Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Name______________________ Date__________________ Algebra II/Trig Regents Review #11: Trig Equations and Graphs Trig Identities: Reciprocal Identities: Quotient Identities: sec   1 cos  tan   sin  cos  csc   1 sin  cot   cos  sin  cot   1 tan  Examples: 1. (cos  )(tan  ) 2. (sec  )(cot  ) 3. csc x sec x Example Regents Questions 1. Prove that the equation shown below is an identity for all values for which the functions are defined: csc   sin 2   cot   cos  Pythagorean Identities: Given the Pythagorean identities cos 2   sin 2   1 , you can derive four other identities: Examples: Write each expression in terms as a single expression: 1. 2. tan   cot  1  sin 2  Example Regents Questions 1. The expression 2 (1) cos    2. The expression 2 (1) 1 cos   sin 2   cos 2  is equivalent to 1  sin 2  2 (3) sec  2 (2) sin    cos2   sin  is equivalent to sin  2 (2) cos  2 (4) csc   (3) sin  (4) csc  2 2 2  3. Starting with sin  A  cos2 A 1, derive  the formula tan A 1 sec A.   Sum/Difference of two angles: sin( A  B)  sin A cos B  cos A sin B cos( A  B)  cos A cos B  sin A sin B tan( A  B)  Example: Find the exact value of tan A  tan B 1  tan A tan B sin105 Find the exact value of cos15 Example Regents Questions 1. The expression cos4xcos3x sin 4xsin 3x is equivalent to (1) sin x   2.   (3) cosx cos2   cos2 is equivalent The expression   to 2 (1) sin   (2) sin 7x 3. If tan A  2 (2) sin  2 (3) cos  1 (4) cos 7x  2 (4) cos  1    2 5 and sinB = and angles A and B are in Quadrant I, find the value of tan( A  B). 3 41  Double angle formulas: Use the following formulas for double angles sin 2 A  2sin A cos A cos 2 A  cos 2 A  sin 2 A cos 2 A  2 cos 2 A  1 cos 2 A  1  2sin 2 A tan 2 A  2 tan A 1  tan 2 A Examples: If cos   7 , find cos 2 . 25 If sin   4 , find sin 2 . 5 Express as a single trig function: sin 2 2 cos  Example Regents Questions 1.    If sin A  (1) 2. 2 5 3 If cos y  2 where 0 o  A  90 o, what is the value of sin 2A? 3 (2) 2 5 9  (3) 4 5 9 4    and angle y is an acute angle, what is the value of cos2y ? 5  (4)  4 5 9 Finding the measure of an angle: When finding all values of theta when given the value of the trig function, follow these steps: 1. Find the reference angle by pressing, 2nd -- trig function—value  Always plug in a positive value  The answer you find is a reference angle, not an answer!! 2. Use the sign of the given value to determine the quadrants in which your angle lies 3. Find the measure of the angles Examples: 1. sin   4 5 2. cos    9 10 Solving trig equations: The 4 steps for solving trig equations are: 1. 2. 3. 4. 5. Isolate the trig equation Find the reference angle Determine the quadrants Find the angle Check Examples: 1. 2cos  3  4 3. 4csc  5  3csc  4 2. 3tan   2  1 3. csc    1 2 Solving Second Degree Trig Equations: You will be required to factor just as you would factor with x as the variable!! Examples: 1. sin 2   sin   1  1 3. 2cos  2sin  cos 6. cos 2x  cos x 2. 2 cos 2   cos  4. cos2  3sin   0 Graphing Trigonometric Functions: y  sin x y  cos x y  tan x y  a sin(bx  c)  d y  a cos(bx  c)  d Amplitude: a _________________________________________________________________________________ Frequency: b__________________________________________________________________________________ Period: 2 ___________________________________________________________________________________ b Phase Shift: c ________________________________________________________________________________ Reflection: ____________________________________________________________________________________ Vertical Shift: d________________________________________________________________________________ Examples Regents Questions 1. What is the period of the function y  (1) 1 2 (2)   1 x sin      2 3 1 3 (3) 2  3 (4) 6 2. Which graph represents one complete cycle of the equation y  sin 3x?      3. A radio transmitter sends a radio wave from the top of a 50-foot tower. The wave is represented by the accompanying graph. What is the equation of the radio wave? (1) y  sin x (2) y 1.5sin x (3) y  sin1.5x (4) y  2sin x 4. What is the period of the function f ( )  2cos3 ?   (1)    2 (2)  3   3 (3) 2  (4) 2  5. Which equation is graphed in the diagram below?    x  8 30     x  8 30  (1) y  3cos   x  5 15   (3) y  3cos (2) y  3cos    x  5 15  (4) y  3cos 6. The accompanying graph shows a trigonometric function. State the equation of this function.   7. A radio wave has an amplitude of 3 and a wavelength (period) of (a) Write an equation for this function.  meters. (b) On the accompanying grid, using the interval 0 to 2 , draw a possible sine curve for this wave that passes  through the origin.  1 2 8. (a) On the same set of axes, sketch the graphs of y  2cos x and y = -sinx in the interval 0  x  2 . (b) Give the exact value(s) of the coordinates of the intersection points of the two graphs.