsofenergyare ◦ KineticenergyK:energyofmotion. ◦ GravitationalpotentialenergyUg:storedenergyassociatedwithanobject’sheightabovetheground. ◦ Elasticorspringpotentialenergy Us:energystoredwhenaspringorotherelasticobjectisstretched. ◦ ThermalenergyEth:thesumofthekineticandpotentialenergiesofallthemoleculesinanobject. ◦ ChemicalenergyEchem:energystoredinthebondsbetweenmolecules. ◦ NuclearenergyEnuclear:energystoredinthemassofthenucleusofanatom. ©2015PearsonEducation,Inc. EnergyTransformations Energyofonekindcanbetransformed intoenergyofanotherkindwithinasystem. ©2015PearsonEducation,Inc. EnergyTransformations Theweightlifterconverts chemicalenergyinherbody intogravitationalpotential energyofthebarbell. ©2015PearsonEducation,Inc. Elasticpotentialenergyofthe springboardisconvertedinto kineticenergy.Asthediverrises intotheair,thiskineticenergyis transformedintogravitational potentialenergy. QuickCheck10.1 Achildisonaplaygroundswing,motionlessatthehighest pointofhisarc.Whatenergytransformationtakesplaceas heswingsbackdowntothelowestpointofhismotion? ◦ ◦ ◦ ◦ ◦ K® Ug Ug ® K Eth ® K Ug ® Eth K® Eth ©2015PearsonEducation,Inc. QuickCheck10.1 Achildisonaplaygroundswing,motionlessatthehighest pointofhisarc.Whatenergytransformationtakesplaceas heswingsbackdowntothelowestpointofhismotion? ◦ ◦ ◦ ◦ ◦ K® Ug Ug ® K Eth ® K Ug ® Eth K® Eth ©2015PearsonEducation,Inc. QuickCheck10.2 Askierisglidingdownagentleslopeataconstantspeed.Whatenergytransformationistaking place? ◦ ◦ ◦ ◦ ◦ K® Ug Ug ® K Eth ® K Ug ® Eth K® Eth ©2015PearsonEducation,Inc. QuickCheck10.2 Askierisglidingdownagentleslopeataconstantspeed.Whatenergytransformationistaking place? ◦ ◦ ◦ ◦ ◦ K® Ug Ug ® K Eth ® K Ug ® Eth K® Eth ©2015PearsonEducation,Inc. EnergyTransfersandWork Energycanbetransferred betweenasystemanditsenvironmentthroughwork andheat. Work isthemechanical transferofenergytoorfrom asystembypushingor pullingonit. Heat isthenonmechanical transferofenergybetween asystemandthe environmentduetoa temperaturedifference betweenthetwo. ©2015PearsonEducation,Inc. EnergyTransfersandWork Theathletedoes work ontheshot, givingitkinetic energy,K. ©2015PearsonEducation,Inc. Thehanddoes work onthe match,givingit thermalenergy, Eth. Theboydoes work onthe slingshot,giving itelastic potential energy,Us. TheWork-EnergyEquation Workrepresentsenergythatistransferredintooroutofasystem. Thetotalenergyofasystemchangesbytheamountofworkdoneonit. Workcanincreaseordecreasetheenergyofasystem. Ifnoenergyistransferredintooroutofasystem,thatisanisolated system. ©2015PearsonEducation,Inc. TheLawofConservationofEnergy Thetotalenergyofanisolatedsystemremainsconstant. ©2015PearsonEducation,Inc. Section10.2Work ©2015PearsonEducation,Inc. Work Workisdoneonasystembyexternal forces:forcesfromoutsidethesystem. ©2015PearsonEducation,Inc. CalculatingWork Althoughboththeforceandthedisplacementarevectors,workisascalar. Theunitofwork(andenergy)is: 1 joule = 1 J = 1 N × m ©2015PearsonEducation,Inc. Example10.1Workdoneinpushinga crate Sarahpushesaheavycrate3.0malongthefloorataconstantspeed.Shepusheswithaconstant horizontalforceofmagnitude70N.HowmuchworkdoesSarahdoonthecrate? ©2015PearsonEducation,Inc. Example10.1Workdoneinpushinga crate(cont.) PREPARE Webeginwiththebefore-and-aftervisualoverviewinFIGURE10.6.Sarah pusheswithaconstantforceinthedirectionofthecrate’smotion,sowecanuse Equation10.5tofindtheworkdone. SOLVE TheworkdonebySarahis W = Fd = (70 N)(3.0 m) = 210 J BypushingonthecrateSarahincreasesitskineticenergy,soitmakessensethatthe workdoneispositive. ©2015PearsonEducation,Inc. QuickCheck10.4 Acranelowersagirderintoplaceatconstantspeed.ConsidertheworkWg donebygravityand theworkWTdonebythetensioninthecable.Whichistrue? ◦ ◦ ◦ ◦ ◦ Wg >0andWT >0 Wg >0andWT <0 Wg <0andWT >0 Wg <0andWT <0 Wg =0andWT =0 ©2015PearsonEducation,Inc. QuickCheck10.4 Acranelowersagirderintoplaceatconstantspeed.ConsidertheworkWg donebygravityand theworkWTdonebythetensioninthecable.Whichistrue? ◦ ◦ ◦ ◦ ◦ Wg >0andWT >0 Wg >0andWT <0 Wg <0andWT >0 Wg <0andWT <0 Wg =0andWT =0 ©2015PearsonEducation,Inc. The downward force of gravity is in the direction of motion Þ positive work. The upward tension is in the direction opposite the motion Þ negative work. QuickCheck10.5 Robertpushestheboxtotheleftatconstantspeed.Indoingso,Robertdoes______workon thebox. ◦ positive ◦ negative ◦ zero ©2015PearsonEducation,Inc. QuickCheck10.5 Robertpushestheboxtotheleftatconstantspeed.Indoingso,Robertdoes______workon thebox. ◦ positive ◦ negative ◦ zero Force is in the direction of displacement Þ positive work ©2015PearsonEducation,Inc. ForceatanAngletotheDisplacement Onlythecomponentofaforceinthedirectionofdisplacementdoeswork. Iftheforceisatanangleθ tothedisplacement,thecomponentoftheforce,F, thatdoesworkisFcosθ. ©2015PearsonEducation,Inc. ForceatanAngletotheDisplacement ©2015PearsonEducation,Inc. ForceatanAngletotheDisplacement ©2015PearsonEducation,Inc. ForceatanAngletotheDisplacement ThesignofW isdeterminedbytheangleθ betweentheforceandthedisplacement. ©2015PearsonEducation,Inc. QuickCheck 10.6 Aconstantforcepushesaparticlethroughadisplacement .Inwhichofthesethreecasesdoestheforcedonegativework? D.BothAandB. E.BothAandC. ©2015PearsonEducation,Inc. QuickCheck 10.6 Aconstantforcepushesaparticlethroughadisplacement .Inwhichofthesethreecasesdoestheforcedonegativework? D.BothAandB. E.BothAandC. ©2015PearsonEducation,Inc. QuickCheck 10.7 Whichforcebelowdoesthemostwork?Allthreedisplacementsarethesame. ◦ ◦ ◦ ◦ The10Nforce. The8Nforce The6Nforce. Theyalldothesamework. ©2015PearsonEducation,Inc. sin60° = 0.87 cos60° = 0.50 QuickCheck 10.7 Whichforcebelowdoesthemostwork?Allthreedisplacementsarethesame. ◦ ◦ ◦ ◦ The10Nforce. The8Nforce The6Nforce. Theyalldothesamework. ©2015PearsonEducation,Inc. sin60° = 0.87 cos60° = 0.50 Example10.2Workdoneinpullinga suitcase Astrapinclinedupwardata45° anglepullsasuitcasethroughtheairport.Thetensioninthe strapis20N.Howmuchworkdoesthetensiondoifthesuitcaseispulled 100mataconstantspeed? ©2015PearsonEducation,Inc. Example10.2Workdoneinpullinga suitcase(cont.) PREPARE FIGURE 10.8 showsavisualoverview.Sincethesuitcase movesataconstantspeed,theremustbearollingfrictionforce (notshown)actingtotheleft. SOLVE WecanuseEquation10.6,withforceF tensiondoeswork: = T,tofindthatthe W = Td cos q = (20 N)(100 m)cos 45° = 1400 J Thetensionisneededtodoworkonthesuitcaseeventhough thesuitcaseistravelingataconstantspeedtoovercomefriction. Soitmakessensethattheworkispositive.Theworkdonegoes entirelyintoincreasingthethermalenergyofthesuitcaseand thefloor. ©2015PearsonEducation,Inc. ForcesThatDoNoWork Aforcedoesnoworkonanobjectif ◦ Theobjectundergoesnodisplacement. ◦ Theforceis perpendiculartothe displacement. ◦ Thepartoftheobject onwhichtheforceacts undergoesno displacement(evenif otherpartsoftheobject domove). Text:p.291 ©2015PearsonEducation,Inc. QuickCheck 10.8 Iswingaballaroundmyheadatconstantspeedinacirclewithcircumference3m.Whatisthe workdoneontheballbythe10Ntensionforceinthestringduringonerevolutionoftheball? ◦ ◦ ◦ ◦ 30J 20J 10J 0J ©2015PearsonEducation,Inc. QuickCheck 10.8 Iswingaballaroundmyheadatconstantspeedinacirclewithcircumference3m.Whatisthe workdoneontheballbythe10Ntensionforceinthestringduringonerevolutionoftheball? ◦ ◦ ◦ ◦ 30J 20J 10J 0J ©2015PearsonEducation,Inc. Section10.3Kinetic Energy ©2015PearsonEducation,Inc. KineticEnergy Kineticenergyisenergyofmotion. Kineticenergycanbeintwoforms:translational,formotionofanobjectalongapath;and rotational,forthemotionofanobjectaroundanaxis. ©2015PearsonEducation,Inc. QuickCheck 10.9 BallAhashalfthemassandeighttimesthekineticenergyofballB.Whatisthespeedratio vA/vB? ◦ ◦ ◦ ◦ ◦ 16 4 2 1/4 1/16 ©2015PearsonEducation,Inc. QuickCheck 10.9 BallAhashalfthemassandeighttimesthekineticenergyofballB.Whatisthespeedratio vA/vB? ◦ ◦ ◦ ◦ ◦ 16 4 2 1/4 1/16 ©2015PearsonEducation,Inc. RotationalKineticEnergy Rotationalkineticenergyisawayofexpressingthesumofthekineticenergyofallthepartsofa rotatingobject. Inrotationalkineticenergy, themomentofinertiatakes theplaceofmassandthe angularvelocitytakesthe placeoflinearvelocity. ©2015PearsonEducation,Inc. Example10.5Speedofabobsledafter pushing Atwo-manbobsledhasamassof390kg.Startingfromrest,thetworacerspushthesledforthe first50mwithanetforceof270N.Neglectingfriction,whatisthesled’sspeedattheendofthe 50m? ©2015PearsonEducation,Inc. Example10.5Speedofabobsledafter pushing(cont.) PREPARE Becausefrictionisnegligible,thereisnochangeinthesled’sthermalenergy. And,becausethesled’sheightisconstant,itsgravitationalpotentialenergyis unchangedaswell.Thusthework-energyequationissimplyΔK = W.Wecan thereforefindthesled’sfinalkineticenergy,andhenceitsspeed,byfindingthework donebytheracersastheypushonthesled.Thefigureliststheknownquantitiesand thequantity vf thatwewanttofind. Theworkdonebythepushersincreasesthesled’skineticenergy. ©2015PearsonEducation,Inc. Example10.5Speedofabobsledafter pushing(cont.) SOLVE Fromthework-energyequation,Equation10.3,thechangeinthesled’s kineticenergyisΔK = Kf - Ki = W.Thesled’sfinalkineticenergyisthus Kf = Ki + W Usingourexpressionsforkineticenergyandwork,weget Becausevi = 0,thework-energyequationreducesto Wecansolveforthefinalspeedtoget ©2015PearsonEducation,Inc. . QuickCheck 10.10 Alightplasticcartandaheavy steelcartarebothpushedwith thesameforceforadistance of1.0m,startingfromrest. Aftertheforceisremoved, thekineticenergyofthelight plasticcartis________that oftheheavysteelcart. ◦ ◦ ◦ ◦ greaterthan equalto lessthan Can’tsay.Itdependsonhowbigtheforceis. ©2015PearsonEducation,Inc. QuickCheck 10.10 Alightplasticcartandaheavy steelcartarebothpushedwith thesameforceforadistance of1.0m,startingfromrest. Aftertheforceisremoved, thekineticenergyofthelight plasticcartis________that oftheheavysteelcart. ◦ ◦ ◦ ◦ greaterthan equalto Same force, same distance Þ same work lessthan Same work Þ change of kinetic energy Can’tsay.Itdependsonhowbigtheforceis. ©2015PearsonEducation,Inc. done QuickCheck 10.11 Eachoftheboxesshownispulledfor10macrossalevel,frictionlessfloorbytheforcegiven. Whichboxexperiencesthegreatestchangeinitskineticenergy? ©2015PearsonEducation,Inc. QuickCheck 10.11 Eachoftheboxesshownispulledfor10macrossalevel,frictionlessfloorbytheforcegiven. Whichboxexperiencesthegreatestchangeinitskineticenergy? D Work-energy equation: ∆K = W = Fd. All have same d, so largest work (and hence largest ∆K) corresponds to largest force. ©2015PearsonEducation,Inc. QuickCheck10.12 Eachofthe1.0kgboxesstartsatrestandisthenispulledfor2.0macrossalevel,frictionless floorbyaropewiththenotedforceatthenotedangle.Whichboxhasthehighestfinalspeed? ° ©2015PearsonEducation,Inc. ° ° ° ° QuickCheck10.12 Eachofthe1.0kgboxesstartsatrestandisthenispulledfor2.0macrossalevel,frictionless floorbyaropewiththenotedforceatthenotedangle.Whichboxhasthehighestfinalspeed? ° ° B ©2015PearsonEducation,Inc. ° ° ° Section10.4Potential Energy ©2015PearsonEducation,Inc. PotentialEnergy Potentialenergyisstoredenergythatcanbereadilyconvertedtootherformsofenergy,suchas kineticorthermalenergy. Forcesthatcanstoreusefulenergyareconservativeforces: ◦ Gravity ◦ Elasticforces Forcessuchasfrictionthatcannotstoreusefulenergyarenonconservative forces. ©2015PearsonEducation,Inc. GravitationalPotentialEnergy Thechangeingravitationalpotential energyisproportionaltothechangeinits height. ©2015PearsonEducation,Inc. GravitationalPotentialEnergy Wecanchoosethereferencelevelwheregravitationalpotential energyUg = 0 sinceonlychangesinUg matter. Becausegravityisaconservativeforce, gravitationalpotentialenergydepends onlyontheheightofanobjectand notonthepaththeobjecttooktoget tothatheight. ©2015PearsonEducation,Inc. QuickCheck 10.13 Rankinorder,fromlargesttosmallest,thegravitationalpotentialenergiesoftheballs. ◦ ◦ ◦ ◦ 1>2=4>3 1>2>3>4 3>2>4>1 3>2=4>1 ©2015PearsonEducation,Inc. QuickCheck 10.13 Rankinorder,fromlargesttosmallest,thegravitationalpotentialenergiesoftheballs. ◦ ◦ ◦ ◦ 1>2=4>3 1>2>3>4 3>2>4>1 3>2=4>1 ©2015PearsonEducation,Inc. QuickCheck 10.14 Startingfromrest,amarblefirstrollsdownasteeperhill,thendownalesssteephillofthesame height.Forwhichisitgoingfasteratthebottom? ◦ ◦ ◦ ◦ Fasteratthebottomofthesteeperhill. Fasteratthebottomofthelesssteephill. Samespeedatthebottomofbothhills. Can’tsaywithoutknowingthemassofthemarble. ©2015PearsonEducation,Inc. QuickCheck 10.14 Startingfromrest,amarblefirstrollsdownasteeperhill,thendownalesssteephillofthesame height.Forwhichisitgoingfasteratthebottom? ◦ ◦ ◦ ◦ Fasteratthebottomofthesteeperhill. Fasteratthebottomofthelesssteephill. Samespeedatthebottomofbothhills. Can’tsaywithoutknowingthemassofthemarble. ©2015PearsonEducation,Inc. QuickCheck10.15 AsmallchildslidesdownthefourfrictionlessslidesA–D.Rankinorder,fromlargesttosmallest, herspeedsatthebottom. ◦ ◦ ◦ ◦ vD >vA >vB >vC vD >vA =vB >vC vC >vA >vB >vD vA =vB =vC =vD ©2015PearsonEducation,Inc. QuickCheck10.15 AsmallchildslidesdownthefourfrictionlessslidesA–D.Rankinorder,fromlargesttosmallest, herspeedsatthebottom. ◦ ◦ ◦ ◦ vD >vA >vB >vC vD >vA =vB >vC vC >vA >vB >vD vA =vB =vC =vD ©2015PearsonEducation,Inc. ElasticPotentialEnergy Elastic(orspring)potentialenergyis storedwhenaforcecompressesaspring. Hooke’slawdescribestheforcerequired tocompressaspring. ©2015PearsonEducation,Inc. ElasticPotentialEnergy Theelasticpotentialenergystoredinaspringisdeterminedbytheaverageforcerequiredto compressthespringfromitsequilibriumlength. ©2015PearsonEducation,Inc. QuickCheck 10.16 Threeballsarethrownfromacliffwiththesamespeedbutatdifferentangles.Whichballhas thegreatestspeedjustbeforeithitstheground? ◦ ◦ ◦ ◦ BallA. BallB. BallC. Allballshavethesamespeed. ©2015PearsonEducation,Inc. QuickCheck 10.16 Threeballsarethrownfromacliffwiththesamespeedbutatdifferentangles.Whichballhas thegreatestspeedjustbeforeithitstheground? ◦ ◦ ◦ ◦ BallA. BallB. BallC. Allballshavethesamespeed. ©2015PearsonEducation,Inc. QuickCheck 10.17 Ahockeypuckslidingonsmoothiceat4m/scomestoa 1-m-highhill.Willitmakeittothetopofthehill? ◦ ◦ ◦ ◦ Yes. No. Can’tanswerwithoutknowingthemassofthepuck. Can’tsaywithoutknowingtheangleofthehill. ©2015PearsonEducation,Inc. QuickCheck 10.17 Ahockeypuckslidingonsmoothiceat4m/scomestoa 1-m-highhill.Willitmakeittothetopofthehill? ◦ ◦ ◦ ◦ Yes. No. Can’tanswerwithoutknowingthemassofthepuck. Can’tsaywithoutknowingtheangleofthehill. ©2015PearsonEducation,Inc. Example10.8Pullingbackonabow Anarcherpullsbackthestringonherbowtoadistanceof70cmfromitsequilibriumposition.To holdthestringatthispositiontakesaforceof140N.Howmuchelasticpotentialenergyisstored inthebow? = -kx,wherex isthedistancethestringispulledback.Wecanusetheforcerequiredtoholdthestring,andthe distanceitispulledback,tofindthebow’sspringconstantk.ThenwecanuseEquation10.15to findtheelasticpotentialenergy. PREPARE Abowisanelasticmaterial,sowewillmodelitasobeyingHooke’slaw,Fs ©2015PearsonEducation,Inc. Example10.8Pullingbackonabow (cont.) SOLVE FromHooke’slaw,thespringconstantis Thentheelasticpotentialenergyoftheflexedbowis ASSESS Whenthearrowisreleased,thiselasticpotentialenergywillbe transformedintothekineticenergyofthearrow.AccordingtoTable10.1,the kineticenergyofa100mphfastballisabout150J,so49Jofkineticenergyfora fast-movingarrowseemsreasonable. ©2015PearsonEducation,Inc.