Download Online Appendix

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Online Appendix for the following JACC: Cardiovascular Imaging article
TITLE: The Limit of Plausibility For Predictors of Response: Application to Biventricular
Pacing (Cardiac Resynchronization Therapy), Systematic Review and Design Steps For
Reliable Research
AUTHORS: Sukhjinder S. Nijjer, BSC, MB CHB, Punam A. Pabari, MB CHB, PHD,
Berthold Stegemann, PHD, Vittorio Palmieri, MD, PHD, Francisco Leyva, MD, Cecilia
Linde, MD, PHD, Nick Freemantle, PHD, Justin E. Davies, BSC, MBBS, PHD, Alun D.
Hughes, MB BS, PHD, Darrel P. Francis, MA, MD
___________________________________________________________________________
APPENDIX
Determining the contraction factor
Contraction factor imposed by dyssynchrony marker
If a mechanical dyssynchrony marker is measured several times in one patient, the observed
values (xobserved) will not all be identical, but rather be scattered randomly with a notional
stable true underlying value (xtrue) and an error component (xerror), i.e. xobserved = xtrue + xerror.
Here, the word β€œerror” includes observer error, equipment error, operator error, and (most
importantly) genuine biological variability, all of which cause the observed value to differ
from the true underlying value.
When one measurement in one patient is compared with one measurement in another patient,
only part of the difference is due to true underlying difference between patients: the
remainder is due to error. Across a population, the total observed variance between
individuals is composed of two components: the true underlying variance between
individuals (Variance of xtrue) and the size of the error component (Variance of xerror). The
total variance of xobserved is:
π‘‰π‘Žπ‘Ÿπ‘–π‘Žπ‘›π‘π‘’ of π‘₯π‘œπ‘π‘ π‘’π‘Ÿπ‘£π‘’π‘‘ = π‘‰π‘Žπ‘Ÿπ‘–π‘Žπ‘›π‘π‘’ of π‘₯π‘‘π‘Ÿπ‘’π‘’ + π‘‰π‘Žπ‘Ÿπ‘–π‘Žπ‘›π‘π‘’ of π‘₯π‘’π‘Ÿπ‘Ÿπ‘œπ‘Ÿ
The component of variation arising from xerror is clinically completely uninformative because
it is random, changing each time it is measured rather than representing anything meaningful
for the patient. Therefore of the variation observed in x, only the remaining proportion is
meaningful and therefore has any hope of correlating with another variable:
Proportion of variation in π‘₯π‘œπ‘π‘ π‘’π‘Ÿπ‘£π‘’π‘‘ that is meaningful =
=1βˆ’
π‘‰π‘Žπ‘Ÿπ‘–π‘Žπ‘›π‘π‘’ π‘œπ‘“ π‘₯π‘‘π‘Ÿπ‘’π‘’
π‘‰π‘Žπ‘Ÿπ‘–π‘Žπ‘›π‘π‘’ π‘œπ‘“ π‘₯π‘œπ‘π‘ π‘’π‘Ÿπ‘£π‘’π‘‘
π‘‰π‘Žπ‘Ÿπ‘–π‘Žπ‘›π‘π‘’ π‘œπ‘“ π‘₯π‘’π‘Ÿπ‘Ÿπ‘œπ‘Ÿ
π‘‰π‘Žπ‘Ÿπ‘–π‘Žπ‘›π‘π‘’ π‘œπ‘“ π‘₯π‘œπ‘π‘ π‘’π‘Ÿπ‘£π‘’π‘‘
The final formula above expresses quantitatively the notion that if a measurement has wide
test-retest irreproducibility (xerror), then only a small proportion of the observed differences
between patients are actually meaningful. It goes on to say that if test-retest reproducibility is
as wide as the observed spread in the population then all observed differences between
patients are completely meaningless.
Only the meaningful proportion of the variation can correlate with another variable, and so if
there is any underlying relationship between x and another variable y, with an underlying
association strength of R2underlying, the observed association strength R2observed will be
contracted by this factor.
Contraction factor imposed by response marker
The same applies for a marker of response: yobserved = ytrue + yerror. Here, β€œerror” refers to all
variability between LV function measurements over time within individuals who do not
receive biventricular pacing. HSSCSs characteristically do not report this. EMRCTs
sometimes do, as the standard deviation of change in LV measurement (e.g., Ξ”LVEF) over
time, in the control arm.
In the control arm, there is no biventricular pacing is given, and so β€œerror” is the only source
of variation: this means Variance of yerror = Variance of Ξ”LVEF in the control arm. In the
device arm, there is both β€œerror” variation and variation due to biventricular pacing having
different-sized effects in different patients. This means that the Variance of yerror + Variance
of ytrue = Variance of Ξ”LVEF in the biventricular pacing arm.
Applying the same reasoning as for x, we obtain:
Proportion of Variance in π‘¦π‘œπ‘π‘ π‘’π‘Ÿπ‘£π‘’π‘‘ that is meaningful = 1 βˆ’
π‘‰π‘Žπ‘Ÿπ‘–π‘Žπ‘›π‘π‘’ π‘œπ‘“ 𝑦 𝑖𝑛 πΆπ‘œπ‘›π‘‘π‘Ÿπ‘œπ‘™ π‘Žπ‘Ÿπ‘š
π‘‰π‘Žπ‘Ÿπ‘–π‘Žπ‘›π‘π‘’ π‘œπ‘“ 𝑦 𝑖𝑛 𝐢𝑅𝑇 π‘Žπ‘Ÿπ‘š
Only this meaningful proportion of the variation can correlate with another variable, and so if
there is any underlying relationship between y and another variable x, with an underlying
association strength of R2underlying, the observed association strength R2observed will be
contracted by this factor.
The combined contraction factor
If there is an underlying relationship between x and y, the observed relationship strength will
be lower, because of both of the above contraction processes:
R2observed = R2underlying × [1 βˆ’
Variance of xerror
Variance of y in Control arm
] × [1 βˆ’
]
Variance of xobserved
Variance of y in CRT arm
How to screen the plausibility of a reportedly observed R2 value
If a study reports a high R2observed value, a plausibility check can quickly be carried out with
the above formula, perhaps made more convenient by rewriting it like this:
2
2
πΌπ‘šπ‘π‘™π‘–π‘’π‘‘ π‘…π‘’π‘›π‘‘π‘’π‘Ÿπ‘™π‘¦π‘–π‘›π‘”
= π‘…π‘œπ‘π‘ π‘’π‘Ÿπ‘£π‘’π‘‘
[1 βˆ’
π‘‰π‘Žπ‘Ÿπ‘–π‘Žπ‘›π‘π‘’ π‘œπ‘“ π‘₯π‘’π‘Ÿπ‘Ÿπ‘œπ‘Ÿ
π‘‰π‘Žπ‘Ÿπ‘–π‘Žπ‘›π‘π‘’ π‘œπ‘“ 𝑦 𝑖𝑛 πΆπ‘œπ‘›π‘‘π‘Ÿπ‘œπ‘™ π‘Žπ‘Ÿπ‘š
] × [1 βˆ’
]
π‘‰π‘Žπ‘Ÿπ‘–π‘Žπ‘›π‘π‘’ π‘œπ‘“ π‘₯π‘œπ‘π‘ π‘’π‘Ÿπ‘£π‘’π‘‘
π‘‰π‘Žπ‘Ÿπ‘–π‘Žπ‘›π‘π‘’ π‘œπ‘“ 𝑦 𝑖𝑛 𝐢𝑅𝑇 π‘Žπ‘Ÿπ‘š
For example, if the study’s reported standard deviation of dyssynchrony is 50 ms, and the
blinded test-retest reproducibility standard deviation of xerror is 30 ms, then the first bracketed
term is 1 – 302/502. The chosen response marker may have credible reports of spontaneous
variation, for example from an RCT. If the SD of β€œresponse” was in the control arm 9 units,
and in the biventricular pacing arm 11 units, then the second bracketed term is 1 – 92/112.
Thus, if the reported R2 observed is 0.80, this would only be sustainable if the underlying R2
value were 0.80/[(1 – 302/502) (1 – 92/112)] = 3.8. This goes beyond β€œhighly skilled” into
β€œimpossible.”
Online Supplemental References
1. Pitzalis MV, Iacoviello M, Romito R, Massari F, Rizzon B, Luzzi G, Guida P,
Andriani A, Mastropasqua F, Rizzon P. Cardiac resynchronization therapy tailored
by echocardiographic evaluation of ventricular asynchrony. J Am Coll Cardiol.
2002;40:1615–22.
2. Yu CM, Fung WH, Lin H, Zhang Q, Sanderson JE, Lau CP. Predictors of left
ventricular reverse remodeling after cardiac resynchronization therapy for heart
failure secondary to idiopathic dilated or ischemic cardiomyopathy. Am J Cardiol.
2003;91:684–8.
3. Gorcsan J III, Kanzaki H, Bazaz R, Dohi K, Schwartzman D. Usefulness of
echocardiographic tissue synchronization imaging to predict acute response to cardiac
resynchronization therapy. Am J Cardiol 2004;93:1178–81.
4. Notabartolo D, Merlino JD, Smith AL, DeLurgio DB, Vera FV, Easley KA, Martin
RP, León AR. Usefulness of the peak velocity difference by tissue Doppler imaging
technique as an effective predictor of response to cardiac resynchronization therapy.
Am J Cardiol. 2004;94:817–20.
5. Penicka M, Bartunek J, De Bruyne B, Vanderheyden M, Goethals M, De Zutter M,
Brugada P, Geelen P. Improvement of left ventricular function after cardiac
resynchronization therapy is predicted by tissue Doppler imaging echocardiography.
Circulation. 2004;109:978–83.
6. Pitzalis MV, Iacoviello M, Romito R, Guida P, De Tommasi E, Luzzi G, Anaclerio
M, Forleo C, Rizzon P. Ventricular asynchrony predicts a better outcome in patients
with chronic heart failure receiving cardiac resynchronization therapy. J Am Coll
Cardiol. 2005;45:65–9.
7. Yu CM, Zhang Q, Fung JW, Chan HC, Chan YS, Yip GW, Kong SL, Lin H, Zhang
Y, Sanderson JE. A novel tool to assess systolic asynchrony and identify responders
of cardiac resynchronization therapy by tissue synchronization imaging. J Am Coll
Cardiol. 2005;45:677–84.
8. Duncan AM, Lim E, Clague J, Gibson DG, Henein MY. Comparison of segmental
and global markers of dyssynchrony in predicting clinical response to cardiac
resynchronization. Eur Heart J. 2006;27:2426–32.
9. Mele D, Pasanisi G, Capasso F, De Simone A, Morales MA, Poggio D, Capucci A,
Tabacchi G, Sallusti L, Ferrari R. Left intraventricular myocardial deformation
dyssynchrony identifies responders to cardiac resynchronization therapy in patients
with heart failure. Eur Heart J. 2006;27:1070–8.
10. Porciani MC, Lilli A, Macioce R, Cappelli F, Demarchi G, Pappone A, Ricciardi G,
Padeletti L. Utility of a new left ventricular asynchrony index as a predictor of reverse
remodelling after cardiac resynchronization therapy. Eur Heart J. 2006;27:1818–23.
11. Suffoletto MS, Dohi K, Cannesson M, Saba S, Gorcsan J III. Novel speckle-tracking
radial strain from routine black-and-white echocardiographic images to quantify
dyssynchrony and predict response to cardiac resynchronization therapy. Circulation.
2006;113:960–8.
12. Yu CM, Zhang Q, Chan YS, Chan CK, Yip GW, Kum LC, Wu EB, Lee PW, Lam
YY, Chan S, Fung JW. Tissue Doppler velocity is superior to displacement and strain
mapping in predicting left ventricular reverse remodelling response after cardiac
resynchronisation therapy. Heart. 2006;92:1452–6.
13. Bleeker GB, Schalij MJ, Boersma E, Holman ER, Steendijk P, van der Wall EE, Bax
JJ. Relative merits of M-mode echocardiography and tissue Doppler imaging for
prediction of response to cardiac resynchronization therapy in patients with heart
failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol.
2007;99:68–74.
14. Diaz-Infante E, Sitges M, Vidal B, Mont L, Delgado V, Marigliano A, Macias A,
Tolosana JM, Tamborero D, Azqueta M, Roig E, Paré C, Brugada J. Usefulness of
ventricular dyssynchrony measured using M-mode echocardiography to predict
response to resynchronization therapy. Am J Cardiol. 2007;100:84–9.
15. Gorcsan J 3rd, Tanabe M, Bleeker GB, Suffoletto MS, Thomas NC, Saba S, Tops LF,
Schalij MJ, Bax JJ. Combined longitudinal and radial dyssynchrony predicts
ventricular response after resynchronization therapy. J Am Coll Cardiol.
2007;50:1476-83.
16. Sassone B, Capecchi A, Boggian G, Gabrieli L, Saccà S, Vandelli R, Petracci E, Mele
D. Value of baseline left lateral wall postsystolic displacement assessed by M-mode
to predict reverse remodeling by cardiac resynchronization therapy. Am J Cardiol.
2007;100:470–5.
17. Soliman OI, Theuns DA, Geleijnse ML, Anwar AM, Nemes A, Caliskan K, Vletter
WB, Jordaens LJ, Cate FJ. Spectral pulsed-wave tissue Doppler imaging lateral-toseptal delay fails to predict clinical or echocardiographic outcome after cardiac
resynchronization therapy. Europace. 2007;9:113–8.
18. Van de Veire NR, Bleeker G, De Sutter J, Ypenburg C, Holman ER, van der Wall EE,
Schalij MJ, Bax JJ. Tissue synchronization imaging accurately measures left
ventricular dyssynchrony and predicts response to cardiac resynchronization therapy.
Heart. 2007;93:1034–9.
19. Yu CM, Gorcsan J III, Bleeker GB, Zhang Q, Schalij MJ, Suffoletto MS, Fung JW,
Schwartzman D, Chan YS, Tanabe M, Bax JJ. Usefulness of tissue Doppler velocity
and strain dyssynchrony for predicting left ventricular reverse remodeling response
after cardiac resynchronization therapy. Am J Cardiol. 2007;100:1263–70.
20. De Boeck BW, Meine M, Leenders GE, Teske AJ, van Wessel H, Kirkels JH, Prinzen
FW, Doevendans PA, Cramer MJ. Practical and conceptual limitations of tissue
Doppler imaging to predict reverse remodelling in cardiac resynchronisation therapy.
Eur J Heart Fail. 2008;10:281–90.
21. Delgado V, Ypenburg C, van Bommel RJ, Tops LF, Mollema SA, Marsan NA,
Bleeker GB, Schalij MJ, Bax JJ. Assessment of left ventricular dyssynchrony by
speckle tracking strain imaging comparison between longitudinal, circumferential,
and radial strain in cardiac resynchronization therapy. J Am Coll Cardiol.
2008;51:1944–52.
22. Marsan NA, Bleeker GB, Ypenburg C, Ghio S, van de Veire NR, Holman ER, van
der Wall EE, Tavazzi L, Schalij MJ, Bax JJ. Real-time three dimensional
echocardiography permits quantification of left ventricular mechanical dyssynchrony
and predicts acute response to cardiac resynchronization therapy. J Cardiovasc
Electrophysiol. 2008;19:392–9.
23. Bank AJ, Kaufman CL, Kelly AS, Burns KV, Adler SW, Rector TS, Goldsmith SR,
Olivari MT, Tang C, Nelson L, Metzig A; PROMISE-CRT Investigators. Results of
the Prospective Minnesota Study of ECHO/TDI in Cardiac Resynchronization
Therapy (PROMISE-CRT) study. J Card Fail. 2009;15:401-9.
24. Conca C, Faletra FF, Miyazaki C, Oh J, Mantovani A, Klersy C, Sorgente A,
Pedrazzini GB, Pasotti E, Moccetti T, Auricchio A. Echocardiographic parameters of
mechanical synchrony in healthy individuals. Am J Cardiol. 2009;103:136-42.
25. Deplagne A, Bordachar P, Reant P, Montaudon M, Reuter S, Laborderie J, Dos
Santos P, Roudaut R, Jais P, Haissaguerre M, Laurent F, Clementy J, Lafitte S.
Additional value of three-dimensional echocardiography in patients with cardiac
resynchronization therapy. Arch Cardiovasc Dis. 2009;102:497-508.
26. Faletra FF, Conca C, Klersy C, Klimusina J, Regoli F, Mantovani A, Pasotti E,
Pedrazzini GB, De Castro S, Moccetti T, Auricchio A. Comparison of eight
echocardiographic methods for determining the prevalence of mechanical
dyssynchrony and site of latest mechanical contraction in patients scheduled for
cardiac resynchronization therapy. Am J Cardiol. 2009;103:1746-52.
27. Liodakis E, Sharef OA, Dawson D, Nihoyannopoulos P. The use of real-time threedimensional echocardiography for assessing mechanical synchronicity. Heart.
2009;95:1865-71.
28. Soliman OI, Geleijnse ML, Theuns DA, van Dalen BM, Vletter WB, Jordaens
LJ,Metawei AK, Al-Amin AM, ten Cate FJ. Usefulness of left ventricular systolic
dyssynchrony by real-time three-dimensional echocardiography to predict long-term
response to cardiac resynchronization therapy. Am J Cardiol. 2009;103:1586-91.
29. Bordachar P, Lafitte S, Réant P, Reuter S, Clementy J, Mletzko RU, Siegel RM,
Goscinska-Bis K, Bowes R, Morgan J, Bénard S, Leclercq C. Low value of simple
echocardiographic indices of ventricular dyssynchrony in predicting the response to
cardiac resynchronization therapy. Eur J Heart Fail. 2010;12:588-92.
30. Kaufman CL, Kaiser DR, Burns KV, Kelly AS, Bank AJ. Multi-plane mechanical
dyssynchrony in cardiac resynchronization therapy. Clin Cardiol. 2010;33:E31-8.
31. Norisada K, Kawai H, Tanaka H, Tatsumi K, Onishi T, Fukuzawa K, Yoshida A,
Hirata K. Myocardial contractile function in the region of the left ventricular pacing
lead predicts the response to cardiac resynchronization therapy assessed by twodimensional speckle tracking echocardiography. J Am Soc Echocardiogr.
2010;23:181-9.
32. Park HE, Chang SA, Kim HK, Shin DH, Kim JH, Seo MK, Kim YJ, Cho GY, Sohn
DW, Oh BH, Park YB. Impact of loading condition on the 2D speckle trackingderived left ventricular dyssynchrony index in nonischemic dilated cardiomyopathy.
Circ Cardiovasc Imaging. 2010;3:272-81.
33. Van Bommel RJ, Ypenburg C, Borleffs CJ, Delgado V, Marsan NA, Bertini M,
Holman ER, Schalij MJ, Bax JJ. Value of tissue Doppler echocardiography in
predicting response to cardiac resynchronization therapy in patients with heart failure.
Am J Cardiol. 2010;105:1153-8.
34. Wang CL, Wu CT, Yeh YH, Wu LS, Chang CJ, Ho WJ, Hsu LA, Luqman N, Kuo
CT. Recoordination rather than resynchronization predicts reverse remodeling after
cardiac resynchronization therapy. J Am Soc Echocardiogr. 2010;23:611-20.
35. Shanks M, Bertini M, Delgado V, Ng ACT, Nucifora G, van Bommel RJ, Borleffs
CJW, Holman ER, van de Veire NRL, Shaliji MJ, Bax JJ. Effect of Biventricular
Pacing on Diastolic Dyssynchrony. J Am Coll Cardiol. 2010;56:1567-75.
36. Lim P, Buakhamsri A, Popovic ZB, Greenberg NL, Patel D, Thomas JD, Grimm RA.
Longitudinal strain delay index by speckle tracking imaging: a new marker of
response to cardiac resynchronization therapy. Circulation. 2008;118:1130-7.
37. Lim P, Donal E, Lafitte S, Derumeaux G, Habib G, Réant P, Thivolet S, Lellouche N,
Grimm RA, Gueret P. Multicentre study using strain delay index for predicting
response to cardiac resynchronization therapy (MUSIC study). Eur J Heart Fail.
2011;13:984-91.
38. Marcus GM, Rose E, Viloria EM, Schafer J, De Marco T, Saxon LA, Foster E;
VENTAK CHF/CONTAK-CD Biventricular Pacing Study Investigators. Septal to
posterior wall motion delay fails to predict reverse remodeling or clinical
improvement in patients undergoing cardiac resynchronization therapy. J Am Coll
Cardiol. 2005;46:2208-14.
39. Bax JJ, Bleeker GB, Marwick TH, et al. Left ventricular dyssynchrony predicts
response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol
2004;44:1834–40.
40. Jansen AHM, Bracke F, van Dantzig JM, et al. The influence of myocardial scar and
dyssynchrony on reverse remodeling in cardiac resynchronization therapy. Eur J
Echocardiogr 2008;9:483–8.
41. St John Sutton MG, Plappert T, Abraham WT, Smith AL, DeLurgio DB, Leon AR,
Loh E, Kocovic DZ, Fisher WG, Ellestad M, Messenger J, Kruger K, Hilpisch KE,
Hill MR; Multicenter InSync Randomized Clinical Evaluation (MIRACLE) Study
Group. Effect of cardiac resynchronization therapy on left ventricular size and
function in chronic heart failure. Circulation. 2003;107:1985-90.
42. Abraham WT, Young JB, León AR, Adler S, Bank AJ, Hall SA, Lieberman R, Liem
LB, O'Connell JB, Schroeder JS, Wheelan KR; Multicenter InSync ICD II Study
Group. Effects of cardiac resynchronization on disease progression in patients with
left ventricular systolic dysfunction, an indication for an implantable cardioverterdefibrillator, and mildly symptomatic chronic heart failure. Circulation.
2004;110:2864-68.
43. Cappola TP, Harsch MR, Jessup M, Abraham WT, Young JB, Petersen-Stejskal S,
Plappert T, St John Sutton M. Predictors of remodeling in the CRT era: influence of
mitral regurgitation, BNP, and gender. J Card Fail. 2006;12:182-8.
44. St John Sutton MG, Plappert T, Hilpisch KE, Abraham WT, Hayes DL, Chinchoy E.
Sustained reverse left ventricular structural remodeling with cardiac resynchronization
at one year is a function of etiology: quantitative Doppler echocardiographic evidence
from the Multicenter InSync Randomized Clinical Evaluation (MIRACLE).
Circulation. 2006;113:266-72.
45. Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi
L; Cardiac Resynchronization-Heart Failure (CARE-HF) Study Investigators. The
effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl
J Med. 2005;352:1539-49.
46. Ghio S, Freemantle N, Serio A, Magrini G, Scelsi L, Pasotti M, Cleland JG, Tavazzi
L. Baseline echocardiographic characteristics of heart failure patients enrolled in a
large European multicentre trial (CArdiac REsynchronisation Heart Failure study).
Eur J Echocardiogr. 2006;7:373-8.
47. Cleland J, Freemantle N, Ghio S, Fruhwald F, Shankar A, Marijanowski M, Verboven
Y, Tavazzi L. Predicting the long-term effects of cardiac resynchronization therapy
on mortality from baseline variables and the early response a report from the CAREHF (Cardiac Resynchronization in Heart Failure) Trial. J Am Coll Cardiol.
2008;52:438-45.
48. Cleland JG, Calvert MJ, Verboven Y, Freemantle N. Effects of cardiac
resynchronization therapy on long-term quality of life: an analysis from the CArdiac
Resynchronisation-Heart Failure (CARE-HF) study. Am Heart J. 2009;157:457-66.
49. Ghio S, Freemantle N, Scelsi L, Serio A, Magrini G, Pasotti M, Shankar A, Cleland
JG, Tavazzi L. Long-term left ventricular reverse remodelling with cardiac
resynchronization therapy: results from the CARE-HF trial. Eur J Heart Fail.
2009;11:480-8.
50. Wikstrom G, Blomström-Lundqvist C, Andren B, Lönnerholm S, Blomström P,
Freemantle N, Remp T, Cleland JG; CARE-HF study investigators. The effects of
aetiology on outcome in patients treated with cardiac resynchronization therapy in the
CARE-HF trial. Eur Heart J. 2009;30:782-8.
51. Moss AJ, Hall WJ, Cannom DS, Klein H, Brown MW, Daubert JP, Estes NA 3rd,
Foster E, Greenberg H, Higgins SL, Pfeffer MA, Solomon SD, Wilber D, Zareba W;
MADIT-CRT Trial Investigators. Cardiac-resynchronization therapy for the
prevention of heart-failure events. N Engl J Med. 2009;361:1329-38.
52. Solomon SD, Foster E, Bourgoun M, Shah A, Viloria E, Brown MW, Hall WJ,
Pfeffer MA, Moss AJ; MADIT-CRT Investigators. Effect of cardiac
resynchronization therapy on reverse remodeling and relation to outcome: multicenter
automatic defibrillator implantation trial: cardiac resynchronization therapy.
Circulation. 2010;122:985-92.
53. Linde C, Abraham WT, Gold MR, St John Sutton M, Ghio S, Daubert C; REVERSE
(REsynchronization reVErses Remodeling in Systolic left vEntricular dysfunction)
Study Group. Randomized trial of cardiac resynchronization in mildly symptomatic
heart failure patients and in asymptomatic patients with left ventricular dysfunction
and previous heart failure symptoms. J Am Coll Cardiol. 2008;52:1834-43.
54. St John Sutton M, Ghio S, Plappert T, Tavazzi L, Scelsi L, Daubert C, Abraham WT,
Gold MR, Hassager C, Herre JM, Linde C; REsynchronization reVErses Remodeling
in Systolic left vEntricular dysfunction (REVERSE) Study Group. Cardiac
resynchronization induces major structural and functional reverse remodeling in
patients with New York Heart Association class I/II heart failure. Circulation.
2009;120:1858-65.
55. Lubitz SA, Leong-Sit P, Fine N, Kramer DB, Singh J, Ellinor PT. Effectiveness of
cardiac resynchronization therapy in mild congestive heart failure: systematic review
and meta-analysis of randomized trials. Eur J Heart Fail. 2010;12:360-6.
56. Foley PW, Patel K, Irwin N, Sanderson JE, Frenneaux MP, Smith RE, Stegemann B,
Leyva F. Cardiac resynchronisation therapy in patients with heart failure and a normal
QRS duration: the RESPOND study. Heart. 2011;97:1041-7.
57. Beshai JF, Grimm RA, Nagueh SF, Baker JH 2nd, Beau SL, Greenberg SM, Pires
LA, Tchou PJ; RethinQ Study Investigators. Cardiac-resynchronization therapy in
heart failure with narrow QRS complexes. N Engl J Med. 2007;357:2461-71.
58. Pouleur AC, Knappe D, Shah AM, Uno H, Bourgoun M, Foster E, McNitt S, Hall
WJ, Zareba W, Goldenberg I, Moss AJ, Pfeffer MA, Solomon SD; for the MADITCRT Investigators. Relationship between improvement in left ventricular
dyssynchrony and contractile function and clinical outcome with cardiac
resynchronization therapy: the MADIT-CRT trial. Eur Heart J. 2011;32:1720-1729.