Download Section 7-3 The Sine and Cosine Functions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Approximations of ฯ€ wikipedia , lookup

Pi wikipedia , lookup

Trigonometric functions wikipedia , lookup

Transcript
Warm Up
A right triangle has side lengths x,
y, and r. Find the unknown length.
2.
๐‘ฅ = 4, ๐‘ฆ = 5 ๐’“ = ๐Ÿ’๐Ÿ
๐‘ฅ = 21, ๐‘Ÿ = 29 ๐’š = ๐Ÿ๐ŸŽ
3.
๐‘Ÿ = 10, ๐‘ฅ = 1
๐’š=๐Ÿ‘
4.
๐‘ฆ = 4 2, ๐‘ฅ = 4
๐’“=๐Ÿ’ ๐Ÿ‘
1.
5.
The square has side lengths 14. The two
1
curves are each of a circle with radius 14.
4
Find the area of the shaded region.
r
y
x
๐Ÿ—๐Ÿ–๐… โˆ’ ๐Ÿ๐Ÿ—๐Ÿ”
Quiz 7.1 & 7.2
๏ฎDegree
& Radian Conversions
๏ฎCoterminal Angles
๏ฎArc Length of a Sector
๏ฎArea of a Sector
๏ฎApparent Size
Section 7-3
The Sine and Cosine Functions
Objective: To use the definitions of
sine and cosine to find values of
these functions and to solve simple
trigonometric equations.
๐‘ ๐‘–๐‘›๐œƒ =
๐‘œ๐‘๐‘
๐‘ฆ
=
โ„Ž๐‘ฆ๐‘
๐‘Ÿ
cos ๐œƒ =
๐‘Ž๐‘‘๐‘—
๐‘ฅ
=
โ„Ž๐‘ฆ๐‘
๐‘Ÿ
r
๏ฑ
Example 1
If the terminal ray of an angle ฮธ in standard
position passes through (-3, 2), find sin ฮธ and
cos ฮธ.
Solution:
On a grid, locate (-3,2).
Use this point to draw a right triangle, where one
side is on the x-axis, and the hypotenuse is line
segment between (-3,2) and (0,0).
If the terminal ray passes through ( ๏€ญ 3,2), find
sin๏ฑ & cos๏ฑ .
๐‘ฆ
2
2 13
๐‘ ๐‘–๐‘›๐œƒ =
=
=
๐‘Ÿ
13
13
โˆ’3
๐‘ฅ
โˆ’3 13
๐‘๐‘œ๐‘ ๐œƒ = =
=
๐‘Ÿ
13
13
๐’™ = โˆ’๐Ÿ‘
๐ฒ=๐Ÿ
๐‘Ÿ = โˆ’3
๐’“ = ๐Ÿ๐Ÿ‘
2
+ 2
2
Example 2
5
5
= โˆ’ , what
quadrant
is๏€ญ the,
If If๏ฑ the
is a๐‘ ๐‘–๐‘›๐œƒ
4th Quadrant
๏ƒ
and
sin
๏ฑ
๏€ฝ
13
13
angle in?
find cos๏ฑ .
5
If ๏ฑ is a 4th Quadrant ๏ƒ and sin๏ฑ ๏€ฝ ๏€ญ ,
13
find cos๏ฑ .
๐‘ฅ 12
๐‘๐‘œ๐‘ ๐œƒ = =
๐‘Ÿ 13
๐ฒ = โˆ’๐Ÿ“
๐’“ = ๐Ÿ๐Ÿ‘
๐‘ฅ=
2
13
๐’™ = ±๐Ÿ๐Ÿ
โˆ’ โˆ’5
2
4th Quadrant, so
๐’™ = ๐Ÿ๐Ÿ
๐‘ ๐‘–๐‘›๐œƒ =
๐‘œ๐‘๐‘
๐‘ฆ
=
โ„Ž๐‘ฆ๐‘
๐‘Ÿ
cos ๐œƒ =
๐‘Ž๐‘‘๐‘—
๐‘ฅ
=
โ„Ž๐‘ฆ๐‘
๐‘Ÿ
r
๏ฑ
When the radius =1 on the unit circle,
๐‘ฆ
๐‘ ๐‘–๐‘›๐œƒ = = ๐‘ฆ
1
๐‘ฅ
๐‘๐‘œ๐‘ ๐œƒ = = ๐‘ฅ
1
Unit Circle
The circle x2 + y2 = 1 has radius 1 and is therefore
called the unit circle. This circle is the easiest one
with which to work because sin ฮธ and cos ฮธ are
simply the y- and x-coordinates of the point where
the terminal ray of ฮธ intersects the circle.
When the radius =1 on the unit circle,
๐‘ฆ
๐‘ ๐‘–๐‘›๐œƒ = = ๐‘ฆ
1
๐‘ฅ
๐‘๐‘œ๐‘ ๐œƒ = = ๐‘ฅ
1
1
2
1
1
2
On Your Unit Circle:
๏ฎ Label the quadrants.
๏ฎ Note the positive or negative x and y values in each
quadrant.
(cos, sin)
(cos, sin)
(โˆ’, +)
(+, +)
II
I
III IV
(โˆ’, โˆ’)
(cos, sin)
(+, โˆ’)
(cos, sin)
You can determine the exact value of sine
and cosine for many angles on the unit
circle. Find:
A. sin
90°
B. sin 450°
C. cos (-ฯ€)
D. sin
2๐œ‹
(โˆ’ )
3
E. cos
-315°
A. 1
B. 1
C. -1
D. โˆ’
E.
2
2
3
2
Example 3
Solve sin ฮธ = 1 for ฮธ in degrees and radians.
Degrees: ๐œƒ = 90หš ± 360๐‘›
๐œ‹
2
Radians: ๐œƒ = ± 2๐‘›๐œ‹
Repeating Sin and Cos Values
For any integer n,
๐‘ ๐‘–๐‘› (๐œƒ ± 360°๐‘›) = ๐‘ ๐‘–๐‘› ๐œƒ
๐‘๐‘œ๐‘  (๐œƒ ± 360°๐‘›) = ๐‘๐‘œ๐‘  ๐œƒ
๐‘ ๐‘–๐‘› (๐œƒ ± 2๐œ‹๐‘›) = ๐‘ ๐‘–๐‘› ๐œƒ
๐‘๐‘œ๐‘  (๐œƒ ± 2๐œ‹๐‘›) = ๐‘๐‘œ๐‘  ๐œƒ
The sine and cosine functions are periodic.
They have a fundamental period of 360หš or 2๏ฐ
radians.
Homework
Page 272
#1-27 odd, #33-41 odd