* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Physics
Newton's laws of motion wikipedia , lookup
Specific impulse wikipedia , lookup
Faster-than-light wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Internal energy wikipedia , lookup
Eigenstate thermalization hypothesis wikipedia , lookup
Centripetal force wikipedia , lookup
Mass versus weight wikipedia , lookup
Classical central-force problem wikipedia , lookup
Hunting oscillation wikipedia , lookup
Physics 4: Linear Momentum and Energy A. Momentum and Energy (6-1 to 6-4, 6-10, 7-1 to 7-2) 1. an objects momentum (quantity of motion) is unchanged unless acted upon by a force for a period of time (impulse): Ft = mv = p 2. an objects mechanical energy is unchanged unless acted upon by a force for a distance (work): W = F||d a. mechanical energy is energy of motion (thrown rock) or the potential of moving (rock on a hill) b. measured in joules (1 J = 1 N•m) c. Only component of F parallel to d does work F d F|| = Fcos W = (Fcos)d W>0 W=0 W<0 Fd Fd Fd d. variable force—stretching a spring 1. graph spring force (Fs) vs. position (x) Fs = kx slope = k Area = W x 2. Fs = kx slope = Fs/x = k 3. W = Fsx area = ½x(kx) = ½kx2 = W e. power is the rate work is done: P = W/t (W) 1. measured in watts (1 W = 1 J/s) 2. P = W/t = F(d/t) = Fvav (v is average) 3. graphing a. P = W/t slope of W vs. t graph b. P = Fvav area under F vs. v graph 4. kilowatt-hour, 1KWh = 3.6 x 106 J 3. kinetic and potential energy a. something an object has regardless of direction c. kinetic energy—energy of motion 1. positive only 2. K = ½mv2 = p2/2m Steps Algebra v2 = v02 + 2ad start with assume Ko = 0 vo = 0 v2 = 2ad ad = ½v2 solve for ad K = W = Fd start with substitute ma for F K = (ma)d = m(ad) substitute ½v2 for ad K = m(½v2) K = ½mv2 rearrange mv = p start with m2v2 = p2 square both sides divide both sides by 2m m2v2/2m = p2/2m substitute K for ½mv2 K = p2/2m d. potential energy—energy of relative position 1. gravitational potential energy a. based on arbitrary zero (usually closest or farthest apart) b. Ug = Ug = mgh (near the Earth's surface) Steps Algebra Ug = W = Fd start with substitute mg for F Ug = (mg)d substitute h for d Ug = mgh c. Ug = -GMm/r (orbiting system) 1. G = 6.67 x 10-11 N•m2/kg2 2. r = distance from center to center 3. Ug = 0 when r is Ug < 0 for all values of r because positive work is needed reach Ug = 0 2. spring (elastic) potential energy, Us = ½kx2 a. Us = W to stretch the spring b. see work by a variable force above Name __________________________ B. Solving Work-Energy Problems (6-5 to 6-9) 1. work done on object A by a "nonconservative" force (push or pull, friction) results in the change in amount of mechanical energy 2. work done on object A by a "conservative" force (gravity, spring) results in the change in form of mechanical energy (U K) for object A, but no change in energy a. conservative forces (Fg and Fs) 1. Fg d : Ug K, Fg d : K Ug 2. Fs d : Us K, Fs d : K Us b. process isn't 100 % efficient 1. friction (W = Ffd) reduces mechanical energy 2. mechanical energy is converted into random kinetic energy of the object's atoms and the temperature increases = heat energy—Q 3. total energy is still conserved 3. examples Process Energy Work done to pull a pendulum bob off center W Ug 1 Transformation release pendulum Ug K Work done by hit a stationary object KW Work done to throw a ball into the air WK K Ug 2 Transformation ball rises and falls Work done by falling ball dents ground KW Work done to load a projectile in spring-gun W Us 3 Transformation release projectile Us K Work done by projectile penetrates target KW 4. general solution for work-energy problems determine initial energy of the object, Eo o if elevated h distance: Ug = mgh o if accelerated to v velocity: K = ½mv2 o if spring compressed x distance: Us = ½kx2 determine energy added/subtracted due to an external push or pull: Wp = ±F||d determine energy removed from the object by friction: Wf = Ffd = (Fn)d = (mgcosd o d is the distance traveled o is the angle of incline (0o for horizontal) determine resulting energy, E' = Eo ± Wp – Wf determine d, h, x or v o if slides a distance d: 0 = Eo ± Wp – mgcosd' o if elevates a height h: E' = mgh' o If compresses a spring x: Us: E' = ½kx'2 o if accelerated to velocity v: E' = ½mv'2 general equation (not all terms apply for each problem) K + Ug + Us ± Wp – Wf = K' + Ug'+ Us' ½mv2 + mgh + ½kx2 ± Fpd – Ffd = ½mv'2 + mgh' + ½kx'2 C. Solving Collision Problems (7-3 to 7-7) 1. collision between particles doesn't change the total amount of momentum because the impulse on A equals the impulse on B, but in the opposite directions mAvA + mBvB = mAvA’ + mBvB’ Steps Algebra FA = -FB start with Newton's Law multiply both side by t FAt = -FBt substitute mv for Ft mAvA = -mBvB mA(vA’ – vA) = -mB(vB’ – vB) substitute v' – v for v -mAvA – mBvB = -mAvA’ – mBvB’ collect like v terms mAvA + mBvB = mAvA’ + mBvB’ multiply by -1 b. two particles collide and stick together 1. inelastic collisions (vA' = vB') 2. mAvA + mBvB = (mA + mB)v’ Steps Algebra mAvA + mBvB = mAvA’ + mBvB’ start with substitute v' for vA' and vB' mAvA + mBvB = mAv’ + mBv’ mAvA + mBvB = (mA + mB)v’ simplify c. two particles collide and bounce off 1. elastic collisions (vA' vB') 2. both energy and momentum are conserved a. two unknowns need two equations b. mAvA + mBvB = mAvA’ + mBvB’ c. ½mAvA2 + ½mBvB2 = ½mAvA’2 + ½mBvB’2 d. simpler equation: vA + vA' = vB + vB’ mAvA + mBvB = ½mAvA2 + ½mBvB2 = mAvA’ + mBvB’ ½mAvA’2 + ½mBvB’2 mA(vA – vA') = mB(vB' – vB) mA(vA2 – vA'2) = mB(vB'2 – vB2) mA(vA2 – vA'2) = mB(vB'2 – vB2) mA(vA – vA') = mB(vB' – vB) (vA – vA')(vA + vA') = (vB – vB')(vB + vB') (vA – vA') = (vB' – vB) 3. solving two equations and two unknowns fill in vA and vB into vA + vA' = vB + vB' write expression for vA’ in terms of vB' substitute vA' expression in equation: mAvA + mBvB = mAvA’ + mBvB’ solve for vB’ solve for vA’ using the expression for vA' above 4. collisions in two dimensions a. px is conserved independently of py b. elastic collision 1. mAvAx + mBvBx = mAvAx’ + mBvBx’ 2. mAvAy + mBvBy = mAvAy’ + mBvBy’ 3. solve two equations & two unknowns c. inelastic collision 1. mAvAx + mBvBx = (mA + mB)vx' 2. mAvAy + mBvBy = (mA + mB)vy' 3. solve two equations & two unknowns d. object explodes into two pieces mA and mB a. 2. 1. (mA + mB)v = mAvA’ + mBvB’ 2. opposite inelastic collision equation solve ballistics problems M (vM = 0) m vm bullet collides inelastically with block: mvm = (M + m)v' block swings or slides (conservation of energy) o block swings like a pendulum to height h o K = Ug ½(M + m)v'2 = (M + m)gh h = v'2/2g o block slides a distance d along a rough surface o K = Wf ½(M + m)v'2 = (M + m)gd d = v'2/2g d. Experiments 1. Human Power Lab a. Run up a short flight of stairs at the football stadium. weight Fg-lbs Number of steps N time t b. height of step y width of step x Calculate the following from the data. Formula Calculation dy dy = Ny dx dx = Nx d d = (dx2 + dy2)½ v v = d/t Calculate the percent differences. Formula Calculation vA' % = 100|v|/vtheory vB' 3. Ballistic Pendulum Lab a. (1) Pendulum: Shoot the bearing into the pendulum. Record the maximum angle. (2) Kinematics: Shoot the bearing from the table top. Mark the horizontal distance from the shooter to the floor, where the bearing lands and the vertical distance from the shooter to the floor. (3) Velocimeter: Place the velocimeter under the bearings flight path. Shoot the bearing and record the velocimeter reading. Pendulum Kinematics bearing mass, mA height, dy pendulum mass, mB distance, dx pendulum angle, Fg Fg = Fg-lbs x 4.45 Velocimeter m K Fg = mg K= lowest height, ho height at , h b. Calculate the following from the data. Formula Calculation Pendulum ½mv2 Ug Ug = Fgdy P c. P = (Ug + K)/t h h = h – ho Calculate the power in horse power (1 hp = 746 W). Ug Ug = (mA + mB)gh 2. Collision Lab a. Pull the hanging 200-g weight outward until it makes an angle of 25o from vertical and is lined up to collide with the golf ball. Release the weight, measure the weight's rebound angle and mark where the golf ball lands. Collect the data listed below. 200-g Weight (A) Golf Ball (B) string length LA mass mB initial angle A 25o final angle A' K K = Ug v' K = ½(mA + mB)v'2 vA mAvA + 0 = (mA + mB)v' Kinematics dy = ½gt2 t table height dyB distance dxB' vA vA = dx/t Velocimeter b. Calculate the following from the data. Formula Calculation vA vA = (vkm/hr)/3.6 c. dyA dyA = LA(1 – cosA) P vA vA2 = 2gdyA dyA' dyA' = LA(1 – cosA') vA' vA'2 = 2gdyA' tB' dyB = ½gtB'2 vB' vB' = dxB'/tB' c. Calculate the following theoretical values. Formula Calculation vA = -(vA' – vB') vA' mAvA = mAvA' + mBvB' vB' vB' = vA + vA' K Calculate the percent differences with the velocimeter. Formula Calculation % = 100|v|/vvelocimeter Practice Problems A. Momentum and Energy Formulas Questions 1-2 Two boxes, one heavier than the other, are initially at rest on a horizontal frictionless surface. The same constant force F acts on each for 1 s. 1. Which box has more momentum after the force acts? (A) light (B) heavy (C) tie 2. Which box has the greater velocity after the force acts? (A) light (B) heavy (C) tie 3. An open cart rolls along a frictionless track while it is raining. As it rolls, what happens to the speed of the cart as the rain collects in it and increases the total mass? (A) increase (B) the same (C) decrease Questions 4-7 A person pulls a box along a rough, horizontal floor with force F. Determine if the work done by each force is positive, zero or negative. Fn Ff F Fg 4. Fn (A) W > 0 (B) W = 0 (C) W < 0 5. Fg (A) W > 0 (B) W = 0 (C) W < 0 6. F (A) W > 0 (B) W = 0 (C) W < 0 7. Ff (A) W > 0 (B) W = 0 (C) W < 0 Questions 8-9 Alice applied 10 N of force over 3 m in 10 s. Bill applies the same force over the same distance in 20 s. 8. Who did more work? (A) Alice (B) Bill (C) tie 9. Who produced the greater power? (A) Alice (B) Bill (C) tie 10. Car A has twice the mass of car B, but they both have the same kinetic energy. How do their speeds compare? (A) 2vA = vB (B) 2vA = vB (C) 4vA = vB 11. Two balls have total kinetic energy of zero. What can you say about the total momentum of the two balls? (A) p > 0 (B) p = 0 (C) p < 0 12. Two balls have total momentum of zero. Does it necessarily follow that the total kinetic energy is zero? (A) yes (B) no 13. Two balls with different masses have the same momentum. Which ball has greater kinetic energy? (A) heavier ball (B) lighter ball Questions 14-15 Stone A has twice the mass as stone B. They are dropped from a cliff and reach a point just above ground. 14. What is the speed of stone A compared to stone B? (A) vA = vB (B) vA = ½vB (C) vA = 2vB (D) vA = 4vB 15. What is the kinetic energy of stone A compared to stone B? (A) KA = KB (B) KA = ½KB (C) KA = 2KB (D) KA = 4KB Questions 16-17 Car A and car B are identical, but car A has twice the velocity of car B. 16. A has kinetic energy K. What is the kinetic energy of B? (A) 2K (B) 4K (C) ½K (D) ¼K 17. A takes d meters to stop. What is B's stopping distance? (A) 2d (B) 4d (C) ½d (D) ¼d 18. The work Wo accelerates a car for 0 to v. How much work is needed to accelerate the car from v to 2v? (A) Wo (B) 2Wo (C) 3Wo (D) 4Wo 19. A golfer making a putt gives the ball an initial velocity of vo, but the ball only travels one-quarter of the distance to the hole. What speed should he have given the ball? (A) 2vo (B) 3vo (C) 4vo (D) 8vo 20. Which can never be negative? (A) W (B) K (C) U (D) p 21. You and your friend both solve a problem involving a skier going down a slope, starting from rest. The two of you have chosen different levels for h = 0 in this problem. Which of the quantities will you and your friend agree on? I. Ug II. Ug III. K (A) I only (B) II only (C) III only (D) II and III 22. Two paths lead to the top of a big hill. A is steep and direct, while the B is twice as long but less steep. The change in potential energy on path A compared to path B is (A) UA < UB (B) UA = UB (C) UA > UB 23. How does the work required to stretch a spring 2 cm compare with the work required to stretch it 1 cm? (A) W2 = W1 (B) W2 = 2W1 (C) W2 = 4W1 (D) W2 = 8W1 24. A mass attached to a vertical spring moves downward and stretches the spring. Which is true about the signs for U? (A) +Us, +Ug (B) +Us, –Ug (C) –Us, +Ug (D) –Us, –Ug 25. What is the momentum of a 0.5-kg ball traveling at 18 m/s? 26. What force is generated by a racket, which strikes a 0.06-kg tennis ball that reaches a speed of 65 m/s in 0.03 s? 27. How much work is done to move a 50-kg crate horizontally 10 m against a 150-N force of friction? 28. How much work is done to pull a 100-kg crate horizontally 10 m using a force of 100 N at 30o? 29. How much work is done to carry a 100-kg crate 10 m up a 30o ramp? 30. Why is work not needed to keep the earth orbiting the sun? 31. How much power is needed to change the speed of a 1500-kg car from 10 m/s to 20 m/s in 5 s? 32. How much power does a 75-kg person generate when climbing 50 steps (rise of 25 cm per step) in 12 s? a. in Watts b. in horse power (1hp = 746 W) 33. How much power is needed to maintain a speed of 25 m/s against a total friction force of 200 N? 34. How long will it take a 1750-W motor to lift a 285-kg piano to a sixth-story window 16 m above? 35. A 1000-kg car travels at 30 m/s against 600-N of friction. a. How much power does the car engine deliver? b. The car accelerates at 2 m/s2. How much power does the car engine deliver now? c. The car goes up a 10o incline at 30 m/s. How much power does the car engine deliver now? 36. What is the kinetic energy of a 2-kg block moving at 9 m/s? 37. What is the gravitational potential energy of a 2-kg block that is 6 m above zero potential energy? 38. What is the gravitational potential energy of the earth-moon system? (MEarth = 5.97 x 1024 kg, Mmoon = 7.35 x 1022 kg, distance between Earth and moon, r = 3.84 x 108 m) 39. Consider the following spring (k = 100 N/m). a. Calculate the force (F = kx) for each value of x. x (m) 0.0 0.1 0.2 0.3 0.4 F (N) b. Graph the data 48. A rock is dropped from 20 m. What is the final velocity? a. Use kinematics to solve this problem. 0.5 b. Use energy to solve this problem. 40 N 49. A pendulum bob reaches a maximum height of 0.6 m above the lowest point in the swing, what is its fastest speed? 20 N 0N c. d. 0.2 m Calculate the area under the graph. 0.4 m How much potential energy is stored in the stretched spring? B. Solving Work-Energy Problems 40. Three balls of equal mass start from rest and roll down different ramps. All ramps have the same height. Which ball has the greatest speed at the bottom of the ramp? A B 50. How far must a 1 kg ball fall in order to compress a spring 0.1 m? (k = 1000 N/m) 51. A 10-kg box is initially at the top of a 5-m long ramp set at 53o. The box slides down to the bottom of the ramp. The force of friction is 31 N. Determine the a. potential energy at the top of the ramp. b. work done by friction during the slide. c. velocity of the box at the bottom of the ramp. C (A) A (B) B (C) C (D) tie 41. A stationary block slides down a frictionless ramp and attains a speed of 2 m/s. To achieve a speed of 4 m/s, how many times higher must the block start from? (A) 2 times (B) 4 times (C) 8 times 42. A box sliding on a frictionless flat surface runs into a fixed spring, which compresses a distance x to stop the box. If the initial speed of the box is doubled, how much would the spring compress? (A) ½x (B) x (C) 2x (D) 4x Questions 43-44 Alice and Bill start from rest at the same elevation on frictionless water slides with different shapes. Bill Alice 43. At the bottom whose velocity is greater? (A) Alice (B) Bill (C) tie 44. Who makes it to the bottom in the least amount of time? (A) Alice (B) Bill (C) tie 45. A cart starting from rest rolls down a hill and at the bottom has a speed of 4 m/s. If the cart were given a push, so its initial speed at the top of the hill was 3 m/s, what would be its speed at the bottom? (A) 4 m/s (B) 5 m/s (C) 6 m/s (D) 7 m/s 46. You see a leaf falling to the ground with constant speed. When you first notice it, the leaf has initial total mechanical energy Ei. You watch the leaf until just before it hits the ground, at which point it has final total mechanical energy Ef. How do these total energies compare? (A) Ei < Ef (B) Ei = Ef (C) Ei > Ef 47. You throw a ball straight up into the air. In addition to gravity, the ball feels a force due to air resistance. Compared to the time it takes the ball to go up, the time to come back down is (A) less (B) equal (C) greater 52. A spring (k = 500 N/m) is attached to the wall. A 5-kg block on a horizontal surface ( = 0.25) is pushed against the spring so that the spring is compressed 0.2 m. The block is released and propelled across the surface. a. Determine the potential energy of the spring. b. Determine the distance that the block travels. C. Solving Collision Problems 53. A small car and a large truck collide head-on and stick together. Which one has larger momentum change? (A) car (B) truck (C) tie 54. A small beanbag and a bouncy rubber ball are dropped from the same height above the floor. The both have the same mass. Which would hurt more if it hit you on the head? (A) beanbag (B) rubber ball (C) tie 55. A box slides with initial velocity 10 m/s on a frictionless surface and collides inelastically with a stationary identical box. What is the final velocity of the combined boxes? (A) 0 m/s (B) 5 m/s (C) 10 m/s (D) 20 m/s Questions 56-57 A uranium nucleus (at rest) undergoes fission and splits into two fragments, one heavy and the other light. 56. Which fragment has the greater momentum? (A) heavier one (B) lighter one (C) tie 57. Which fragment has the greater speed? (A) heavier one (B) lighter one (C) tie 58. Alice (50 kg) and Bill (75 kg) are standing on slippery ice and push off of each other. If Alice slides at 6 m/s, what speed does Bill have? (A) 2 m/s (B) 3 m/s (C) 4 m/s (D) 6 m/s 59. A cannon sits on a stationary railroad flatcar with a total mass of 1000 kg. When a 10-kg cannon ball is fired at a speed of 50 m/s, what is the recoil speed of the flatcar? (A) 0 m/s (B) 0.5 m/s (C) 10 m/s (D) 50 m/s 60. A 25-kg child in a stationary 55-kg boat with a 5-kg package throws the package out horizontally at 8 m/s. What is the boat and child's resultant velocity? 67. Determine the velocities after the following elastic collisions between mA (1 kg) and mB (3 kg). vA = + 2 m/s vB = 0 m/s A = 0o B = 0o 61. An 85-kg safety running at 5 m/s tackles a 95-kg fullback traveling at 4 m/s from behind. What is their mutual speed just after the tackle? 62. A 0.45-kg ice puck, moving east with a speed of 3.0 m/s, has a head-on elastic collision with a 0.9-kg puck initially at rest. What are the resulting speeds and directions? 63. A 1-kg block traveling at 5 m/s in the direction of 30o south of east collides and sticks with a 2-kg block traveling north at 3 m/s. Determine a. The x-component of the resulting velocity, vx'. b. The y-component of the resulting velocity, vy'. c. The resultant speed. d. The resultant direction. b. What is the velocity of the system just after the impact? c. What is the velocity of the bullet just before the impact? 69. An 18-g bullet traveling at 230 m/s buries itself in a 3.6-kg pendulum hanging on a 2.8-m long string. a. Determine for the bullet/pendulum just after impact. (1) velocity (2) kinetic energy b. 64. A 0.50-kg softball is traveling at 40 m/s. A bat makes contact with the ball for 0.025 s, after which, the ball's velocity is 35 m/s in the opposite direction (v = -75 m/s). a. Determine the change in the ball's momentum. b. 68. A 15-g bullet penetrates a 1.1-kg block of wood. As a result, the block slides along a surface ( = 0.85) for 9.5 m. a. How much work is done by friction? How high does the pendulum rise? 70. Andre hits a 0.06-kg tennis ball straight up into the air with a 300-N force. The ball remains on the racket for 0.25 m. a. Using dynamics and kinematics, determine (1) The acceleration. (2) The initial velocity. (3) The maximum height reached by the tennis ball. Determine the average force exerted by the bat. 65. Determine the velocity after the following inelastic collisions between mA (1 kg) and mB (3 kg). vA = + 2 m/s vB = -1 m/s A = 0o B = 0o b. Use energy to determine the maximum height reached by the tennis ball. 71. How much power is used to lift 100 kg a distance of 2 m in 4 s? vA = + 5 m/s A = 53o vB = 3 m/s B = 90o 72. A 1,000-kg car maintains a constant speed of 30 m/s against a combined friction and air resistance force of 550 N. a. How much power is needed to cruise at 30 m/s? b. 66. Stationary mA (1 kg) and mB (3 kg) are separated by a compressed spring, which is then released. What is the resulting velocity of mB, when vA is -12 m/s? How steep an incline can the car climb if the engine can generate 50,000 W of power? 73. A 1-kg block is pushed down against a spring (k = 500 N/m), which is compressed 0.1 m. The block is released and propelled vertically. a. Determine the potential energy of the spring. b. Determine the maximum height reached by the block. 4. A 2,000-kg railroad car rolls to the right at 10 m/s and collides and stick to a 3,000-kg car that is rolling to the left at 5 m/s. What is their speed after the collision? (A) 1 m/s (B) 2.5 m/s (C) 5 m/s (D) 7 m/s 5. A 5-kg block with momentum = 30 kg•m/s, sliding east across a horizontal, frictionless surface, strikes an obstacle. The obstacle exerts all impulse of 10 N•s to the west on the block. The speed of the block after the collision is (A) 4 m/s (B) 8 m/s (C) 10 m/s (D) 20 m/s 6. In the diagram, a block of mass M initially at rest on a frictionless horizontal surface is struck by a bullet of mass m moving with horizontal velocity v. 74. A 10-kg box is initially at the top of a 5-m long ramp set at 30o. The box slides down to the bottom of the ramp. The force of friction is 26 N. Determine the a. potential energy at the top of the ramp. b. work done by friction during the slide. c. velocity of the box at the bottom of the ramp. 75. A 0.050-kg bullet traveling at 1,000 m/s penetrates a 10-kg block of wood. a. What is the velocity of the block after impact? b. How far does the block travel along a rough surface ( = 0.25) before stopping? c. How high does the block rise if it were suspended from a long string? What is the velocity of the bullet-block system after the bullet embeds itself in the block? (A) (M + v)m/M (B) (m + v)m/M (C) (m + M)v/M (D) mv/(m + M) 7. A disc of mass m is moving to the right with speed v when it collides and sticks to a second disc of mass 2m. The second disc was moving to the right with speed v/2. Practice Multiple Choice Briefly explain why the answer is correct in the space provided. 1. The force on an object versus time is graphed below. The speed of the composite body after the collision is (A) v/3 (B) v/2 (C) 2v/3 (D) 3v/2 8. An object of mass m is moving with speed vo to the right on a horizontal frictionless surface when it explodes into two pieces. Subsequently, one piece of mass 2/5m moves with a speed ½vo to the left. The speed of the other piece of the object is (A) vo/2 (B) vo/3 (C) 7vo/5 (D) 2 vo 9. Two objects of mass 0.2 kg and 0.1 kg, respectively, move parallel to the x-axis. The 0.2 kg object overtakes and collides with the 0.1 kg object. Immediately after the collision, the y-component of the velocity of the 0.2 kg object is 1 m/s upward. The object's change in momentum, in kg•m/s, from 0 to 4 s is (A) 40 (B) 20 (C) 0 (D) -20 2. A 3-kg block, initially at rest, is pulled along a frictionless, horizontal surface with a force shown as a function of time t by the graph. The speed of the block at t = 3 s is (A) 3 m/s (B) 4 m/s (C) 6 m/s 3. What is the y-component of the velocity of the 0.1 kg object immediately after the collision? (A) 2 m/s downward (B) 0.5 m/s downward (C) 0 m/s (D) 0.5 m/s upward (D) 8 m/s Two pucks, where mI = 3mII, are attached by a stretched spring and are initially held at rest on a frictionless surface. The pucks are released simultaneously. Which is the same for both pucks as they move toward each other? (A) Speed (B) Velocity (C) Acceleration (D) Magnitude of momentum 10. Two particles of equal mass mo moving with equal speeds vo along paths inclined at 60° to the x-axis, collide and stick together. Their velocity after the collision has magnitude (A) vo/4 (B) vo/2 (C) vo/2 (D) 3vo/2 11. Student A lifts a 50-N box to a height of 0.4 m in 2.0 s. Student B lifts a 40-N box to a height of 0.50 m in 1.0 s. Compared to student A, student B does (A) the same work but develops more power (B) the same work but develops less power (C) more work but develops less power (D) less work but develops more power 12. What is the change in gravitational potential energy for a 50-kg snowboarder raised a vertical distance of 400 m? (A) 50 J (B) 200 J (C) 20,000 J (D) 200,000 J 21. The gain in potential energy when the mass goes from the bottom of the ramp to the top. (A) 100 J (B) 500 J (C) 1000 J (D) 2000 J 22. What is the maximum height that a 0.1-kg stone rises if 40 J of work is used to shoot it straight up in the air? (A) 0.4 m (B) 4 m (C) 40 m (D) 400 m 23. A 40-N block is released from rest on an incline 8 m above the horizontal. 13. How high is a 50-N object moved if 250 J of work is done against the force of gravity? (A) 2.5 m (B) 10 m (C) 5 m (D) 25 m 14. What is the spring potential energy when a spring (k = 80 N/m) is stretched 0.3 m from its equilibrium length? (A) 3.6 J (B) 12 J (C) 7.2 J (D) 24 J 15. What is the kinetic energy of a 5-kg block that slides down an incline at 6 m/s? (A) 20 J (B) 90 J (C) 120 J (D) 240 J Questions 16-17 A weight lifter lifts a mass m at constant speed to a height h in time t. 16. How much work is done by the weight lifter? (A) mg (B) mh (C) mgh (D) mght 17. What is the average power output of the weight lifter? (A) mg (B) mh (C) mgh (D) mgh/t 18. Which is a scalar quantity that is always positive or zero? (A) Power (B) Work (C) Kinetic energy (D) Potential Energy What is the kinetic energy of the block at the bottom of the incline if 50 J of energy is lost due to friction? (A) 50 J (B) 270 J (C) 320 J (D) 3100 J Questions 24-27 The vertical height versus gravitational potential energy for an object near earth's surface is graphed below. Ug (J) 80 60 40 20 h (m) 0.5 1.5 2.5 3.5 24. What is Ug when the object is 2.25 m above the surface? (A) 50 J (B) 45 J (C) 60 J (D) 55 J 0 25. What is the mass of the object? (A) 1.5 kg (B) 2.0 kg (C) 2.5 kg (D) 3.0 kg 19. The graphs show the position d versus time t of three objects that move along a straight, level path. 26. What does the slope of the graph represent? (A) mass of the object (B) gravitational force on the object (C) kinetic energy of the object (D) potential energy of the object Which has no change in kinetic energy? (A) II only (B) III only (C) I and II (D) I and III Questions 20-21 A constant force of 900 N pushes a 100 kg mass up the inclined plane at a uniform speed of 4 m/s. 20. The power developed by the 900-N force is (A) 400 W (B) 800 W (C) 900 W (D) 3600 W 27. If an object with greater mass was graphed instead of the object graphed above, how would the slope of the graph differ from the above graph? (A) more positive (B) less positive (C) equal but negative (D) be the same 28. A 50-kg diver falls freely from a diving platform that is 3 m above the surface of the water. What is her kinetic energy at 1 m above the water? (A) 0 (B) 500 J (C) 750 J (D) 1000 J 29. A 1000 W electric motor lifts a 100 kg safe at constant velocity. The vertical distance through which the motor can raise the safe in 10 s is most nearly (A) 1 m (B) 3 m (C) 10 m (D) 32 m Practice Free Response 1. 30. Which is the graph of the spring potential energy of a spring versus elongation from equilibrium? (A) (B) (C) (D) A 0.62-kg block is attached to the spring (k = 180 N/m). When the system is compressed 5.0 cm and released, it slides a total of 7.3 cm before turning back. a. How much potential energy does the spring have when compressed 5.0 cm when begins turning back b. How much work is done by friction as it slides 7.3 cm? c. 31. Which is the graph of the gravitational potential energy of an object versus height? (Assume height << earth's radius) (A) (B) (C) (D) 32. An object falls freely near earth's surface. Which graph best represents the relationship between the object's kinetic energy and its time of fall? (A) (B) (C) (D) 33. A system consists of two masses m1 and m2 (m1 < m2). The objects are connected by a string, hung over a pulley and then released. When the object of mass m2 has descended a distance h, the change in potential energy of the system is (A) (m1 – m2)gh (B) m2gh (C) (m1 + m2)gh (D) ½(m1 + m2)gh 34. From the top of a 70-m-high building, a 1-kg ball is thrown directly downward with an initial speed of 10 m/s. If the ball reaches the ground with a speed of 30 m/s, the energy lost to friction is most nearly (A) 50 J (B) 250 J (C) 300 J (D) 450 J 2. 3. What is the coefficient of friction? A larger block with mass M slides down a ramp a vertical distance of 30 cm and strikes a smaller block with mass m, where M = 3m. The blocks stick and fall 90 cm to the floor. a. What is the velocity of the larger block just before it collides with the smaller block? b. What is the velocity of the blocks after the collision? c. How far horizontally do the blocks travel after colliding? Students are to calculate the spring constant k of a spring. The spring is compressed 0.020 m from its uncompressed length. A mass m is placed on top of the spring. The spring is then released and the maximum height h reached by the mass is measured. The students repeat the experiment, measuring h with various masses m. a. Derive an expression for the height h in terms of m, x, k, and fundamental constants. b. (1) What quantities should be graphed so that the slope of a best-fit straight line can be used to calculate the spring constant k? (2) Fill in one or both of the blank columns in the table with calculated values of your quantities. m (kg) h (m) 0.020 0.49 0.030 0.34 0.040 0.28 0.050 0.19 0.060 0.18 c. On the axes below, plot your data and draw a best-fit straight line. Label the axes and indicate the scale. d. Using your best-fit line, calculate the spring constant. 35. A block of mass M is released from rest at the top of an inclined plane of height h. If the plane is frictionless, what is the speed of the block at the bottom of the incline? (A) (2gh)½ (B) 2Mgh (C) 2MghR2 (D) 5gh 36. Block of mass m slides on a horizontal frictionless table with an initial speed vo. It then compresses a spring of force constant k and is brought to rest. How much is the spring compressed from its natural length? (A) vo2/2g (B) mgvo/k (C) mvo/k (D) vo(m/k)½