Download Using Google Earth to Explore Strain Rate Models - SERC

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Schiehallion experiment wikipedia , lookup

Spherical Earth wikipedia , lookup

Global Energy and Water Cycle Experiment wikipedia , lookup

Geology wikipedia , lookup

Magnetotellurics wikipedia , lookup

History of geology wikipedia , lookup

History of Earth wikipedia , lookup

Geophysics wikipedia , lookup

History of geomagnetism wikipedia , lookup

Nature wikipedia , lookup

Geodesy wikipedia , lookup

Age of the Earth wikipedia , lookup

History of geodesy wikipedia , lookup

Paleostress inversion wikipedia , lookup

Google Earth wikipedia , lookup

Earthscope wikipedia , lookup

Transcript
Using
Google
Earth
to
Explore
Strain
Rate
Models
of
Southern
California
Using Google Earth to Explore Strain Rate Models of Southern California
Glenn A. Richard - Mineral Physics Institute, Stony Brook University, Stony Brook, NY 11794-2100
A series of strain rate models for the Transverse Ranges of southern
California were developed based on Quaternary fault slip data and geodetic
data from high precision GPS stations in southern California. Pacific-North
America velocity boundary conditions are applied for all models. Topography
changes are calculated using the model dilatation rates, which predict
crustal thickness changes under the assumption of Airy isostasy and a
specified rate of crustal volume loss through erosion. The models were
designed to produce graphical and numerical output representing the
configuration of the region from 3 million years ago to 3 million years into
the future at intervals of 50 thousand years. Using a North American
reference frame, graphical output for the topography and faults and
numerical output for locations of faults and points on the crust marked by
the locations on cities were used to create data in KML format that can be
used in Google Earth to represent time intervals of 50 thousand years. As
markers familiar to students, the cities provide a geographic context that can
be used to quantify crustal movement, using the Google Earth ruler tool. By
comparing distances that markers for selected cities have moved in various
parts of the region, students discover that the greatest amount of crustal
deformation has occurred in the vicinity of the boundary between the North
American and Pacific plates. Students can also identify areas of
compression or extension by finding pairs of city markers that have
converged or diverged, respectively, over time. The Google Earth layers also
reveal that faults that are not parallel to the plate boundary have tended to
rotate clockwise due to the right lateral motion along the plate boundary
zone. KML TimeSpan markup was added to two versions of the model,
enabling the layers to be displayed in an automatic sequenced loop for a
movie effect. The data is also available as QuickTime (.mov) and Graphics
Interchange Format (.gif) animations and in ESRI shapefile format.
Present-day configuration of cities, faults, and topography. The organization of the strain
model data is listed in the places pane to the left of the Google Earth 3-D viewer. Data for
cities, faults, and topography are stored in separate folders. In turn, the data is organized
into time frames. Each time frame can be expanded to list the names of individual cities.
On each level, checkboxes can be used to control the visibility of the objects.
The visibilities of the topography overlays are controlled by radio buttons, enabling one
overlay to be visible at a time. A slider controls the transparency of the overlays, enabling
the underlying Google Earth aerial imagery to be viewed.
Map overlays for southern California topography and faults 2.5 million years ago, 1 million years ago, and at present, displayed on Google Earth, using a North American reference frame.
Points marked by cities have moved by differing amounts depending on relation to the plate boundaries. Faults on the North
American Plate that are nearly perpendicular to the boundary have exhibited clockwise motion.
This is a screen capture of a frame from a gif animation of model shear strain rates (for pure strike-slip
shear) from 3 million years ago to present. The time bar shows the age of the model values. These
shear strain rates have been concentrated in regions where strike-slip related strains are highest.
Right-lateral strike slip faults are thin red lines, left-lateral faults are thicker red lines, and thrust faults
are thick red lines with ‘teeth’.
Using the Google Earth ruler to determine the length of the Garlock Fault from its eastern end to Tehachapi (203.50 kilometers), and the
displacement of the fault trace that has occurred between 1 million years ago and now in the vicinity of Tehachapi (8.79 kilometers).
Using the Google Earth ruler to compare the distance between points marked by Watsonville now and 1 million years ago (36.26
kilometers) to the distance between points marked by Hollister, farther to the east, now and 1 million years ago (16.23 kilometers).
Points marked by cities in the basin and range area to the east in
Nevada have moved at relatively low rates, according to the model.
In the case of Pahramp, Nevada, the distance is 0.56 kilometers
over the past 1 million years.