Download Application of PIN diodes in Physics Research

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Rectifier wikipedia , lookup

Optical rectenna wikipedia , lookup

P–n diode wikipedia , lookup

Semiconductor device wikipedia , lookup

Opto-isolator wikipedia , lookup

Diode wikipedia , lookup

Transcript
Application of PIN diodes in Physics Research
F. J. Ramírez-Jiménez, L. Mondragón-Contreras, P. Cruz-Estrada
Instituto Nacional de Investigaciones Nucleares
Carretera México-Toluca S/N, La Marquesa, Ocoyoacac, 57150, MEXICO
e-mail: [email protected]
Abstract. A review of the application of PIN diodes as radiation detectors in different fields of
Physics research is presented. The development and research in semiconductor technology, the
use of PIN diodes in particle counting, X-and γ-ray spectroscopy, medical applications and
charged particle spectroscopy are considered. Emphasis is made in the activities realized in the
different research and development Mexican institutions dealing with this kind of radiation
detectors.
Keywords: PIN diodes, X-rays, spectroscopy, charged particles.
PACS: 29.40.-n, 29.30.Kv
INTRODUCTION
Whereas the concept of PIN diodes is very old, it was mentioned in a paper [1] by
Kleinman in 1956, its application to radiation detection is more or less recent; for
example, Nowotny and Reiter [2] reported low energy photon measurements in 1977.
Since the proposal of the basic silicon point contact diode by Pickard in 1946 and its
application in radar technology [3], the need to have faster devices surely lead the
researchers to the PIN diode concept in which less capacitance and less reverse current
provided better characteristics. As any semiconductor diode, PIN diodes are very
sensitive to light, thus they are widely used for light detection mainly in
communications through optical fiber lines, taking advantage of its fast response, PIN
diodes are used at frequencies of 50 MHz or more [4].
In this review article we describe the main applications of PIN diodes as radiation
detectors in different fields of Physic research in Mexico, covering some aspects of the
work realized in semiconductors technology for producing PIN diodes, nuclear
counting experiments, measurement of intensity of X-ray beams, energy spectroscopy
of γ-and X-rays and charged particles. These activities have led to useful practical
applications in medicine, industry and basic research. Beside this description, the
main applications worldwide are also mentioned including the more relevant
bibliographic references.
PIN DIODE DETECTORS
The basic structure of a PIN diode is seen in Figure 1(a); the three regions, n+,
Intrinsic and p+, are shown. Figure 1(b) shows the picture of a commercial PIN diode.
(a)
(b)
FIGURE 1. a) Basic structure of a PIN diode. b) Picture of an OPF420 PIN diode as seen through an
optical microscope.
Measurement of the radiation is based in the production of electron-hole pairs in the
interaction of radiation with the detector material and the further collection of charges.
There are two possibilities to operate the PIN diodes [5]: in photovoltaic mode without
any bias voltage applied and in photoconductive mode with a reverse bias voltage
applied to create a depletion zone inside the intrinsic region.
In Figure 2.a, the diode is in photovoltaic mode, the radiation is measured as an
integral effect, a current is generated from the interaction of radiation with the
detector, and the response is the average of the events inside the detector. This
configuration is used in applications of photometry and to measure the intensity [6] of
X-rays in radio diagnostic [7], the preamplifier converts the current to voltage, and the
output signal has the waveform of the X-rays that reaches the detector, therefore it can
be displayed in an oscilloscope.
FIGURE 2. Connections of PIN diode with a preamplifier to operate in: a) photovoltaic mode, b)
photoconductive mode.
In Figure 2.b, the diode is connected in photoconductive mode, the radiation is
measured in every single interaction, a charge is generated due to the interaction of
radiation with the detector and it is directly proportional to the energy of the radiation,
the preamplifier converts the input charge to voltage. With this configuration,
spectrometric measurements can be done [8]. PIN diode detectors need to be operated
with enough reverse voltage in order to reach the maximum depletion zone and
therefore to get the best detection efficiency.
The intrinsic detection efficiency is around 100% for photons of a few keV, and
decreases to around 2 % at 60 keV for a 300 µm thick PIN diode. The efficiency is
around 100% for charged particles of moderate energy.
The electrical characteristics that are more related with the performance of PIN diodes
as radiation detectors are the leakage current and the diode capacitance. Thanks to the
good quality of silicon, the leakage current can be less than 100 pA at depletion
voltage and the capacitance less than 2 pF for small diodes, therefore the PIN diodes
can be used at room temperature with good performance for X-ray spectroscopy, but
require a low input capacitance and low noise preamplifier as read-out circuit. Due to
the very small signal generated in the detector for X-rays, the noise of the measuring
system has to be considered with great care in this case.
CHARGE SENSITIVE PREAMPLIFIERS
The matching between the detector and preamplifier defines the low noise of the
spectroscopy system, therefore for these applications; the best noise performance of
the associated preamplifier is required. Generally, a field effect transistor, FET, is
used as the input device. Special low noise preamplifiers have been developed to
fulfill this requirement like the charge sensitive preamplifier that uses a feedback
resistor, see Figure 2.b, in this case, the feedback capacitor is charged by the injected
signal from the detector and discharged immediately through the feedback resistor.
The feedback resistor has the disadvantage that it is an additional and undesired source
of noise. The charge sensitive preamplifier with optical feedback [9] is another
possibility that do not include an additional source of noise by a feedback resistor. The
feedback capacitor is discharged through the input FET, when an optically coupled
LED sends a reset light pulse to the FET every time the output voltage, reaches a
defined level.
ENERGY SPECTROSCOPY OF RADIATION
In a basic energy spectroscopy system, the signal of charge generated in the
detector by the radiation is conditioned in a preamplifier, a spectroscopy amplifier
gives a further amplification and sets the optimal bandwidth of the system in order to
get the best signal to noise ratio, the output from the amplifier is a series of analog
pulses with a height directly proportional to the energy of the detected radiation, these
pulses are analyzed considering its pulse height, classified an the result of this
classification is shown in the screen of a multichannel analyzer system.
The total noise of the system is reflected on the spectrum in the width of the peaks,
the energy resolution of the spectroscopy system is defined [10] as the Full Width at
Half Maximum of a peak, FWHM, for example, the resolution for X-ray detectors is
measured in the peak of 5.89 keV of an Fe-55 radiation source.
The total noise is the resultant of two uncorrelated components: the electronic noise
associated mainly with the preamplifier and the electrical characteristics of the
detector; and the statistical component due to the detection process inside the detector
[9].
RESEARCH AND APPLICATION OF PIN DIODES
Semiconductor Technology of PIN Diodes
The research on semiconductor technology to produce PIN diodes started in
Mexico in 1996 with the project: “Radiation Semiconductor Detectors” [11][12][13]
[14][15][16][17][18][19][20] financed by CONACYT1 with the collaboration of
several institutions as CINVESTAV2, INAOE3, ININ4 and CEADEN5. A second
project started in 1999: “Semiconductor Structures for Radiation Detectors” [21][22]
[23][24] with the participation of the same institutions that continued with research on
crystalline and amorphous silicon PIN diodes and special preamplifiers [25][26][27]
[28][29][30]. Research continued to incorporate the amplifying device in the same
chip with the PIN detector on high resistivity silicon [31][32][33][34][35][36][37].
Since 1996, several Italian groups have made a big effort in research on
semiconductor technology to optimize PIN diodes as radiation detectors, also they
have worked in the integration of detector and the amplification device to produce
arrays for the application of PIN diodes in image generation [38][39][40][41][42][43].
Applications in Medicine
PIN diodes have been used to measure the intensity of X-ray beams provided by
Radiographic X-ray units in order to evaluate the main operational parameters related
with the quality of the final photographic image in the film [44][45][46][47][48]
[49][50], such parameters are: the applied high voltage; the waveform of the high
voltage, see Figure 3; the beam current; the exposure time and the applied dose, see
Figure 4.
(a)
(b)
FIGURE 3. Oscilloscope screens of X-ray beams measured with an X-ray waveform tester made with
a PIN diode. a) Half wave X-ray unit, b) High frequency X-ray unit.
1
CONACYT, National Council of Science and Technology of México.
CINVESTAV, Research and Advanced Studies Center, México.
3
INAOE, National Institute for Astrophysics, Optics and Electronics. México.
4
ININ, National Institute for Nuclear Research. México.
5
CEADEN, Center for Applied Studies in the Development of Nuclear Energy, Cuba.
2
FIGURE 4. Normalized response of a waveform tester made with a PIN diode to an X-ray beam with
different accelerating voltages, 100 mA, and comparison with the response of other instruments [48].
Thickness measurements of thin biological samples have been done with PIN
diodes and an X-ray beam for medical applications with success [51].
The good light sensitivity of PIN diodes has been combined with scintillation
radiation detectors to make position detectors in PET applications as proposed by
Derenzo and Moses in 1989 [52], in this way digital images can be generated. The
direct detection of radiation in image applications also has been studied [53][54], in
this case the PIN diodes are used as pixel elements.
Personal monitors for radiation protection and dosimetry have been done with PIN
diodes and an appropriate build–up material that is selected according with the nature
of the radiation to be detected, X-and γ-rays or neutrons [55][56][57].
Photon Spectroscopy
Si-Li detectors are normally used to get the best results in X-ray analysis due to its
good energy resolution, typically 180 eV, and good efficiency in the energy range
from 1 kev to 100 keV, nevertheless there are special PIN diodes [58] commercially
available and suitable for X-ray detection, these detectors have some nice advantages
over the Si-Li detectors mainly regarding the size and compactness. We demonstrated
the detection capability of an OPF420 PIN photo diode [8], in this application. The
employed preamplifier configuration was the forward biased FET charge amplifier,
FBFA [59][60], in order to get the minimum noise. The FBFA configuration is shown
in the Figure 5, Cf is discharged through the input field effect transistor biased with the
gate in forward mode [9]. The obtained characteristics of the proposed system at room
temperature are: conversion gain 22 mV/fC, with a feedback capacitance of 0.045 pF;
the equivalent noise referred to the input is 20 electrons (rms) with an amplifier
shaping time of 1.5 µs; the resolution of the system for an Fe-55 source is 1.02 keV.
FIGURE 5. Basic idea of the preamplifier with input FET in the condition of forward biased gate.
The spectrum for an Am-241 source obtained with the PIN diode is compared with
the one obtained with a Si-Li detector, as shown in Figure 6. In this figure a good
correspondence of the peaks position in both detectors is observed, which guaranties
the good linearity of the PIN diode experimental results. Similar results are reported
in the literature [61][62]. This system has been used with success in different
experiments at ININ [63].
FIGURE 6. Comparison of the energy spectra for an Am-241 source, obtained with the PIN diode at
room temperature and a Si-Li cooled detector [9].
In the Plasma Focus experiment at UNAM6, PIN diodes are used to measure soft Xrays produced at the experiment and to make diagnostic of the conditions in the
generated plasma [64].
Generally, γ-ray spectroscopy with PIN diodes is performed by indirect
measurement of radiation employing different scintillation detectors [65].
6
National Autonomous University of México
Charged Particle Spectroscopy
The application of different planar silicon detectors to the detection of charged
particles has been reported widely in the literature [66], [67], [68]. Specially devised
PIN photodiodes have been reported for charged particle spectroscopy [69] and also
for use in heavy ion collision experiments [70].
The research for PIN diode preamplifiers [71][72] started in Mexico in 1995, later
on, we proposed [73] a PIN diode–preamplifier set that could substitute a silicon
surface barrier detector, SSB, in some applications; for example, a spectrum from
alpha sources such as 239Pu, 241Am and 244Cm is shown in Figure 7.a, it also has been
applied in the measurement of charged particles in experiments at accelerators and in
Rutherford backscattering analysis in the energy range of 4 to 13 MeV, see Figure 7.b.
The electronic noise of the preamplifier, measured with a pulser, was less than 2.14
keV.
(a)
(b)
FIGURE 7. Spectra obtained with the proposed PIN diode-preamplifier set: a) spectrum of calibration
alpha sources; b) Rutherford backscattering spectrum for a thin layer.
Energy loss measurements for different ions have been done by using PIN diodes
and a stopping medium, thus, stopping forces have been measured accurately [74]
which provided more information to ion beam analysis.
Radiation Damage on Semiconductor Structures
Damage from radiation has been observed in PIN diodes due to particle
bombardment [73], the measurement of the increase in the leakage current and
forward voltage, see Figure 8, which evidence the damage of the detector, can be used
as a tool to evaluate the unknown total number of incident particles reaching the
detector. The increase of the leakage current in the detector worsens drastically the
noise behavior of the system [10].
Reinhard proved [75] that a PIN diode can be a good radiation damage monitor for
mixed fields of electrons, fast and epithermal neutrons.
(a)
(b)
FIGURE 8. Modification of the electric characteristics of PIN diodes after bombardment with charged
particles: a) leakage current; b) forward voltage.
Spatial Applications
In spatial research the PIN diodes are been widely used as environmental monitors
for mixed fields of high energy particles and gamma rays [76], only some examples
are mentioned as follows: the Cosmic-Ray Effects and Activation Monitor (CREAM)
experiment; Cosmic Particle Experiment (CPE); Total Dose Experiment (TDE);
Cosmic-Ray Effects and Dosimetry (CREDO) payload. Under UoSAT-3 experiment
in 1990 and in CEDEX7 at Surrey Space Center in 2000, PIN diodes have been used
for the measurement of protons and heavy ions fluxes inside the spacecraft.
In 1997, under the Pathfinder mission, spectra of Martian rocks analyzed by X-ray
fluorescence were sent to earth, the detector in this case was a cooled PIN diode [77],
cooling was made by applying thermoelectric effect.
High Energy Physics, HEP, Applications
The use of PIN diodes in HEP big experiments is related mainly with the detection
of charged particles. PIN diode Beam Loss Monitors (BLM) are employed commonly
in: the European Synchrotron Radiation Facility[78], in HERA8 at DESY9 since 1987
[79]; at Tevatron of FNAL10 to measure the loss of protons and antiprotons in the
beam since 1997 [80]; the Beta meson And Anti Beta meson experiment (Babar
collaboration) to measure the background produced by the beam since 1997 [81]; and
the RHIC11 [70] in the STAR12 experiment in 1999.
The PIN diodes were used as light detectors in digital optical links for fast data
transmission in the tracker control system of the Compact Muon Solenoid (CMS) at
CERN [82], and in the SCT13 and pixel detectors [83] at the ATLAS14 detector.
7
CEDEX, Cosmic Ray Energy Deposition Experiment
HERA, Hadron Electron Ring Accelerator
9
DESY, Deutsches Elektronen Synchrotron
10
FNAL, Fermi National Accelerator Laboratory, USA
11
RHIC, Relativistic Heavy Ion Collider at Brookhaven National Laboratory, U. S. A.
12
STAR, Semiconductor Tracker at RHIC.
13
SCT, Semiconductor Tracker.
14
ATLAS, A Toroidal Large Hadron Collider (LHC) Apparatus
8
REFERENCES
1. D. A. Kleinman “Forward Characteristics of the PIN Diode” Bell Sys. Tech. J. Vol. 35, May 1956,
pp. 685-706.
2. R. Nowotny, W. L. Reiter “The Use of Silicon PIN-Photodiodes as Low-Energy Photon
Spectrometer” Nucl. Instr. and Meth., 147, 1977, pp. 477.
3. A. B. Fowler “The Long-Reaching Influence of Arthur von Hippel: Interdisciplinarity and
Semiconductors” MRS Bulletin, Vol. 30, Nov. 2005, pp 854-857.
4. Optek Technology, Inc. “Optek’s Product Catalog” Carrollton, TX, USA, 1997.
5. F. J. Ramírez Jimenez “Medición de Rayos X con Detectores de Semiconductor Tipo PIN” IX
Congreso Técnico Científico ININ-SUTIN, Centro Nuclear, Mexico, Dec. 1999, pp. 66-69.
6. F. J. Ramírez-Jiménez “Radiation Detectors of PIN Type for X-Rays” American Institute of Physics,
674, 2003, ISBN: 0-7354-0141-1, ISSN 0094-243X, pp. 313-335,
7. F. J. Ramírez-Jiménez “Waveform Measurements in X-Ray Units” American Institute of Physics,
682, 2003, ISBN: 0-7354-0151-9, ISSN 0094-243X, pp. 86-91.
8. F. J. Ramírez-Jiménez, R. López-Callejas, A. Cerdeira-Altuzarra, J. S. Benítez-Read, M. EstradaCueto, J. O. Pacheco-Sotelo “PIN Diode-Preamplifier Set for the Measurement of Low Energy γ and
X-Rays” Nucl. Instr. and Meth. A497, 2003, pp. 557-583.
9. F. J. Ramírez-Jimenez “X-Ray Spectroscopy with PIN Diodes” X Mexican Workshop on Particles
and Fields, Morelia, México, Nov. 2005.
10. G. F. Knoll “Radiation Detection and Measurement” John Willey and S., New York, 2000.
11. A. Díaz, A. E. Cabal., F. J. Ramírez Jimenez, J. Osorio “Investigación y Selección de Parámetros de
Preamplificadores de Nuevo Tipo para Detectores Semiconductores de Bajo Ruido” III Workshop
on Nuclear Physics. La Habana, Cuba, Oct. 1997.
12. A. Cerdeira, M. Estrada, M. Aceves and B. S. Soto "New Aspects on the Characterization of PIN
Structures Fabricated on Very High Resistivity Sustrate" Journal of Solid-State Devices and
Circuits, 5 (2), 1997, pp. 1-4.
13. A. Diaz, L. M. Montaño, F. J. Ramírez-Jiménez, A. Cerdeira and M. Estrada “Simulation and
Characterization of a DC Coupled Preamplifier for the Measurement of Ionizing Radiation in
Crystalline PIN Diodes” Second Workshop on Simulation and Characterization Techniques in
Semiconductors. IEEE-CINVESTAV, Mexico, Sept. 1998.
14. A. E. Cabal, F. J. Ramírez-Jimenez, M. Estrada, A. Cerdeira A., M. Aceves, P. Rosales
“Caracterización de Diodos PIN de Silicio Cristalino Utilizando Radiaciones Nucleares” Cuarta
conferencia de Ingeniería Eléctrica, CINVESTAV, Sep. 1998, pp. 206-210.
15. P. Rosales, M. Aceves, A. Cerdeira, M. Estrada, A. E. Cabal, F. J. Ramírez-Jimenez “Sensores de
Radiación Utilizando Diodos PIN de Silicio” XX Congreso Internacional de Ingeniería Electrónica.
Chih., Mexico, Oct. 1998. pp. 281-286.
16. M. Aceves, P. Rosales, A. Cerdeira, M. Estrada, A. E. Cabal, F. J. Ramírez-Jimenez “Investigation
on the Reduction of the Dark Current for PIN Photodiodes Using Statistical Methods” 1998 IEEE
International Integrated Reliability Workshop Final Report, Stanford, Cal., Oct. 1998. pp. 107-108.
17. F. J. Ramírez Jiménez, A. Cerdeira A., M. Aceves M., A. Díaz, M. Estrada, P. Rosales, A. E. Cabal,
L. M. Montaño, A. Leyva “Avances en el Proyecto sobre Detectores de Radiación de Silicio Tipo
PIN” VIII Congreso Técnico Científico ININ- SUTIN, Cetro Nuclear, Salazar, Estado de México,
Dec. 1998, pp. 24-29.
18. S. Soto, M. Estrada, A. Merkulov, R. Asomoza "High Deposition Rates of Amorphous Silicon
Thick Layers Using a Gas Mixture" Thin Solid Films 330, 1998, 83-89.
19. P. Rosales-Quintero “Fabricación de Sensores de Radiación de Alta Energía” Tesis de Maestría,
INAOE, México. 1999.
20. F. J. Ramírez-Jimenez, A. Diaz, A. Cerdeira A., A. Leyva, L. M. Montaño, M. Estrada “Low Noise
Charge Sensitive Preamplifier for the Measurement of Low energy γ and X rays with PIN Diodes”
XXII Congreso Nacional de Ingeniería Biomédica, Ixtapa Zihuatanejo, México, Nov. 1999.
21. M. Estrada, I. Pereyra "PIN Diodes on High Deposition Rate Thick-Si:H Layers from Pure SiH4"
Thin Solid Films, 346, 1999, pp.255-260.
22. A. Leyva, A. E. Cabal, F. J. Ramírez-Jiménez, M. Estrada, A. Cerdeira, A. Díaz “Estudio de la
Respuesta a las Radiaciones Ionizantes de Diodos tipo PIN de A-Si:H” V Workshop on Nuclear
Physics. La Habana, Cuba, Oct. 1999.
23. A. Leyva, F. J. Ramírez-Jimenez, Y. Ortega, M. Estrada, A. E. Cabal, A. Cerdeira, A. Díaz
“Spectrometric Characterization of Amorphous Silicon PIN Detectors” CP 538, Am. Inst. of Phy.,
Conference Proceedings of the Fourth Mexican Symposium on Medical Physics, Mérida, Yucatán,
march 2000, pp. 201-205.
24. K. Monfil Leiva “Efectos de los Tratamientos Térmicos en las Corrientes de Fuga de Diodos PIN”
Tesis de Maestría, INAOE, México, 2002.
25. U. Macías-Aguilar “Efectos de la Oxidación Durante los Tratamientos Térmicos de Alta
Temperatura en Diodos PIN de Silicio” Tesis de Maestría, INAOE, México, 2003.
26. A. Cerdeira A., A. Leyva A., F. J. Ramírez-Jimenez, M. Estrada, I. Pereyra, M. Paez “Response of
Amorhous Silicon PIN Detectors to X–Rays from a Mammograph” RADECS 2000 Workshop, Sep.
11-13, 2000, Louvain la Neuve, Belgium, pp. 183-186.
27. A. Cerdeira, M. Estrada “Modeling of Reverse Current Behavior in Amorphous Thin and Thick
p-i-n Diodes” IEEE Trans. on ED, 41, 11, 2000, pp. 2338.
28. F. J. Ramírez Jiménez, M. Aceves, A. Cerdeira A., M. Estrada “Ion Implantation in Semiconductor
Radiation Detectors” International Materials Research Congress. Can-Cun, México, Oct. 2000.
29. M. Estrada, A. Cerdeira, A. Leyva, M.N.P. Carreno, I. Pereyra “Optimization of the i-Layer Width
of Cr-a-Si:H PIN X-Ray Detectors” Thin Solid Films 396, 2001, 235.
30. M. Estrada, A. Cerdeira, A. Ortiz-Conde and F. García "Determination of Trap Cross Section in aSi:H p-i-n Diodes Parameters Using Simulation and Parameter Extraction" Microelectronics
Reliability 41, 2001, pp. 605.
31. Shtejer K, Leyva A., Ramírez-Jiménez F. J. “Modelling Optimal Characteristics of a-Si:H
Semiconductor Detectors For X-Ray Detection” IEEE Nuclear Science Symposium-Medical
Imaging Conference, 2004, R11-16, Roma, Italia, 2004, ISSN 1082-3654.
32. A. T. Medel de Gante, M. Aceves, A. Cerdeira “Diseño de un JFET Compatible con el Proceso de
Fabricación del PIN, Construido por Triple Difusión en un Substrato de Alta Resistividad” 9ª
Conferencia de Ingeniería Eléctrica, CIE 2003, México, D. F., pp. 187- 192.
33. A. T. Medel de Gante, M. Aceves, A. Cerdeira “Disminución de la Capacitancia de Entrada de un
JFET Compatible con el Proceso de Fabricación del PIN” Cuarto Encuentro de Investigación, 2003,
INAOE, México, pp.137-140.
34. U. Macias A., M. Aceves M., K. Monfil L. “Efectos de la Oxidación Durante los Tratamientos
Térmicos de Alta Temperatura en Diodos PIN de Silicio” 9ª Conferencia de Ingeniería Eléctrica,
México DF, 2003, pp. 123-126.
35. K. Monfil, M. Aceves, A. Cerdiera, A. Medel “Efectos de Tratamientos Térmicos en las Corrientes
de Fuga de Diodos PIN de Silicio” Revista Información Tecnológica. Vol. 14, No 3, 2003, pp. 123130.
36. A. T. Medel de Gante, M. Aceves, A. Cerdeira, L. Sánchez “Design of a JFET and Radiation PIN
Detector Integrated on a High Resistivity Silicon Substrate Using a High Temperature Process”
CCCT 2004, Austin, Texas.
37. M. Aceves-Mijares, M. Estrada, A. Cerdeira, A. Cerdeira-Estrada “Silicon PIN Diodes as Radiation
Detectors” Encyclopedia of Sensors, Edited by C. A. Grimes, E. C. Dickey, and M. V. Pishko, The
Pennsylvania State University, University Park, USA, 2005.
38. G. F. Dalla Betta, M. Boscardin, G. Verzellesi, G. U. Pignatel, A. Fazzi, G. Soncini "A test chip for
the development of PIN-type silicon radiation detectors" Atti del convegno "Proceedings of
ICTMS_96, the IEEE International Conference on Microelectronic Test Structures", Trento, 26-28
March, 1996, pp. 231-235.
39. G. F. Dalla Betta, G. U. Pignatel, G. Verzellesi, M. Boscardin "Si-PIN X-ray detector technology"
Nucl. Instr. & Meth. in Physics Research. Section A, 1997, v. 395, n. 3, pp. 344-348.
40. G. F. Dalla Betta, G. Verzellesi, M. Boscardin, L. Bosisio, G. U. Pignatel, L. Ferrario, M. Zen, G.
Soncini "Silicon PIN radiation detectors with on-chip front-end junction field effect transistor"
Nucl. Instr. & Meth. in Physics Research. Section A, 1998, v. 417, n. 2-3, pp. 325-331.
41. A. Fazzi, G. U. Pignatel, G. F. Dalla Betta, M. Boscardin, V. Varoli, G. Verzellesi "Charge
preamplifier for hole collecting PIN diode and integrated tetrode N-JFET" IEEE Trans. on Nucl.
Sci., 2000, v. 47, n. 3, pp. 829-833.
42. A. Fazzi, G. F. Dalla Betta, G. U. Pignatel, M. Boscardin, P. Gregori, N. Zorzi "PIN diode and
integrated JFET on high resistivity silicon: a new test structure" Atti del convegno "IEEE Nuclear
Science Symposium and Medical Imaging Conference-NSS-MIC 2001", San Diego (USA), 4-10
Novembre, 2001
43. S. Ronchin, M. Boscardin, G. F. Dalla Betta, P. Gregori, V. Guarnieri, C. Piemonte, N. Zorzi
"Fabrication of PIN diode detectors on thinned silicon wafers" Nucl. Instr. & Meth. in Physics
Research. Section A, 2004, v. 530, pp. 134-138.
44. F. J. Ramírez-Jimenez “Detectores de Radiación de Silicio tipo PIN y sus Aplicaciones en Física
Medica” 3er. Simposium Mexicano sobre Física Medica. León Guanajuato, Mexico, 25-26 Feb.
1999.
45. I. Mercado, F. J. Ramírez-Jimenez, V. M. Tovar, A. Becerril “Prototipo para la Medición de
Parámetros en una Unidad de Mamografía Utilizando Fotodiodos” II Conferencia Internacional y
XII Congreso Nacional sobre Dosimetría de Estado Sólido. México, D. F., 239-247, Sep. 1999.
46. F. J. Ramírez-Jimenez, E. Gaytán G., I. Mercado, M. Estrada, A. Cerdeira “Measurement of
Parameters for the Quality Control of X–ray Units by Using PIN Diodes and a Personal Computer”
CP 538, Am. Inst. of Phy., Conference Proceedings of the Fourth Mexican Symposium on Medical
Physics, Mérida , Yucatán, March 2000, pp. 196-200.
47. F. J. Ramírez-Jiménez “Measurements in X-Ray Units Used in Radio-diagnostic” American
Institute of Physics, 630, 2002, ISBN: 0-7354-0084-9, ISSN 0094-243X, pp. 104-115.
48. E. Gaytan, F. J. Ramírez-Jimenez, V. M. Tovar “Sistema de Medición de los Parámetros de
Operación para Máquinas de Rayos X” Contacto Nuclear, Instituto Nacional de Investigaciones
Nucleares, N° 36, Mexico, 2004.
49. F. J. Ramírez-Jiménez., R. López-Callejas, J. S. Benítez-Read, J. O. Pacheco-Sotelo
“Considerations on the Measurement of the Practical Peak Voltage in Diagnostic Radiology” The
British Journal of Radiology, 77, 2004, ISBN: 0-7803-8257-9, ISSN 1082-3654, pp.745-750.
50. F. J. Ramírez-Jiménez “A New Instrument for the Measurement of the Waveform in X-Ray Units”
American Institute of Physics, 724, issue 1, (2004), ISBN: 0-7354-0205-1, ISSN 0094-243X, pp.
249-253.
51. F. J Ramírez-Jiménez, S. Galindo “An Instrument for Measuring the Thickness of Gamma
Irradiated Xenografts” IEEE Nuclear Science Symposium-Medical Imaging Conference (2003),
N36-130, Portland Oregon, U.S.A., Oct. 2003. ISBN: 0-7803-8257-9, ISSN 1082-3654.
52. S. E. Derenzo, W. W. Moses, H. G. Jackson, et al. “Initial Characterization of a Position Sensitive
Photodiode/BGO Detector for PET” IEEE Trans. on Nucl. Sci., NS-36, 1989, pp. 1084-1089.
53. M. Novelli, S. Amendolia, M. Bisogni, M. Boscardin, G. F. Dalla Betta, P. Delogu, M. Fantacci, M.
Quattrocchi, V. Rosso, A. Stefanini, L. Venturelli, S. Zucca "Semiconductor Pixel Detectors for
Digital Mammography" Nucl. Instr. & Meth. in Pysics Research, Section A, 2003, v. 509, n. 1-3, pp.
283-289.
54. M. Bisogni, M. Boscardin, G. F. Dalla Betta, P. Delogu, M. Fantacci, P. Gregori, S. Linsalata, M.
Novelli, C. Piemonte, M. Quattrocchi, V. Rosso, A. Stefanini, N. Zorzi, S. Zucca "Characterization
of Si Pixel Detectors of Different Thickness" Nucl. Instr. & Meth. in Physics Research, Section A,
2004, v. 518, n. 1-2, pp. 418-420.
55. K. Kovačevič, N. Stipčič, G. Paič, I. Šlaus, B. Eman, V. Pečar, M. Antič “Use of Photodiodes for
Neutron Dosimetry” Nucl. Instr. & Meth. in Physics Research, V. 148, 1978, pp. 291-298.
56. R. Nowotny “A Silicon-Diode Pocket Radiation Chirper” Health Physics Vol. 44, N° 2, 1983, pp.
158-160.
57. H. J. Khoury, F. Almeida de Melo, C. A. Brayner de O. “Utilização de fotodiodos Para dosimetria
das Radiações Ionizantes” 2° Congresso Geral de Energia Nuclear, Vol . II, Brazil, 1988.
58. Hamamatsu, available web site: http://usa.hamamatsu.com/cmp-detectors/xray.htm.
59. G. Bertuccio, P. Rehak and D. Xi “A Novel Charge Sensitive Preamplifier without the Feedback
Resistor” Nucl. Instr. and Meth., A326, 1993, pp. 71-76.
60. G. Bertuccio, A. Pullia “Room Temperature X-Ray Spectroscopy with a Silicon Diode Detector and
an Ultra Low Noise Preamplifier” IEEE Trans. Nucl. Sci., 41-4, 1994, pp. 1704-1709.
61. N. Markevich, I. Gertner, J. Felsteiner “Low Energy X-Ray and γ Spectroscopy using Silicon PIN
Photodiodes” Nucl. Instr. and Meth. in Physics Research A, 269, 1988, pp. 219-221.
62. G. F. Dalla, G. U. Pignatel, G. Verzellesi, M. Boscardin, A. Fazzi, L. Bosisio “Monolithic
integration of Si-Pin diodes and N-chanel and N–channel double–gate JFET´s for room temperature
X-ray spectroscopy” Nucl. Instr. and Meth. in Physics Research, A 458, 2001, pp. 275-280.
63. F. J Ramírez-Jimenez “Uso de Detectores PIN en la Identificación de Radioisótopos a Partir de su
Espectro de Rayos X” Contacto Nuclear, Instituto Nacional de Investigaciones Nucleares, N° 37,
México, 2004.
64. J. Herrera, F. Castillo “Generation of Protons, Neutrons and X-rays in the Plasma Focus FN-II”
Instituto de Ciencia Nucleares, UNAM, Conference at the Instituto Nacional de Investigaciones
Nucleares, México, April, 2006.
65. E. Gramsch, K. G. Lynn, M. Weber, B. DeChillo, R. R. McWilliams “Silicon PIN Photodetectors in
High Resolution Nuclear Spectroscopy” Nucl. Instr. and Meth. in Physics Research, A 311, 1992
pp. 529-538.
66. L. Lavergne-Gosselin, L. Stab, M. O. Lampert, H. A. Gustafsson, B. Jakobsson, A. Kristiansson, A.
Oskarsson, M. Westenius, A. J. Kordyasz, K. Aleklett, L. Westerberg, M. Ridehell and O. Tengblad
“On the Use of Thin Ion Implanted Si Detectors in Heavy Ion Experiments” Nucl. Instr. & Meth., A
276, 1989, pp. 210-215.
67. L. Stab “Thin Epitaxial Silicon Detectors” Nucl. Instr. & Meth., A 288, 1990, pp. 24-30.
68. F. Foulon, L. Rousseau, L. Babadjian, S. Spirkovitch, A. Brambilla, P. Bergonzo “A New
Technique for the Fabrication of Thin Silicon Radiation Detectors” IEEE Trans. Nucl. Sci., 46-3,
1999, pp. 218-220.
69. K. W. Wenzel, C. K. Li, and D. A. Pappas “Soft X-ray Silicon Photodiodes with 100% Quantum
Efficiency” IEEE Trans. Nucl. Sci., 41-4, 1994, pp. 979-983.
70. R. M. Willson, S. U. Pandey, R. Bellwied, R. Beuttenmuller, A. Drees, P. Kuczewski, W. Leonhart,
D. Lynn, R. Soja, J. Takahashi “Novel Applications of PIN-Photodiodes in Relativistic Heavy Ion
Collisions” IEEE Trans. Nucl. Sci., 47-3, 2000, pp. 851-853.
71. A. Yot, F. J. Ramírez-Jimenez “Elaboración de un Conjunto preamplificador-Fotodiodo para
Espectroscopía alfa” Informe Técnico SR001-95, ININ, México, July 1995.
72. F. J. Ramírez-Jiménez “Preamplificador Sensible a Carga para Espectrometría Alfa” XVIII
Congreso Internacional Académico de Ingeniería Electrónica. Chih., Chih., Oct. 1996.
73. F. J. Ramírez-Jiménez, R. López-Callejas, J. S. Benítez-Read, J. O. Pacheco-Sotelo “A novel
application of a PIN diode-preamplifier set for the measurement of charged particles” Nucl. Instr.
and Meth. in Physics Research, A 545/3, 2005, DOI: 10.1016/j.nima2005.02.017, pp. 721-726.
74. H. Timmers, K. Stenström, M. Graczyk, H. J. Whitlow “Energy Loss Measurements for Mass-14
Ions Using a patterned Stopping Medium on a PIN Diode” Nucl. Instr. and Meth. in Physics
Research, B 219-220, 2004, pp. 263-267.
75. M. Reihard “Radiation Hardness Study of High purity Silicon and the development of a radiation
Damage Monitor System for Silicon Devices in Mixed Radiation Fields” Ph. D. thesis, University of
Wollongong, Australia, 2003.
76. Available web site: http://www.amsat.org/amsat/sats/dl1fdt/CEDEX.ger.html
77. AMPTEK Inc, available web site: http://www.amptek .com/
78. Available web site:
www.esrf.fr/UsersAndScience/Experiments/HRRS/ID28/BeamlineLayout/EHI/spectrometer/Detect
ors/.
79. Available web site: www.desy.de/~ahluwali/herareports/2000/00-03.pdf.
80. V. Shiltser “Fast PIN Diode Beam Loss Monitors at Tevatron” available web site:
lss.fnal.gov/archive/1997/tm/TM-2012.pdf.
81. Available web site: hep.Stanford.edu/babar/commissioning/index.htm.
82. Available web site: www.proj-rx40.web.cern.ch.
83. Available web site: www.physics.ohio-state.edu/~gan/atlas.html