Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Section 3-3 Measures of Variation WAITING TIMES AT DIFFERENT BANKS JeffersonValleyBank (singlewaitingline) 6.5 6.6 6.7 6.8 7.1 7.3 7.4 7.7 7.7 7.7 BankofProvidence (multiplewaiting lines) 4.2 5.4 5.8 6.2 6.7 7.7 7.7 8.5 9.3 10.0 Allthemeasuresofcenterareequalforbothbanks. Mean=7.15min Median=7.20min Mode=7.7min Midrange=7.10min RANGE Therange ofasetofdatavaluesisthe differencebetweenthehighestvalueandthe lowestvalue. range=(maximumdatavalue)−(minimum datavalue) EXAMPLE: JeffersonValleyBankrange=7.7−6.5=1.2min BankofProvidencerange=10.0−4.2=5.8min 1 STANDARD DEVIATION FOR A SAMPLE Thestandarddeviation ofasetofsample values,denotedby ,isameasureofhowmuch thedatavaluesdeviateawayfromthemean STANDARD DEVIATION FORMULAS SampleStandard Deviation ShortcutFormula forSample StandardDeviation ∑ ̅ 1 ∑ ∑ 1 EXAMPLE Useboththeregularformulaandshortcut formulatofindthestandarddeviationofthe following. 3742 2 PROPERTIES OF THE STANDARD DEVIATION • Thestandarddeviationisameasureofvariationofall valuesfromthemean. • Thevalueofthestandarddeviations isusually positive.Itiszeroonlywhenallofthedatavaluesare thesamenumber.(Itisnevernegative.)Also,larger valuesofs indicategreateramountsofvariation. • Thevalueofthestandarddeviations canincrease dramaticallywiththeinclusionofoneormore outliers. • Theunitsofthestandarddeviations arethesameas theunitsoftheoriginaldatavalues. • Thesamplestandarddeviationisabiasedestimator ofthepopulationstandarddeviation . STANDARD DEVIATION OF A POPULATION Thestandarddeviationforapopulation is denotedbyσ andisgivenbytheformula ∑ FINDING THE STANDARD DEVIATION ON THE TI-83/84 1. PressSTAT;select1:Edit…. 2. EnteryourdatavaluesinL1.(Youmayenterthe valuesinanyofthelists.) 3. Press2ND,MODE (forQUIT). 4. PressSTAT;arrowovertoCALC.Select1:1‐Var Stats. 5. EnterL1bypressing2ND,1. 6. PressENTER. 7. Thesample standarddeviationisgivenbySx.The population standarddeviationisgivenbyσx. 3 FINDING THE STANDARD DEVIATION ON THE TI-84 WITH NEW OS 1. PressSTAT;select1:Edit…. 2. EnteryourdatavaluesinL1.(Youmayenterthe valuesinanyofthelists.) 3. Press2ND,MODE (forQUIT). 4. PressSTAT;arrowovertoCALC.Select1:1‐Var Stats. 5. For“List”,enterL1bypressing2ND,1. 6. Leave“FreqList”blank. 7. Highlight“Calculate”andpressENTER. 8. Thesample standarddeviationisgivenbySx.The population standarddeviationisgivenbyσx. SYMBOLS FOR STANDARD DEVIATION Sample s Sx Population σ σx textbook TI‐83/84Calculators textbook TI‐83/84Calculators EXAMPLE Useyourcalculatortofindthestandard deviationforwaitingtimesattheJefferson ValleyBankandtheBankofProvidence. JeffersonValley Bank(single waitingline) 6.5 6.6 6.7 6.8 7.1 7.3 7.4 7.7 7.7 7.7 BankofProvidence 4.2 5.4 5.8 6.2 6.7 7.7 7.7 8.5 9.3 10.0 (multiplewaiting lines) 4 VARIANCE Thevariance ofsetofvaluesisameasureof variationequaltothesquareofthestandard deviation. samplevariance=s2 populationvariance=σ2 PROPERTIES OF THE VARIANCE • Theunitsofthevariancearethesquares oftheunitsof theoriginaldatavalues. • Thevalueofthevariancecanincreasedramatically withtheinclusionofoneormoreoutliers. • Thevalueofthevarianceisusuallypositive.Itiszero onlywhenallofthedatavaluesarethesamenumber. (Itisnevernegative.) • Thesamplevarianceisanunbiasedestimator ofthe populationvariance . ROUND-OFF RULE FOR MEASURES OF VARIATON Carryonemoredecimalplace thanispresentinthe originaldataset. 5 STANDARD DEVIATION FROM A FREQUENCY DISTRIBUTION ∑ · ∑ 1 · Usetheclassmidpointsasthex values. NOTE:Wewillnot usethisformulabut willusetheTI‐83/84calculator. FINDING THE STANDARD DEVIATION FROM A FREQUENCY TABLE ON THE TI-83/84 1. EntertheclassmidpointsinL1. 2. EnterthefrequenciesinL2. 3. PressSTAT,arrowovertoCALC,andselect 1:1‐VarStats. 4. PressL1,L2 followedbyENTER. 5. ThesamplestandarddeviationwillbeSx. Thepopulationstandarddeviationwillbe σx. FINDING THE STANDARD DEVIATION FROM A FREQUENCY TABLE ON THE TI-84 WITH NEW OS 1. EntertheclassmidpointsinL1. 2. EnterthefrequenciesinL2. 3. PressSTAT,arrowovertoCALC,andselect1:1‐ VarStats. 4. For“List”,enterL1. 5. For“FreqList”,enterL2. 6. Highlight“Calculate”andpressENTER. 7. ThesamplestandarddeviationwillbeSx.The populationstandarddeviationwillbeσx. 6 EXAMPLE Findthesamplestandarddeviationofthe following. CLASS FREQUENCY 1‐3 4 4‐6 9 7‐9 6 RANGE RULE OF THUMB — PART 1 ForInterpretingaKnownValueofthe StandardDeviation: Ifthestandard deviations isknown,useittofindrough estimatesoftheminimumandmaximum “usual”samplevaluesbyusingthefollowing minimum“usual”value maximum“usual”value ̅ ̅ 2 2 RANGE RULE OF THUMB — PART 2 ForEstimatingaValueoftheStandard Deviation:Toroughly estimatethestandard deviation,usethe range 4 where range=(maximumdatavalue)−(minimum datavalue) 7 EXAMPLES 1. Heightsofmenhaveameanof69.0inand astandarddeviationof2.8in.Usethe rangeruleofthumbtoestimatethe minimumandmaximum“usual”heightsof men.Inthiscontext,isitunusualfora mantobe6ft,6intall? 2. Theshortesthome‐runhitbyMark McGwirewas340ft andthelongestwas 550ft.Usetherangeruleofthumbto estimatethestandarddeviation. MORE PROPERTIES OF THE STANDARD DEVIATION • Thestandarddeviationmeasuresthevariation amongthedata values. • Valuesclosetogetherhaveasmallstandarddeviation,but valueswithmuchmorevariationhavealargerstandard deviation. • Thestandarddeviationhasthesameunitsofmeasurementas theoriginalvalues. • Formanydatasets,avalueisunusual ifitdiffersfromthemean bymorethantwostandarddeviations. • Whencomparingvariationintwodifferentdatasets,compare thestandarddeviationsonlyifthedatasetsusethesamescale andunitsandtheyhavemeansthatareapproximatelythe same. THE EMPIRICAL (OR 68-95-99.7) RULE FOR DATA WITH A BELL-SHAPED DISTRIBUTION Theempirical (or68‐95‐99.7)rule statesthatfor datasetshavingadistributionthatisapproximately bell‐shaped,thefollowingpropertiesapply. • About68%ofallvaluesfallwithin1 standarddeviationofthemean. • About95%ofallvaluesfallwithin2 standarddeviationsofthemean. • About99.7%ofallvaluesfallwithin3 standarddeviationsofthemean. 8 EXAMPLE Arandomsampleof50gasstationsinCookCounty, Illinois,resultedinameanpricepergallonof$2.56 andastandarddeviationof$0.07.Ahistogram indicatedthatthedatafollowabell‐shaped distribution. (a) UsetheEmpiricalRuletodeterminethe percentageofgasstationsthathaveprices withinthreestandarddeviationsofthe mean.Whatarethesegasprices? (b) Determinethepercentageofgasstationswith pricesbetween$2.42and$2.70,accordingtothe empiricalrule. CHEBYSHEV’S THEOREM Theproportion(orfraction)ofany setofdata lyingwithinK standarddeviationsofthemean isalwaysatleast 1−1/K2,whereK isany positivenumbergreaterthan1.ForK =2and K =3,wegetthefollowingstatements: • Atleast3/4(or75%)ofallvalueslie within2standarddeviationsofthemean. • Atleast8/9(or89%)ofallvalueslie within3threestandarddeviationsofthe mean. 9 EXAMPLE Asurveyoflocalcompaniesfoundthatthe meanamountoftravelallowancefor executiveswas$0.25permile.Thestandard deviationwas$0.02.Findtheminimum percentageofdatavaluesthatwillfallbetween $0.19and$0.31. 10