* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download PHYS101
Brownian motion wikipedia , lookup
Jerk (physics) wikipedia , lookup
Relativistic mechanics wikipedia , lookup
Work (physics) wikipedia , lookup
Newton's laws of motion wikipedia , lookup
Hunting oscillation wikipedia , lookup
Equations of motion wikipedia , lookup
Classical central-force problem wikipedia , lookup
IntroductoryPhysics PHYS101 Dr RichardH.CyburtOfficeHours TRF9:30-11:00am AssistantProfessorofPhysics F12:30-2:00pm Myoffice:402cintheScienceBuilding Myphone:(304)384-6006 Meetingsmayalsobearrangedatothertimes, byappointment Myemail:[email protected] Inpersonoremailisthebestwaytogetahold Checkmyscheduleonmyofficedoor. ofme. PHYS101 PHYS101:IntroductoryPhysics 400 Lecture:8:00-9:15am,TRScienceBuilding Lab1:3:00-4:50pm,FScienceBuilding304 Lab2:1:30-3:20pm,MScienceBuilding304 Lab3:3:30-5:20pm,MScienceBuilding304 Lab20:6:00-7:50pm,MScienceBuilding304 PHYS101 MasteringPhysicsOnline GotoHYPERLINK"http://www.masteringphysics.com."www.masteringphysics.com. ◦ UnderRegisterNow,selectStudent. ◦ Confirmyouhavetheinformationneeded,thenselectOK!Registernow. RCYBURTPHYS101),andchooseContinue. ◦ Enteryourinstructor’sCourseID( ◦ EnteryourexistingPearsonaccountusername andpassword andselectSignin. ◦ YouhaveanaccountifyouhaveeverusedaPearsonMyLab &Masteringproduct,suchasMyMathLab,MyITLab,MySpanishLab,or MasteringChemistry. ◦ Ifyoudon’thaveanaccount,select Create andcompletetherequiredfields. ◦ Selectanaccessoption. ◦ Entertheaccesscodethatcamewithyourtextbookorwaspurchasedseparatelyfromthebookstore. PHYS101 FinalExam Tuesday,Dec6:9:00-11:15amRoom400 AllowedFullsheetofpaperwithformulae andtrigcalculator(nocellphonesorotherdevices) 50%ofexamonnewmaterialChapters12-15:ReviewFri,Dec2.7-9pm,S300 50%ofexamonoldmaterialChapters0-11:ReviewMon,Nov28.7-9pm,S300 Make-UpLabsMon,Nov28&Fri,Dec2. PHYS101 IntroductoryPhysics PHYS101 DouglasAdams Hitchhiker’sGuidetotheGalaxy PHYS101 You’realreadyknowphysics! Youjustdon’tnecessarilyknowtheterminologyand languageweuse!!! PhysicsofNASCAR PhysicsofAngerBirds PHYS101 Inclass!! PHYS101 Thislecturewillhelpyouunderstand: Equilibrium&Oscillation LinearRestoringForces&SimpleHarmonicMotion DescribingSimpleHarmonicMotion EnergyinSimpleHarmonicMotion PendulumMotion PHYS101 Section14.1Equilibrium andOscillation ©2015PearsonEducation,Inc. EquilibriumandOscillation Amarblethatisfreetoroll insideasphericalbowlhas anequilibriumposition at thebottomofthebowl whereitwillrestwithno netforceonit. Ifpushedawayfrom equilibrium,themarble’s weightleadstoanetforce towardtheequilibriumposition.Thisforceistherestoringforce. ©2015PearsonEducation,Inc. EquilibriumandOscillation Whenthemarbleisreleased fromtheside,itdoesnot stopatthebottomofthe bowl;itrollsupanddown eachsideofthebowl, movingthroughthe equilibriumposition. Thisrepetitivemotioniscalledoscillation. Anyoscillationischaracterizedbyaperiod andfrequency. ©2015PearsonEducation,Inc. FrequencyandPeriod Foranoscillation,thetimeto completeonefullcycleis calledtheperiod(T) ofthe oscillation. Thenumberofcyclesper secondiscalledthefrequency (f )oftheoscillation. Theunitsoffrequencyarehertz (Hz),or1s–1. ©2015PearsonEducation,Inc. QuickCheck14.3 Atypicalearthquakeproducesverticaloscillationsoftheearth.Supposea particularquakeoscillatesthegroundatafrequencyof0.15Hz.Astheearth movesupanddown,whattimeelapsesbetweenthehighestpointofthe motionandthelowestpoint? ◦ ◦ ◦ ◦ 1s 3.3s 6.7s 13s ©2015PearsonEducation,Inc. QuickCheck 14.3 Atypicalearthquakeproducesverticaloscillationsoftheearth.Supposea particularquakeoscillatesthegroundatafrequencyof0.15Hz.Astheearth movesupanddown,whattimeelapsesbetweenthehighestpointofthe motionandthelowestpoint? ◦ ◦ ◦ ◦ 1s 3.3s 6.7s 13s ©2015PearsonEducation,Inc. OscillatoryMotion Thegraphofanoscillatorymotionhastheformofacosinefunction. Agraphorafunctionthathastheformofasineorcosinefunctioniscalledsinusoidal. Asinusoidaloscillationiscalledsimpleharmonicmotion(SHM). ©2015PearsonEducation,Inc. OscillatoryMotion Text:p.440 ©2015PearsonEducation,Inc. Section14.2Linear RestoringForcesand SHM ©2015PearsonEducation,Inc. LinearRestoringForcesandSHM Ifwedisplaceagliderattachedtoa springfromitsequilibriumposition,the springexertsarestoringforceback towardequilibrium. ©2015PearsonEducation,Inc. LinearRestoringForcesandSHM Thisisalinearrestoringforce;thenet forceistowardtheequilibrium positionandisproportionaltothe distancefromequilibrium. ©2015PearsonEducation,Inc. MotionofaMassonaSpring Theamplitude A istheobject’s maximumdisplacementfrom equilibrium. Oscillationaboutanequilibrium positionwithalinearrestoring forceisalwayssimpleharmonic motion. ©2015PearsonEducation,Inc. VerticalMassonaSpring Forahangingweight,theequilibriumpositionoftheblockiswhereithangs motionless.ThespringisstretchedbyΔL. ©2015PearsonEducation,Inc. VerticalMassonaSpring ThevalueofΔLisdeterminedbysolvingthestatic-equilibriumproblem. Hooke’sLawsays Newton’sfirstlawfortheblockinequilibriumis Thereforethelengthofthespringattheequilibriumpositionis ©2015PearsonEducation,Inc. VerticalMassonaSpring Whentheblockisabovethe equilibriumposition,thespring isstillstretched byanamountΔL – y. Thenetforceontheblockis • ButkΔL– mg=0,fromEquation14.4,sothenetforceon theblockis ©2015PearsonEducation,Inc. VerticalMassonaSpring Theroleofgravityistodetermine wheretheequilibriumpositionis, butitdoesn’taffecttherestoring forcefordisplacementfromthe equilibriumposition. Becauseithasalinearrestoring force,amassonaverticalspring oscillateswithsimpleharmonic motion. ©2015PearsonEducation,Inc. ThePendulum Apendulum isamasssuspendedfroma pivotpointbyalightstringorrod. Themassmovesalongacirculararc.The netforceisthetangentialcomponentof theweight: ©2015PearsonEducation,Inc. ThePendulum Theequationissimplifiedforsmallangles because sinθ ≈ θ Thisiscalledthesmall-angleapproximation. Thereforetherestoringforceis Theforceonapendulumisalinearrestoring forceforsmallangles,sothependulumwill undergosimpleharmonicmotion. ©2015PearsonEducation,Inc. Section14.3Describing Simple HarmonicMotion ©2015PearsonEducation,Inc. DescribingSimpleHarmonicMotion 1. Themassstartsatitsmaximum positivedisplacement,y=A.The velocityiszero,buttheaccelerationis negativebecausethereisanet downwardforce. 2. Themassisnowmovingdownward,so thevelocityisnegative.Asthemass nearsequilibrium,therestoringforce— andthusthemagnitudeofthe acceleration—decreases. 3. Atthistimethemassismoving downwardwithitsmaximumspeed. It’sattheequilibriumposition,sothe netforce—andthustheacceleration— iszero. Text:p.443 ©2015PearsonEducation,Inc. DescribingSimpleHarmonicMotion 4. Thevelocityisstillnegativebut itsmagnitudeisdecreasing,so theaccelerationispositive. 5. Themasshasreachedthelowest pointofitsmotion,aturning point.Thespringisatits maximumextension,sothereis anetupwardforceandthe accelerationispositive. 6. Themasshasbegunmoving upward;thevelocityand accelerationarepositive. Text:p.443 ©2015PearsonEducation,Inc. DescribingSimpleHarmonicMotion 7. Themassispassingthroughthe equilibriumpositionagain,inthe oppositedirection,soithasa positivevelocity.Thereisnonet force,sotheaccelerationiszero. 8. Themasscontinuesmoving upward.Thevelocityispositivebut itsmagnitudeisdecreasing,sothe accelerationisnegative. 9. Themassisnowbackatitsstarting position.Thisisanotherturning point.Themassisatrestbutwill soonbeginmovingdownward,and thecyclewillrepeat. Text:p.443 ©2015PearsonEducation,Inc. DescribingSimpleHarmonicMotion Theposition-versus-timegraphforoscillatorymotionisacosinecurve: x(t)indicatesthatthepositionisafunction oftime. Thecosinefunctioncanbewrittenintermsoffrequency: ©2015PearsonEducation,Inc. DescribingSimpleHarmonicMotion Thevelocitygraphisanupside-downsinefunctionwiththesameperiodT: Therestoringforcecausesanacceleration: Theacceleration-versus-timegraphisinvertedfromtheposition-versus-time graphandcanalsobewritten ©2015PearsonEducation,Inc. DescribingSimpleHarmonicMotion Text:p.445 ©2015PearsonEducation,Inc. ConnectiontoUniformCircularMotion Circularmotionandsimpleharmonic motionaremotionsthatrepeat. Uniformcircularmotionprojectedonto onedimensionissimpleharmonic motion. ©2015PearsonEducation,Inc. ConnectiontoUniformCircularMotion Thex-componentofthecircularmotionwhentheparticleisatangleϕ is x =Acosϕ. Theangleatalatertimeisϕ= ωt. ωistheparticle’sangularvelocity:ω=2πf. ©2015PearsonEducation,Inc. ConnectiontoUniformCircularMotion Thereforetheparticle’sx-componentisexpressed x(t)=Acos(2pft) Thisisthesameequationforthepositionofamassonaspring. Thex-componentofaparticleinuniformcircularmotionissimple harmonicmotion. ©2015PearsonEducation,Inc. ConnectiontoUniformCircularMotion Thex-componentofthevelocityvectoris vx =-vsinϕ =-(2pf)Asin(2pft) Thiscorrespondstosimpleharmonicmotionifwedefinethemaximumspeedtobe vmax =2pfA ©2015PearsonEducation,Inc. ConnectiontoUniformCircularMotion Thex-componentoftheaccelerationvectoris ax =-a cosϕ =-(2pf)2A cos(2pft) Themaximumaccelerationisthus amax =(2pf)2A Forsimpleharmonicmotion,ifyouknowtheamplitudeandfrequency, themotioniscompletelyspecified. ©2015PearsonEducation,Inc. ConnectiontoUniformCircularMotion Text:p.447 ©2015PearsonEducation,Inc. QuickCheck14.9 Amassoscillatesonahorizontalspring.It’svelocityisvx andthespringexertsforceFx.Atthe timeindicatedbythearrow, ◦ ◦ ◦ ◦ ◦ vx is+ andFx is+ vx is+ andFx is– vx is– andFx is0 vx is0andFx is+ vx is0andFx is– ©2015PearsonEducation,Inc. QuickCheck14.9 Amassoscillatesonahorizontalspring.It’svelocityisvx andthespringexertsforceFx.Atthe timeindicatedbythearrow, ◦ ◦ ◦ ◦ ◦ vx is+ andFx is+ vx is+ andFx is– vx is– andFx is0 vx is0andFx is+ vx is0andFx is– ©2015PearsonEducation,Inc. QuickCheck14.10 Amassoscillatesonahorizontalspring.It’svelocityisvx andthespringexertsforceFx.Atthe timeindicatedbythearrow, ◦ ◦ ◦ ◦ ◦ vx is+ andFx is+ vx is+ andFx is– vx is– andFx is0 vx is0andFx is+ vx is0andFx is– ©2015PearsonEducation,Inc. QuickCheck14.10 Amassoscillatesonahorizontalspring.It’svelocityisvx andthespringexertsforceFx.Atthe timeindicatedbythearrow, ◦ ◦ ◦ ◦ ◦ vx is+ andFx is+ vx is+ andFx is– vx is– andFx is0 vx is0andFx is+ vx is0andFx is– ©2015PearsonEducation,Inc. QuickCheck14.11 Ablockoscillatesonaverticalspring.Whentheblockisatthelowestpointoftheoscillation,it’s accelerationay is ◦ Negative. ◦ Zero. ◦ Positive. ©2015PearsonEducation,Inc. QuickCheck14.11 Ablockoscillatesonaverticalspring.Whentheblockisatthelowestpointoftheoscillation,it’s accelerationay is ◦ Negative. ◦ Zero. ◦ Positive. ©2015PearsonEducation,Inc. Example14.3Measuringtheswayofa tallbuilding TheJohnHancockCenterinChicagois100storieshigh.Strongwindscancausethebuildingto sway,asisthecasewithalltallbuildings.Onparticularlywindydays,thetopofthebuilding oscillateswithanamplitudeof40cm(≈16in)andaperiodof7.7s.Whatarethemaximum speedandaccelerationofthetopofthebuilding? ©2015PearsonEducation,Inc. Example14.3Measuringtheswayofa tallbuilding PREPARE Wewillassumethattheoscillationofthebuildingissimpleharmonicmotionwith amplitudeA=0.40m.Thefrequencycanbecomputedfromtheperiod: ©2015PearsonEducation,Inc. Example14.3Measuringtheswayofa tallbuilding(cont.) SOLVE WecanusetheequationsformaximumvelocityandaccelerationinSynthesis14.1to compute: vmax =2pfA =2p (0.13Hz)(0.40m)=0.33m/s amax =(2pf)2A=[2p (0.13Hz)]2(0.40m)=0.27m/s2 Intermsofthefree-fallacceleration,themaximumaccelerationisamax =0.027g. ©2015PearsonEducation,Inc. Example14.3Measuringtheswayofa tallbuilding(cont.) Theaccelerationisquitesmall,asyouwouldexpect;ifitwerelarge,buildingoccupants wouldcertainlycomplain!Eveniftheydon’tnoticethemotiondirectly,officeworkersonhigh floorsoftallbuildingsmayexperienceabitofnauseawhentheoscillationsarelargebecausethe accelerationaffectstheequilibriumorganintheinnerear. ASSESS ©2015PearsonEducation,Inc. Section14.4Energyin Simple HarmonicMotion ©2015PearsonEducation,Inc. EnergyinSimpleHarmonicMotion Theinterplaybetweenkineticandpotentialenergyisveryimportantforunderstandingsimple harmonicmotion. ©2015PearsonEducation,Inc. EnergyinSimpleHarmonicMotion Foramassonaspring,whentheobjectisat restthepotentialenergyisamaximumand thekineticenergyis0. Attheequilibriumposition,thekinetic energyisamaximumandthepotential energyis0. ©2015PearsonEducation,Inc. EnergyinSimpleHarmonicMotion Thepotentialenergyforthemassonaspring is Theconservationofenergycanbewritten: ©2015PearsonEducation,Inc. EnergyinSimpleHarmonicMotion Atmaximumdisplacement,theenergyis purelypotential: Atx=0,theequilibriumposition,theenergyis purelykinetic: ©2015PearsonEducation,Inc. FindingtheFrequencyforSimple HarmonicMotion Becauseofconservationofenergy,themaximumpotentialenergymustbeequaltothe maximumkineticenergy: Solvingforthemaximumvelocitywefind Earlierwefoundthat ©2015PearsonEducation,Inc. QuickCheck14.7 Twoidenticalblocksoscillateondifferenthorizontalsprings.Whichspringhasthelargerspring constant? ◦ Theredspring ◦ Thebluespring ◦ There’snotenough informationtotell. ©2015PearsonEducation,Inc. QuickCheck14.7 Twoidenticalblocksoscillateondifferenthorizontalsprings.Whichspringhasthelargerspring constant? ◦ Theredspring ◦ Thebluespring ◦ There’snotenough informationtotell. ©2015PearsonEducation,Inc. QuickCheck14.8 Ablockofmassm oscillatesonahorizontalspringwithperiodT = 2.0s.Ifasecondidentical blockisgluedtothetopofthefirstblock,thenewperiodwillbe ◦ ◦ ◦ ◦ ◦ 1.0s 1.4s 2.0s 2.8s 4.0s ©2015PearsonEducation,Inc. QuickCheck14.8 Ablockofmassm oscillatesonahorizontalspringwithperiodT = 2.0s.Ifasecondidentical blockisgluedtothetopofthefirstblock,thenewperiodwillbe ◦ ◦ ◦ ◦ ◦ 1.0s 1.4s 2.0s 2.8s 4.0s ©2015PearsonEducation,Inc. FindingtheFrequencyforSimple HarmonicMotion Thefrequencyandperiodofsimple harmonicmotionaredeterminedbythe physicalpropertiesoftheoscillator. Thefrequencyandperiodofsimple harmonicmotiondonotdependonthe amplitudeA. ©2015PearsonEducation,Inc. QuickCheck14.4 Ablockoscillatesonaverylonghorizontalspring.Thegraphshowstheblock’skineticenergyas afunctionofposition.Whatisthespringconstant? ◦ ◦ ◦ ◦ 1N/m 2N/m 4N/m 8N/m ©2015PearsonEducation,Inc. QuickCheck14.4 Ablockoscillatesonaverylonghorizontalspring.Thegraphshowstheblock’skineticenergyas afunctionofposition.Whatisthespringconstant? ◦ ◦ ◦ ◦ 1N/m 2N/m 4N/m 8N/m ©2015PearsonEducation,Inc. QuickCheck14.5 Amassoscillatesonahorizontalspringwithperiod T = 2.0s.Iftheamplitudeoftheoscillationisdoubled, thenewperiodwillbe ◦ ◦ ◦ ◦ ◦ 1.0s 1.4s 2.0s 2.8s 4.0s ©2015PearsonEducation,Inc. QuickCheck14.5 Amassoscillatesonahorizontalspringwithperiod T = 2.0s.Iftheamplitudeoftheoscillationisdoubled, thenewperiodwillbe ◦ ◦ ◦ ◦ ◦ 1.0s 1.4s 2.0s 2.8s 4.0s ©2015PearsonEducation,Inc. Section14.5Pendulum Motion ©2015PearsonEducation,Inc. PendulumMotion Thetangentialrestoringforcefora pendulumoflengthL displacedby arclengths is Thisisthesamelinearrestoring forceasthespringbutwiththe constantsmg/L insteadofk. ©2015PearsonEducation,Inc. PendulumMotion Theoscillationofapendulum issimpleharmonicmotion; theequationsofmotioncan bewrittenforthearclength ortheangle: s(t)=A cos(2πft) or θ(t)=θmax cos(2πft) ©2015PearsonEducation,Inc. PendulumMotion Thefrequencycanbeobtained fromtheequationforthe frequencyofthemassonaspring bysubstitutingmg/L inplace ofk: ©2015PearsonEducation,Inc. PendulumMotion Asforamassonaspring,the frequencydoesnotdependonthe amplitude.Notealsothatthe frequency,andhencetheperiod,is independentofthemass. Itdepends onlyonthelengthofthependulum. ©2015PearsonEducation,Inc. QuickCheck14.15 Apendulumispulledto thesideandreleased. Themassswingstothe rightasshown.The diagramshowspositionsforhalfofacompleteoscillation. 1.Atwhichpointorpointsisthespeedthehighest? 2.Atwhichpointorpointsistheaccelerationthe greatest? 3.Atwhichpointorpointsistherestoringforcethegreatest? ©2015PearsonEducation,Inc. QuickCheck14.15 Apendulumispulledto thesideandreleased. Themassswingstothe rightasshown.The diagramshowspositionsforhalfofacompleteoscillation. C 1.Atwhichpointorpointsisthespeedthehighest? 2.Atwhichpointorpointsistheaccelerationthe A,E greatest? 3.Atwhichpointorpointsistherestoringforcethegreatest? A,E ©2015PearsonEducation,Inc. QuickCheck 14.16 Amassontheend ofastringispulled tothesideandreleased. 1.Atwhichtimeortimesshownistheacceleration zero? 2.Atwhichtimeortimesshownisthekineticenergy amaximum? 3.Atwhichtimeortimesshownisthepotentialenergy amaximum? ©2015PearsonEducation,Inc. QuickCheck 14.16 Amassontheend ofastringispulled tothesideandreleased. 1.Atwhichtimeortimesshownistheacceleration zero? 2.Atwhichtimeortimesshownisthekineticenergy amaximum? 3.Atwhichtimeortimesshownisthepotentialenergy amaximum? ©2015PearsonEducation,Inc. B,D B,D A,C,E QuickCheck14.17 Aballonamassless,rigidrodoscillatesasasimplependulumwithaperiodof2.0s.Iftheballis replacedwithanotherballhavingtwicethemass,theperiodwillbe ◦ ◦ ◦ ◦ ◦ 1.0s 1.4s 2.0s 2.8s 4.0s ©2015PearsonEducation,Inc. QuickCheck14.17 Aballonamassless,rigidrodoscillatesasasimplependulumwithaperiodof2.0s.Iftheballis replacedwithanotherballhavingtwicethemass,theperiodwillbe ◦ ◦ ◦ ◦ ◦ 1.0s 1.4s 2.0s 2.8s 4.0s ©2015PearsonEducation,Inc. QuickCheck14.18 OnPlanetX,aballonamassless,rigidrodoscillatesasasimplependulumwithaperiodof2.0s. Ifthependulumis takentothemoonofPlanetX,wherethefree-fallaccelerationg ishalfas big,theperiodwillbe ◦ ◦ ◦ ◦ ◦ 1.0s 1.4s 2.0s 2.8s 4.0s ©2015PearsonEducation,Inc. QuickCheck14.18 OnPlanetX,aballonamassless,rigidrodoscillatesasasimplependulumwithaperiodof2.0s. Ifthependulumis takentothemoonofPlanetX,wherethefree-fallaccelerationg ishalfas big,theperiodwillbe ◦ ◦ ◦ ◦ ◦ 1.0s 1.4s 2.0s 2.8s 4.0s ©2015PearsonEducation,Inc. QuickCheck14.19 Aseriesofpendulumswithdifferentlengthstringsanddifferentmassesisshown below.Eachpendulumispulledtothesidebythesame(small)angle,thependulums arereleased,andtheybegintoswingfromsidetoside. Whichofthependulumsoscillateswiththehighestfrequency? ©2015PearsonEducation,Inc. QuickCheck14.19 Aseriesofpendulumswithdifferentlengthstringsanddifferentmassesisshown below.Eachpendulumispulledtothesidebythesame(small)angle,thependulums arereleased,andtheybegintoswingfromsidetoside. A Whichofthependulumsoscillateswiththehighestfrequency? ©2015PearsonEducation,Inc.