Download Example: Let be the set of all polynomials of degree n or less. (That

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Eigenvalues and eigenvectors wikipedia , lookup

Bivector wikipedia , lookup

System of linear equations wikipedia , lookup

Singular-value decomposition wikipedia , lookup

Cross product wikipedia , lookup

Exterior algebra wikipedia , lookup

Laplaceโ€“Rungeโ€“Lenz vector wikipedia , lookup

Matrix calculus wikipedia , lookup

Euclidean vector wikipedia , lookup

Vector space wikipedia , lookup

Four-vector wikipedia , lookup

Covariance and contravariance of vectors wikipedia , lookup

Transcript
Example:
Let ๐‘ƒ๐‘› be the set of all polynomials of
degree n or less. (That is
๐‘ƒ๐‘› = {๐‘Ž0 + ๐‘Ž1 ๐‘ฅ + ๐‘Ž2
2
๐‘ฅ
+ โ‹ฏ+
Then ๐‘ƒ๐‘› is a vector space.
๐‘›
๐‘Ž๐‘› ๐‘ฅ |๐‘Ž๐‘–
โˆˆ โ„} )
4.2 Subspaces
Definition 1
A subset ๐‘Š of a vector space is called a subspace of ๐‘‰ if ๐‘Š
itself a vector space under the addition & scalar multiplication
defined on ๐‘‰. (pg. 340)
Theorem: Test for a subspaces
Wโ‰  โˆ…
๐‘Š is a subspace iff
i. ๐‘ข, ๐‘ฃ โˆˆ ๐‘ค โ‡’ ๐‘ข + ๐‘ฃ โˆˆ ๐‘ค
ii. ๐‘˜ scalar, ๐‘ข โˆˆ ๐‘ค โ‡’ ๐‘˜๐‘ข โˆˆ ๐‘ค (pg. 341)
Examples
1. ๐‘‰ is a vector space.
Then W={0} is a subspace of ๐‘‰.
2. ๐‘Š is the set of all (๐‘ฅ, ๐‘ฆ, ๐‘ง) such that
๐‘ฅ = 0.
3. ๐‘Š is the set of all (๐‘ฅ, ๐‘ฆ, ๐‘ง) such that
๐‘ฅ + ๐‘ฆ + ๐‘ฅ = 0.
Building Subspaces
Theorem
(pg. 345)
If ๐‘ค1 , ๐‘ค2 , โ€ฆ , ๐‘ค๐‘Ÿ are subspaces of a vector spaces ๐‘‰, then the
intersection of these subspaces is also a subspace of ๐‘‰.
Proof:
๐‘Ÿ
๐‘–=1 ๐‘ค๐‘–
Let ๐‘ข , ๐‘ฃ โˆˆ
โ‰  โˆ… (since 0 โˆˆ ๐‘ค๐‘– ๐‘“๐‘œ๐‘Ÿ ๐‘’๐‘Ž๐‘โ„Ž ๐‘–)
๐‘Ÿ
๐‘–=1 ๐‘ค๐‘–
โ‡’ ๐‘ข, ๐‘ฃ โˆˆ ๐‘ค๐‘– for each i=1,..,r
โ‡’ ๐‘ข + ๐‘ฃ โˆˆ ๐‘ค๐‘– for each i=1,..,r
โ‡’ ๐‘ข+๐‘ฃ โˆˆ
Similarly k u โˆˆ
๐‘ค๐‘–
wi (completing the proof)
Recall :
The vector ๐‘ค is called a linear
combination of the vectors
๐‘ฃ1 , ๐‘ฃ2 , โ€ฆ , ๐‘ฃ๐‘˜ provided there exist
scalars ๐‘1 , ๐‘2 , . . . , ๐‘๐‘˜ such that
๐‘ค = ๐‘1 ๐‘ฃ1 +๐‘2 ๐‘ฃ2 + โ‹ฏ + ๐‘๐‘˜ ๐‘ฃ๐‘˜ .
Theorem :
If ๐‘† = {๐‘ค1 , ๐‘ค2 , . . . , ๐‘ค๐‘Ÿ } is a non-empty set of vectors
in a vector space ๐‘‰,
then the set ๐‘Š of all linear combinations of the
vectors in ๐‘† is a subspace of ๐‘‰.
(Note: This ๐‘Š is the space spanned by the vectors
๐‘ค1 , ๐‘ค2 , . . . , ๐‘ค๐‘Ÿ and write ๐‘Š = ๐‘ ๐‘๐‘Ž๐‘›(๐‘ )
= ๐‘ ๐‘๐‘Ž๐‘› { ๐‘ค1 , ๐‘ค2 , . . . , ๐‘ค๐‘Ÿ }
Proof : Refer pg. 347
Definition: Linear Independence
The vectors ๐‘ฃ1 , ๐‘ฃ2 , โ€ฆ , ๐‘ฃ๐‘˜ in a vector space ๐‘‰ are
said to be linearly independent provided that the
equation :
๐‘1 ๐‘ฃ1 +๐‘2 ๐‘ฃ2 + โ‹ฏ + ๐‘๐‘˜ ๐‘ฃ๐‘˜ = 0
has only the trivial solution.
(ie. ๐‘1 ๐‘ฃ1 +๐‘2 ๐‘ฃ2 + โ‹ฏ + ๐‘๐‘˜ ๐‘ฃ๐‘˜ = 0
๐‘๐‘– =0.)
Example 1
๐‘›
The standard unit vectors in โ„
๐‘’1 =(1,0,0,โ€ฆ,0)
๐‘’2 =(0,1,0,...,0)
โ‹ฎ
๐‘’๐‘› =(0,0,0,โ€ฆ,1)
are linearly independent.
Read: Example 2 (pg. 361)
Bases for vector spaces
Definition: Basis
If ๐‘‰ is any vector space and ๐‘† = {๐‘ฃ1 , ๐‘ฃ2 , โ€ฆ , ๐‘ฃ๐‘› }
is a finite set of vectors in ๐‘‰, then ๐‘† is called a
basis for ๐‘‰ provided that
a) The vectors in ๐‘† are linearly independent, and
b)The vectors in ๐‘† ๐‘ ๐‘๐‘Ž๐‘› ๐‘‰(ie.every vector is a linear
(pg. 378)
combination of the vectors in S).
Example 1:
๐‘’1 =(1,0,0), ๐‘’2 =(0,1,0) & ๐‘’3 =(0,0,1)
3
unit vectors in โ„ forms a basis for
3
โ„ . (called the standard basis for โ„3)
Read examples 3,4 on page 379
Note :
1. Any linearly independent ๐‘› vectors in
๐‘›
โ„
is a basis for
๐‘›
โ„ .
2. Any set of more than ๐‘› vectors in
linearly dependent.
๐‘›
โ„
is
Note:
๐‘Ž = (๐‘Ž1 , ๐‘Ž2 , ๐‘Ž3 ), ๐‘ = (๐‘1 , ๐‘2 , ๐‘3 )
๐‘Ž1 ๐‘1 ๐‘1
iff ๐‘Ž2 ๐‘2 ๐‘2 โ‰  0
๐‘Ž3 ๐‘3 ๐‘3
and ๐‘
= (๐‘1 , ๐‘2 , ๐‘3 ) are linearly independent
Proof : ๐‘Ž, ๐‘, ๐‘ are linearly independent
โŸบ ๐›ผ๐‘Ž +๐›ฝ๐‘ +๐›พ๐‘ = 0 gives ๐›ผ = ๐›ฝ = ๐›พ = 0
๐‘Ž1
๐‘1
๐‘1
0
โŸบ ๐›ผ ๐‘Ž2 + ๐›ฝ ๐‘2 + ๐›พ ๐‘2 = 0 gives ๐›ผ = ๐›ฝ = ๐›พ = 0
๐‘Ž3
๐‘3
๐‘3
0
๐›ผ
๐‘Ž1 ๐‘1 ๐‘1
0
โŸบ ๐‘Ž2 ๐‘2 ๐‘2 ๐›ฝ = 0 has only the trivial solutions
๐›พ
๐‘Ž3 ๐‘3 ๐‘3
0
๐‘Ž1
๐‘Ž2
๐‘Ž3
๐‘1
๐‘2
๐‘3
๐‘1
๐‘2 is invertible.
๐‘3
๐‘Ž1
โŸบ ๐‘Ž2
๐‘Ž3
๐‘1
๐‘2
๐‘3
๐‘1
๐‘2 โ‰  0
๐‘3
โŸบ
Remark:
๐‘›
Independent of ๐‘›-vectors in โ„
The ๐‘›-vectors
๐‘›
๐‘ฃ1 , ๐‘ฃ2 , โ€ฆ , ๐‘ฃ๐‘› in โ„ are linearly
independent iff the ๐‘› × ๐‘› matrix
๐ด = [๐‘ฃ1 ๐‘ฃ2 โ€ฆ ๐‘ฃ๐‘› ] with them as column
vectors has non-zero determinant.
Example 2:
2
๐‘† = 1, ๐‘ฅ, ๐‘ฅ , โ€ฆ , ๐‘ฅ
๐‘›
is a basis for the
vector space ๐‘ƒ๐‘› of polynomials of
degree ๐‘› or less.
(called as the standard basis)
Theorem: Uniqueness of basis representation
(pg. 382)
If {๐‘ฃ1 , ๐‘ฃ2 , โ€ฆ , ๐‘ฃ๐‘› } is a basis for a vector space ๐‘‰,
then every vector ๐‘ฃ in ๐‘‰ can be expressed in the
form
๐‘ฃ = ๐‘1 ๐‘ฃ1 +๐‘2 ๐‘ฃ2 + โ‹ฏ + ๐‘๐‘› ๐‘ฃ๐‘›
in exactly one way.
Dimension
(pg.391)
Note that for any vector space
with a finite basis, any two bases
for a vector space consist of the
same number of vectors.
A non-zero vector space ๐‘‰ is called finitedimensional provided that a basis of ๐‘‰ has
only finitely many vectors.
In this case dimension of ๐‘‰ is the number of
vectors in a basis. (written as ๐‘‘๐‘–๐‘š๐‘‰)
Read: Theorem 4.5.2 (page 391)
&
Theorem 4.5.4 (page 395)
Example 1 :
Dimensions of Some Familiar Vector Spaces
๐‘›
dim โ„› = ๐‘›
The standard basis has ๐‘› vectors.
dim ๐‘ƒ๐‘› = ๐‘› + 1 The standard basis has ๐‘› + 1 vectors.
dim ๐‘€๐‘š๐‘› = ๐‘š๐‘› The standard basis has ๐‘š๐‘› vectors.
Read Example 6 (Bases by Inspection)
(page 395)