* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download 11.1 Angle Measures in Polygons
List of regular polytopes and compounds wikipedia , lookup
Multilateration wikipedia , lookup
Integer triangle wikipedia , lookup
Pythagorean theorem wikipedia , lookup
Rational trigonometry wikipedia , lookup
History of trigonometry wikipedia , lookup
Complex polytope wikipedia , lookup
Perceived visual angle wikipedia , lookup
Trigonometric functions wikipedia , lookup
Euler angles wikipedia , lookup
11.1 Angle Measures in Polygons Geometry Ms. Reser 1 Objectives/Assignment Find the measures of interior and exterior angles of polygons. Use measures of angles of polygons to solve real-life problems. Assignment: In-Class 11.1 A. For homework – 11.1 B (Worksheets). Chapter 11 Definitions and Postulates/Theorems. Binder Check Monday 11.1 NOTES – You have them or you get a phone call. 2 Measures of Interior and Exterior Angles You have already learned the name of a polygon depends on the number of sides in the polygon: triangle, quadrilateral, pentagon, hexagon, and so forth. The sum of the measures of the interior angles of a polygon also depends on the number of sides. 3 Measures of Interior and Exterior Angles In lesson 6.1, you found the sum of the measures of the interior angles of a quadrilateral by dividing the quadrilateral into two triangles. You can use this triangle method to find the sum of the measures of the interior angles of any convex polygon with n sides, called an n-gon.(Okay – n-gon means any number of sides – including 11—any given number (n). 4 Measures of Interior and Exterior Angles For instance . . . Complete this table Polygon Triangle # of sides 3 Quadrilateral # of triangles 1 Sum of measures of interior ’s 1●180=180 2●180=360 Pentagon Hexagon Nonagon (9) n-gon n 5 Measures of Interior and Exterior Angles What is the pattern? You may have found in the activity that the sum of the measures of the interior angles of a convex, n-gon is (n – 2) ● 180. This relationship can be used to find the measure of each interior angle in a regular n-gon because the angles are all congruent. 6 Polygon Interior Angles Theorem The sum of the measures of the interior angles of a convex n-gon is (n – 2) ● 180 COROLLARY: The measure of each interior angle of a regular n-gon is: 1 n or ● (n-2) ● 180 ( n 2)(180) n 7 Ex. 1: Finding measures of Interior Angles of Polygons Find the value of x in the diagram shown: 142 88 Leave this graphic here and let them figure it out. 136 105 136 x 8 SOLUTION: The sum of the measures of the interior angles of any hexagon is (6 – 2) ● 180 = 4 ● 180 = 720. Add the measure of each of the interior angles of the hexagon. 142 88 136 105 136 x 9 SOLUTION: 136 + 136 + 88 + 142 + 105 +x = 720. The sum is 720 607 + x = 720 Simplify. X = 113 Subtract 607 from each side. The measure of the sixth interior angle of the hexagon is 113. 10 Ex. 2: Finding the Number of Sides of a Polygon The measure of each interior angle is 140. How many sides does the polygon have? USE THE COROLLARY 11 Solution: ( n 2)(180) n = 140 (n – 2) ●180= 140n Corollary to Thm. 11.1 Multiply each side by n. 180n – 360 = 140n Distributive Property 40n = 360 Addition/subtraction props. n = 90 Divide each side by 40. 12 Notes The diagrams on the next slide show that the sum of the measures of the exterior angles of any convex polygon is 360. You can also find the measure of each exterior angle of a REGULAR polygon. 13 Copy the item below. 14 EXTERIOR ANGLE THEOREMS 15 Ex. 3: Finding the Measure of an Exterior Angle 16 Ex. 3: Finding the Measure of an Exterior Angle 17 Ex. 3: Finding the Measure of an Exterior Angle 18 Using Angle Measures in Real Life Ex. 4: Finding Angle measures of a polygon 19 Using Angle Measures in Real Life Ex. 5: Using Angle Measures of a Regular Polygon 20 Using Angle Measures in Real Life Ex. 5: Using Angle Measures of a Regular Polygon 21 Using Angle Measures in Real Life Ex. 5: Using Angle Measures of a Regular Polygon Sports Equipment: If you were designing the home plate marker for some new type of ball game, would it be possible to make a home plate marker that is a regular polygon with each interior angle having a measure of: a. 135°? b. 145°? 22 Using Angle Measures in Real Life Ex. : Finding Angle measures of a polygon 23