Download Dark baryonic matter

Document related concepts

Strangeness production wikipedia , lookup

First observation of gravitational waves wikipedia , lookup

P-nuclei wikipedia , lookup

Gravitational microlensing wikipedia , lookup

Big Bang wikipedia , lookup

Gravitational lens wikipedia , lookup

Weak gravitational lensing wikipedia , lookup

Astronomical spectroscopy wikipedia , lookup

Non-standard cosmology wikipedia , lookup

Dark matter wikipedia , lookup

Weakly-interacting massive particles wikipedia , lookup

Transcript
Dark Matter and
Dark Energy components
chapter 7
Lecture 3
The early universe
chapters 5 to 8
Particle Astrophysics , D. Perkins, 2nd edition, Oxford
5.
6.
7.
8.
The expanding universe
Nucleosynthesis and baryogenesis
Dark matter and dark energy components
Development of structure in early universe
exercises
Slides + book http://w3.iihe.ac.be/~cdeclerc/astroparticles
Overview
• Part 1: Observation of dark matter as gravitational effects
–
–
–
–
–
Rotation curves galaxies, mass/light ratios in galaxies
Velocities of galaxies in clusters
Gravitational lensing
Bullet cluster
Alternatives to dark matter
• Part 2: Nature of the dark matter :
– Baryons and MACHO’s, primordial black holes
– Standard neutrinos
– Axions
• Part 3: Weakly Interacting Massive Particles (WIMPs)
• Part 4: Experimental WIMP searches (partly today)
• Part 5: Dark energy (next lecture)
2014-15
Dark Matter lect3
3
Previously
• Universe is flat k=0
• Dynamics given by Friedman equation
• Cosmological redshift
• Closure parameter
1 z 
R  t0 
R t 
 t 
 t  
c  t 
• Energy density evolves with time
2014-15
z  t0   0
Dark Matter lect3
Ωk=0
4
Dark matter : Why and how much?
• Several gravitational
observations show that more
matter is in the Universe than we
can ‘see’
• It these are particles they
interact only through weak
interactions and gravity
• The energy density of Dark
Matter today is obtained from
fitting the ΛCDM model to CMB
and other observations
luminous
1%
dark
baryonic
4%
dark
energy
~70%
Neutrino
HDM
<1%
cold dark
matter
~24%
Planck, 2013
 rad  t0   105
 matter  t0   0.30
3
4

H t   H m t0 1  z   r t0 1  z    t0 


2
2014-15
2
0
Dark Matter lect3
5
Dark matter nature
• The nature of most of the dark matter is still unknown
 Is it a particle? Candidates from several models of physics
beyond the standard model of particles and their
interactions
 Is it something else? Modified newtonian dynamics?
• the answer will come from experiment
2014-15
Dark Matter lect3
6
Velocities of galaxies in clusters and M/L ratio
Galaxy rotation curves
Gravitational lensing
Bullet Cluster
PART 1
GRAVITATIONAL EFFECTS OF DARK MATTER
2014-15
Dark Matter lect3
7
Dark matter at different scales
• Observations at different scales : more matter in the
universe than what is measured as electromagnetic
radiation (visible light, radio, IR, X-rays, γ-rays)
• Visible matter = stars, interstellar gas, dust : light & atomic
spectra (mainly H)
• Velocities of galaxies in clusters -> high mass/light ratios
M⊙
L⊙
=1
M MW
» 10
LMW
M cluster
» 500
Lcluster
L is much smaller
than expected
from value of M
• Rotation curves of stars in galaxies  large missing mass
up to large distance from centre
2014-15
Dark Matter lect3
8
Dark matter in galaxy clusters 1
• Zwicky (1937): measured mass/light ratio in COMA cluster
is much larger than expected
– Velocity from Doppler shifts (blue & red) of spectra of galaxies
– Light output from luminosities of galaxies
v
COMA cluster
1000 galaxies
20Mpc diameter
100 Mpc(330 Mly) from Earth
Optical (Sloan Digital Sky Survey)
+ IR(Spitzer Space Telescope
2014-15
Dark Matter lect3
NASA
9
Dark matter in galaxy clusters 2
• Mass from velocity of galaxies around centre of mass of
cluster using virial theorem
()
( )
1
GPE M
2
æM ö
M (velocities) >1010 M ⊙ üï æ M ö
» 500 ´ ç ÷
ýÞç ÷
7
è L øsun
L » 10 L⊙
ïþ è L øcluster
KE v =
æM ö
æM ö
⊙ ç ÷
ç ÷
è L øCOMA è L øSUN
L should be larger
Most of the mass M
does not emit light
• Proposed explanation: missing ‘dark’ = invisible mass
• Missing mass has no interaction with electromagnetic
radiation
2014-15
Dark Matter lect3
10
Galaxy rotation curves
• Stars orbiting in spiral galaxies
• gravitational force = centrifugal force
mv 2 mM   r  G

r
r2
• Star inside hub v ⊙ r
• Star far away from hub
v⊙
2014-15
1
r
Dark Matter lect3
11
NGC 1560 galaxy
optical
HI 21cm radio
emission from gas
2014-15
Dark Matter lect3
12
Universal features
• Large number of rotation curves of spiral galaxies measured
by Vera Rubin – up to 110kpc from centre
• Show a universal behaviour
2014-15
Dark Matter lect3
13
Dark matter halo
• Galaxies are embedded in dark matter halo
• Halo extends to far outside visible region
HALO
DISK
2014-15
Dark Matter lect3
14
Dark matter halo models
Milky Way halo models
DM Density (GeV cm-3)
• Density of dark matter is larger
near centre due to gravitational
attraction near black hole
• Halo extends to far outside visible
region
• dark matter profile inside Milky
Way is modelled from simulations
Solar system
Dark Matter lect3
Distance from centre (kpc)
2014-15
15
2014-15
Dark Matter lect3
16
Gravitational lensing
• Gavitational lensing by galaxy clusters -> effect larger than
expected from visible matter only
2014-15
Dark Matter lect3
17
Gravitational lensing principle
• Photons emitted by source S (e.g. quasar) are deflected by
massive object L (e.g. galaxy cluster) = ‘lens’
• Observer O sees multiple images
2014-15
Dark Matter lect3
18
Lens geometries and images
2014-15
Dark Matter lect3
19
Observation of gravitational lenses
• First observation in 1979: effect on twin quasars Q0957+561
• Mass of ‘lens’ can be deduced from distortion of image
• only possible for massive lenses : galaxy clusters
Distorted images of
remote quasar
Lens = cluster Abell 2218
2014-15
Dark Matter lect3
20
Different lensing effects
• Strong lensing:
– clearly distorted images, e.g. Abell 2218 cluster
– Sets tight constraints on the total mass
• Weak lensing:
– only detectable with large sample of sources
– Allows to reconstruct the mass distribution over whole
observed field
• Microlensing:
– no distorted images, but intensity of source changes with time
when lens passes in front of source
– Used to detect Machos
2014-15
Dark Matter lect3
21
Collision of 2 clusters : Bullet cluster
• Optical images of galaxies at different redshift: Hubble
Space Telescope and Magellan observatory
• Mass map contours show 2 distinct mass concentrations
– weak lensing of many background galaxies
– Lens = bullet cluster
0.72 Mpc
Cluster 1E0657-558
2014-15
Dark Matter lect3
22
Bullet cluster in X-rays
• X rays from hot gas and dust - Chandra observatory
• mass map contours from weak lensing of many galaxies
2014-15
Dark Matter lect3
23
Bullet cluster = proof of dark matter
• Blue = dark matter reconstructed from gravitational lensing
• Is faster than gas and dust : no electromagnetic interactions
• Red = gas and dust = baryonic matter – slowed down because of
electromagnetic interactions
• Modified Newtonian Dynamics cannot explain this
2014-15
Dark Matter lect3
24
Another example
• Abell 1689 cluster
• Blue = reconstructed
dark matter map
2014-15
Dark Matter lect3
25
Alternative theories
• MOND theory proposed by Milgrom in 1983
• Modification of Newtonian Dynamics over (inter)-galactic
distances
• Far away from centre of cluster or galaxy the acceleration
of an object becomes small -> no need for hidden mass
• Explains rotation curves
• Does not explain Bullet Cluster
2014-15
Dark Matter lect3
26
2014-15
Dark Matter lect3
27
Overview
• Part 1: Observation of dark matter as gravitational effects
–
–
–
–
–
Rotation curves galaxies, mass/light ratios in galaxies
Velocities of galaxies in clusters
Gravitational lensing
Bullet cluster
Alternatives to dark matter
• Part 2: Nature of the dark matter :
– Baryons and MACHO’s, primordial black holes
– Standard neutrinos
– Axions
• Part 3: Weakly Interacting Massive Particles (WIMPs)
• Part 4: Experimental WIMP searches (partly today)
• Part 5: Dark energy (next lecture)
2014-15
Dark Matter lect3
28
Baryons
MACHOs = Massive Compact Halo Objects
Primordial black holes
Standard neutrinos
Axions
WIMPs = Weakly Interacting Massive Particles →Part 3
PART 2
THE NATURE OF DARK MATTER
2014-15
Dark Matter lect3
29
What are we looking for?
• Particles with mass – interact gravitationally
• Particles which are not observed in radio, visible, X-rays, γ-rays, .. :
neutral and possibly weakly interacting
•
•
•
•
Candidates:
Dark baryonic matter: baryons, MACHOs, primordial black holes
light particles : primordial neutrinos, axions
Heavy particles : need new type of particles like neutralinos, … =
WIMPs
• To explain formation of structures majority of dark matter particles
had to be non-relativistic at time of freeze-out
-> Cold Dark Matter
2014-15
Dark Matter lect3
30
Total baryon content
Visible baryons
Neutral and ionised hydrogen – dark baryons
Mini black holes
MACHOs
BARYONIC MATTER
2014-15
Dark Matter lect3
31
Baryon content of universe
• measurement of light element
abundances
• and of He mass fraction Y
• And of CMB anisotropies
• Interpreted in Big Bang
Nucleosynthesis model
NB

  6.047  0.074  1010
N
ΩBh2=.022
He mass fraction
D/H abundance
PDG 2013
 ΩB h 2 = 0.02207  0.00027
2014-15
Dark Matter lect3
32
Baryon budget of universe
• From BB nucleosynthesis and CMB fluctuations:
• Related to history of universe at
z=109
and
z=1000
• Most of baryonic matter is in stars, gas, dust
• Small contribution of luminous matter
•  80% of baryonic mass is dark
• Ionised hydrogen H+, MACHOs, mini black holes
baryons  0.05
lum  0.01
• Inter Gallactic Matter = gas of hydrogen in clusters of galaxies
• Absorption of Lyα emission from distant quasars yields neutral
hydrogen fraction in inter gallactic regions
• Most hydrogen is ionised and invisible in absorption spectra  form
dark baryonic matter
2014-15
Dark Matter lect3
33
Lyα forest and neutral hydrogen gas
Hydrogen atoms
Absorb UV light
Emission of UV
light by quasar
λ= 1216 Å
Lyman α transition
in H
Measurement of
absorption spectra
yields amount of
neutral H
2014-15
Dark Matter lect3
34
tiny black holes
• Primordial black holes could make up dark matter if created
early enough in history of universe and survive inflation
• PBH of 1011kg could have lifetime = age of universe
• Emit Hawking radiation in form of γ–rays -> signal expected
• If present in Milky Way halo they would be detected by
gravitational microlensing (see MACHO’s, next part)
• no events were observed
• -> contribution to DM negligible
2014-15
Dark Matter lect3
35
Massive Astrophysical Compact Halo Objects
Dark stars in the halo of the Milky Way
Observed through microlensing of large number of stars
MACHOS
2014-15
Dark Matter lect3
36
Microlensing
• Light of source is amplified by gravitational lens
• When lens is small (star, planet) multiple images of source
cannot be distinguished : addition of images = amplification
• But : amplification effect varies with time as lens passes in
front of source - period T
• Efficient for observation of e.g. faint stars
Period T
2014-15
Dark Matter lect3
37
Microlensing - MACHOs
• Amplification of signal by addition of multiple images of source
• Amplification varies with time of passage of lens in front of
source
2
2 

 x 
x
A  1   /  x 1  
2  
4 

x
t
T
• Typical time T : days to months – depends on distance & velocity
• MACHO = dark astronomical object seen in microlensing
• M ≈ 0.001-0.1M
• Account for very small fraction of dark baryonic matter
• MACHO project launched in 1991: monitoring during 8 years of
microlensing in direction of Large Magellanic Cloud
2014-15
Dark Matter lect3
38
Optical depth – experimental challenge
• Optical depth τ = probability that one source undergoes
gravitational lensing
• For ρ = NLM = Mass density of lenses along line of sight
2
• Optical depth depends on
 DS  
  2 G 

– distance to source D
 c  3
S
– number of lenses
  per source   107
• Near periphery of bulge of Milky Way
 Need to record microlensing for millions of stars
• Experiments: MACHO, EROS, superMACHO, EROS-2
• EROS-2:
– 7x106 bright stars monitored in ~7 years
– one candidate MACHO found
–  less than 8% of halo mass are MACHOs
2014-15
Dark Matter lect3
39
schema
2014-15
Dark Matter lect3
40
Example of microlensing
• source = star in Large
Magellanic Cloud (LMC,
distance = 50kpc)
• Dark matter lens in form of
MACHO between LMC star
and Earth
• Could it be a variable star?
• No: because same observation
of luminosity in red and blue
light : expect that gravitational
deflection is independent of
wavelength
2014-15
Blue filter
Dark Matter lect3
red filter
41
2014-15
Dark Matter lect3
42
STANDARD NEUTRINOS AS DARK
MATTER
2014-15
Dark Matter lect3
43
Standard neutrinos
• Standard Model of Particle Physics – measured at LEP
N fermion families  2.984  0.009
→ 3 types of light neutrinos
with Mν<45GeV/c2
• Fit of observed light element
abundances to BBN model (lecture 2)
N neutrino species  3.5
• Neutrinos have only weak and
gravitational interactions
2014-15
Dark Matter lect3
44
Relic standard neutrinos
• Non-baryonic dark matter = particles
Lecture 2
– created during radiation dominated era
– Stable and surviving till today
• Neutrino from Standard Model = weakly interacting, small
mass, stable → dark matter candidate
• Neutrino production and annihilation in early universe
weak interactions
  e  e 
 i  i
i  e,  ,
• Neutrinos freeze-out at kT ~ 3MeV and t ~ 1s
• When interaction rate W << H expansion rate
2014-15
Dark Matter lect3
45
Cosmic Neutrino Background
• Relic neutrino density and temperature today
• for given species (νe, νμ, ντ ) (lecture 2)
N  N  113 cm-3
T  t0  1.95K  meV
3
N

340
cm
• Total density today for all flavours 
• High density, of order of CMB – but difficult to detect!
• At freeze-out : relativistic kT FO >> m
( )
2014-15
Dark Matter lect3
n
46
Neutrino mass
• If all critical density today is built up of neutrinos

1     
c
2
2
m
c

47
eV

m
<
16
eV
c
 
ν
e ,  ,
• Direct mass measurement: Measure end of electron energy
spectrum in beta decay
Count rate
3
1
2014-15
H  23 He  e   e
m  eV c
Electron energy (keV)
Dark Matter lect3
2
47
Neutrinos as hot dark matter
• Relic neutrinos are numerous
• have very small mass < eV
• Were relativistic when decoupling from other matter at
kT~3MeV
• → can only be Hot Dark Matter – HDM
• Relativistic particles prevent formation of large-scale
structures – through free streaming they ‘iron away’ the
structures
• → HDM should be limited
• From simulations of structures: maximum 30% of DM is hot
2014-15
Dark Matter lect3
48
Simulations and data: majority must be CDM
Hot dark matter
warm dark matter
cold dark matter
See eg work of Carlos Frenk
http://star-www.dur.ac.uk/~csf/
simulations
Observations
2dF galaxy survey
2014-15
Dark Matter lect3
49
2014-15
Dark Matter lect3
50
Postulated to solve ‘strong CP’ problem
Could be cold dark matter particle
AXIONS
2014-15
Dark Matter lect3
51
Strong CP problem
• QCD lagrangian for strong interactions
LQCD  Lquark  Lgauge  standard   L
• Term Lθ is generally neglected
• violates P and T symmetry → violates CP symmetry
• Violation of T symmetry would yield a non-zero neutron
electric dipole moment
e.d.m.
-(15-16)
predicted
» q ´10
e.cm
• Experimental upper limits
experiment
e.d .m.
2014-15
 10
25
e.cm
Dark Matter lect3
10
  10
52
Strong CP problem
• Solution by Peccei-Quinn : introduce higher global U(1)
symmetry, which is broken at an energy scale fa
• This extra term cancels the Lθ term
• With broken symmetry comes a boson field φa = axion with
mass
1010 GeV
m A ~ 0.6meV
fA
• Axion is very light and weakly interacting
• Is a pseudo-scalar with spin 0- ; Behaves like π0
2
3
G
m
• Decay rate to photons
A A
 A 
2014-15
Dark Matter lect3
64
53
Axion as cold dark matter
• formed boson condensate in very early universe during inflation
• Is candidate for cold dark matter
• if mass < eV its lifetime is larger than the lifetime of universe
 stable
• Production in plasma in Sun or SuperNovae
• Searches via decay to photons in magnetic field
   
 A 
  
production
decay
 A 
GA2  m3A
64
• CAST experiment @ CERN: axions from Sun
• If axion density = critical density today then
A
1    A 
c
2014-15
mA  106  103 eV c2
Dark Matter lect3
54
Axion-γ coupling (GeV-1)
Axions were not yet observed
Axion model
predictions
Some are excluded by
CAST limits
Combination of mass and coupling below CAST
Axion mass (eV)
limit are still allowed by experiment
CAST has best sensitivity
2014-15
Dark Matter lect3
55
Pauze
Overview
• Part 1: Observation of dark matter as gravitational effects
–
–
–
–
–
Rotation curves galaxies, mass/light ratios in galaxies
Velocities of galaxies in clusters
Gravitational lensing
Bullet cluster
Alternatives to dark matter
• Part 2: Nature of the dark matter :
– Baryons and MACHO’s, primordial black holes
– Standard neutrinos
– Axions
• Part 3: Weakly Interacting Massive Particles (WIMPs)
• Part 4: Experimental WIMP searches (partly today)
• Part 5: Dark energy (next lecture)
2014-15
Dark Matter lect3
57
Which candidates
Short recall of SuperSymmetry
Expected abundances of neutralinos today
Expected mass range
Weakly Interacting Massive Particles
PART 3
WIMPS AS DARK MATTER
2014-15
Dark Matter lect3
58
summary up to now
• Standard neutrinos can be Hot
DM
• Most of baryonic matter is dark
luminous
1%
dark
baryonic
4%
– MACHO? PBH?
• cold dark matter (CDM) is still
of unknow type
• Need to search for candidates
for non-baryonic cold dark
matter in particle physics
beyond the SM
Neutrino
HDM
<1%
cold dark
matter
~24%
dark
energy
~70%
matter   Baryons   HDM  CDM  0.05  0.01  0.24  0.30
2014-15
Dark Matter lect3
59
Non-baryonic CDM candidates
• Axions
– To reach density of order ρc their mass must be very small
mAc2  106  103 eV
– No experimental evidence yet
•
•
•
•
•
Most popular candidate for CDM :
Weakly Interacting Massive Particles : WIMPs
present in early hot universe – stable – relics of early universe
Cold : Non-relativistic at time of freeze-out
Weakly interacting : conventional weak couplings to standard
model particles - no electromagnetic or strong interactions
• Massive: gravitational interactions (gravitational lensing …)
2014-15
Dark Matter lect3
60
Weakly interacting and massive
• Massive neutrinos:
– The 3 standard neutrinos have very low masses – contribute to
Hot DM
– Massive non-standard neutrinos : 4th generation of leptons and
quarks? No evidence yet
• Neutralino χ = Lightest SuperSymmetric Particle (LSP) in Rparity conserving Minimal SuperSymmetry (SUSY) theory
– Lower limit from accelerators > 50 GeV/c2
MSSM
– Stable particle – survived from primordial era of universe
• Other SUSY candidates: sneutrinos
• New particles from models with extra space dimensions
• …….
2014-15
Dark Matter lect3
61
SuperSymmetry in short
• Gives a unified picture of matter (quarks and leptons) and
interactions (gauge bosons and Higgs bosons)
• Introduces symmetry between fermions and bosons
Q fermion  boson
Q boson  fermion
• Fills the gap between electroweak and Planck scale
M W 102 GeV
 19
 1017
M PL 10 GeV
• Solves problems of Standard Model, like the hierarchy problem:
= divergence of radiative corrections to Higgs mass
• Provides a dark matter candidate
2014-15
Dark Matter lect3
62
SuperSymmetric particles
• Need to introduce new particles: supersymmetric particles
• Associate to all SM particles a superpartner with spin ±1/2
(fermion ↔ boson) -> sparticles
• minimal SUSY: minimal supersymmetric extension of the
SM – reasonable assumptions to reduce nb of parameters
• If R-parity is conserved there is a stable Lightest SUSY
Particle: neutralino
3B+L+2S
RP = (-1)
• Neutralino could be dark matter particle
• Is searched for at LHC
2014-15
Dark Matter lect3
63
WIMP annihilation rate at freeze-out
• WIMP with mass M must be non-relativistic at freeze-out
Could be neutralino or
• gas in thermal equilibrium
other weakly interacting
massive particle
kT ⊙ M c c 2 ® Boltzman gas
æ -M c 2 ö
c
3
ç
÷÷
ç
2
æ M T ö è kT ø
N T = çç c ÷÷ e
è 2p ø
( )
TFO
number density
• Annihilation rate
W T   N T   Annihilationv χ
WIMP velocity at FO
• Cross section σ depends on model parameters : e.g. weak
interactions
2014-15
Dark Matter lect3
64
Freeze-out temperature
• assume that couplings are of order of weak interactions
GF = Fermi
constant
H T  
• Rewrite expansion rate
• Freeze-out condition
W TFO   H TFO 
é
ê
êM T
ê c
ê
ë
(
• f = constants ≈ 100
2
M
c
• Set P  
solve for P
)

1
2
T2
M PL
æ -M c c2 ö ù
ç kT ÷ ú
2
3
T
è
ø
2
úéG 2 M 2 ù =
e
f
F
cû
ë
ú
M PL
ú
û
P  FO  
kT
2014-15
1.66  g
*
Dark Matter lect3
M  c2
kTFO
~ 25
kTFO ~
M  c2
25
65
Number density N(T)
Depends
on model
Increasing <σAv>
P~25
today
P=M/T (time ->)
2014-15
Dark Matter lect3
66
Relic abundance today Ω(T0) - 1
• At freeze-out annihilation rate ~ expansion rate
N TFO   Av  H TFO 
• WIMP number density today for T0 = 2.73K
R3 TFO 
N T0   N TFO  3
R T0 
• Energy density today
r c (T0 ) = M c N (T0 ) ⊙
PFOT03
M PL s Av
2
MPL 
T0 TFO    TFO
3
N T0  
PFO 
 Av
T0 
M PL 
6 ´10-31
r c T0 ⊙
GeV s-1
s Av
( )
2014-15
Dark Matter lect3
67
Relic abundance today Ω(t0) - 2
• Relic abundance of WIMPs today
WIMP
miracle
• For
  1
1025
   t0  ~
cm3 s 1
  vFO
      X   1035 cm2  O  pb
• O(weak interactions)  weakly interacting particles can
make up cold dark matter with correct abundance
• Velocity of relic WIMPs at freeze-out from kinetic energy
3kTFO
1
2
Mv 
2
2
2014-15
v 3

~

P
FO 
c 
Dark Matter lect3
1
2
 0.3
v FO ≈ 0.3 c
68
Expected mass range: GeV-TeV
• Assume WIMP interacts
weakly and is non-relativistic
at freeze-out
• Which mass ranges are
allowed?
Ω
• Cross section for WIMP
annihilation vs mass leads to
abundance vs mass
HDM
neutrinos
CDM WIMPs
MWIMP (eV)
2014-15
Dark Matter lect3
69
2014-15
Dark Matter lect3
70
Overview
• Part 1: Observation of dark matter as gravitational effects
–
–
–
–
–
Rotation curves galaxies, mass/light ratios in galaxies
Velocities of galaxies in clusters
Gravitational lensing
Bullet cluster
Alternatives to dark matter
• Part 2: Nature of the dark matter :
– Baryons and MACHO’s, primordial black holes
– Standard neutrinos
– Axions
• Part 3: Weakly Interacting Massive Particles (WIMPs)
• Part 4: Experimental WIMP searches (partly today)
• Part 5: Dark energy (next lecture)
2014-15
Dark Matter lect3
71
Direct dark matter detection
Indirect detection
Searches at colliders
The difficult path to discovery
PART 4: EXPERIMENTAL WIMP
SEARCHES
2014-15
Dark Matter lect3
72
Where should we look?
• Search for WIMPs in the Milky Way halo
 Indirect detection: expect WIMPs from the halo to annihilate with
each other to known particles
 Direct detection: expect WIMPs from the halo to interact in a
detector on Earth
Dark matter halo
Solar system
Luminous disk
© ESO
2014-15
Dark Matter lect3
73
three complementary strategies
2014-15
Dark Matter lect3
74
DIRECT DETECTION EXPERIMENTS
2014-15
Dark Matter lect3
75
Principle of direct detection
• Earth moves in WIMP ‘wind’ from halo
• Elastic collision of WIMP with nucleus in
detector   N    N 
• recoil energy
Xe
ERec =
v c2 µ2
mN
(1- cosq ) £ 50keV
• Velocity of WIMPs ~ velocity of galactic
objects
v χ ~ 220 km s ~ 10 c
1
2014-15
Dark Matter lect3
3
µ
m mN
m  mN
76
Cross section and event rates
• Event rate depends on density of WIMPs in solar system
DM Density (GeV cm-3)
R N

m
σ χp
 ~ 0.3GeV cm3
Rate depends
on number N of
nuclei in target
Distance from centre (kpc)
• Rate depends on scattering cross section – present upper
limit
44
2
8
Weak
σ  χp   10 cm  10 pb
2014-15
Dark Matter lect3
interactions!
77
Direct detection challenges
R N

M
p
• low rate 
large detector
• very small signal
 low threshold
• large background :
protect against
cosmic rays,
radioactivity, …
2014-15
Dark Matter lect3
78
Annual modulation
• Annual modulations due to movement of solar system in
galactic WIMP halo
• Observed by DAMA/LIBRA – not confirmed by other
experiments
Earth against the wind in June
Maximum rate
R N

M
p
R  R0  Rm cos t 
In direction of the wind in December
Minimum rate
2014-15
Dark Matter lect3
79
DAMA/LIBRA experiment
• In Gran Sasso underground laboratory
• Measure scintillation light from nuclear recoil in NaI crystals
• Observe modulation of 1 year (full curve) with phase of
152.5 days
• If interpreted as SUSY dark matter: M ~ 10-50 GeV/c2
2014-15
Dark Matter lect3
80
RN

M
From event rate to cross section
σ χp
Some experiments claim to
see a signal at this mass
and with this cross section
Other experiments see no signal and
put upper limits on the cross section
Expected cross sections for
models with supersymmetry
2014-15
Dark Matter lect3
81
2014-15
Dark Matter lect3
82
Overview
• Part 1: Observation of dark matter as gravitational effects
–
–
–
–
–
Rotation curves galaxies, mass/light ratios in galaxies
Velocities of galaxies in clusters
Gravitational lensing
Bullet cluster
Alternatives to dark matter
• Part 2: Nature of the dark matter :
– Baryons and MACHO’s, primordial black holes
– Standard neutrinos
– Axions
• Part 3: Weakly Interacting Massive Particles (WIMPs)
• Part 4: Experimental WIMP searches (partly today)
• Part 5: Dark energy (next lecture)
2014-15
Dark Matter lect3
83