Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Artificial Intelligence Machine Learning, Pattern Recognition, Data Mining Dae-Won Kim School of Computer Science & Engineering Chung-Ang University AI Scope 1. Search-based optimization techniques for real-life problems • Hill climbing, Branch and bound, A*, Greedy algorithm • Simulated annealing, Tabu search, Genetic algorithm 2. Reasoning: Logic, Inference, and knowledge representation • Logical language: Syntax and Semantics • Inference algorithm: Forward/Backward chaining, Resolution, and Expert System 3. Machine Learning/ Pattern Recognition/ Data Mining • Classification: Bayesian algorithm, Nearest-neighbor algorithm, Neural network • Clustering: Hierarchical algorithm, K-Means algorithm 4. Uncertainty based on Probability theory 5. Planning, Scheduling, Robotics, and Industry Automation Have you ever heard of Big Data? Progress in digital data acquisition and storage technology has resulted in the growth of huge databases. Data mining is the extraction of implicit, previously unknown, and potentially useful information from data. We build algorithms that sift through databases automatically, seeking patterns. Strong patterns, if found, will likely generalize to make accurate predictions on future data. Algorithms need to be robust enough to cope with imperfect data and to extract patterns that are inexact useful. Machine learning provides the technical basis of data mining. We will study simple machine learning methods, looking for patterns in data. People has been seeking patterns in data since human life began. e.g., Samsung Galaxy: Samsung Pay, Managers in Samsung want to find consuming patterns of users so that it’d provide personalized services. In data mining, computer algorithm is solving problems by analyzing data in databases. Data mining is defined as the process of (knowledge) discovering patterns in data. Data mining is defined as the process of (knowledge) discovering patterns in data. We start with a simple example. Q: Tell me the name of this fish. Algorithm ?? We have 100 fishes, and measured their lengths. (e.g., fish: x=[length]t) Our algorithm can measure the length of a new fish, and estimate its label. Yes, it is a typical prediction task through classification technique. But, it is often inexact and unsatisfactory. Next, we measured their lightness. (e.g., fish: x=[lightness]) Lightness is better than length. Let us use both lightness and width. (e.g., fish: x=[lightness, width]) Each fish is represented a point (vector) in 2D x-y coordinate space. Everything is represented as Ndimensional vector in coordinate space. The world is represented as matrix We assume that you have learned the basic concepts of linear algebra. The objective is to find a line that effectively separates two groups. How to find the line using a simple Math from high school? We can build a complex nonlinear line to provide exact separation. The formal procedure is given as: This shows a predictive task of data mining, often called as pattern classification/ recognition/ prediction. The act of taking in raw data and making an action based on the category of the pattern. We build a machine that can recognize or predict patterns. Q: How to represent and classify texts? -Opinion mining -Sentiment analysis Another famous task of data mining is a descriptive task. Cluster analysis is the well-known group discovery algorithm. We will experience the basic issues in the prediction task (pattern classification) in forthcoming weeks. Some terms should be defined. Given training data set : ‘n x d’ pattern/data matrix: Fish Lightness Length Weight Width Class Label Fish-1 10 70.3 6.0 36 Salmon Fish-2 10 75.5 8.8 128 Salmon Fish-3 29 51.1 9.4 164 Sea bass Fish-4 36 49.9 8.4 113 Sea bass Given training data set : ‘n x d’ pattern/data matrix: ‘d’ features (attributes, variables, dimensions, fields) Fish Lightness Length Weight Width Class Label Fish-1 10 70.3 6.0 36 Salmon Fish-2 10 75.5 8.8 128 Salmon Fish-3 29 51.1 9.4 164 Sea bass Fish-4 36 49.9 8.4 113 Sea bass ‘n’ patterns (objects, observations, vectors, records) Classification General description • Supervised pattern classification • Labeled training patterns, the groups are known a priori • Constructs rules for classifying new data into the known groups Specific terms • • • • • Pattern=object=observation is represented as a feature vector Distance measure for numeric and categorical data Training set (answer database) and test set (new observation) Prediction performance by accuracy, sensitivity, specificity, … ex) Bayesian classifier, Nearest-neighbor classifier, SVM, NN, LDA, … Each pattern is represented as a feature vector. The training pattern matrix is stored in a file or database. Given labeled training patterns, the class groups are known a priori. We constructs algorithms to classify new data into the known groups. Training data vs. Test data Training data are used as answers. We are learning algorithms using training data. Test data are a set of new unseen data. We predict class labels using the learned algorithm. Training data # of data # of features data index feature-1 feature-2 … feature-N class label data index feature-1 feature-2 … feature-N class label … data index … Feature-1 feature-2 … feature-N Test data # of data # of features data index feature-1 feature-2 … feature-N data index feature-1 feature-2 … feature-N Feature-1 feature-2 … feature-N … data index class label For example, we try to classify the tumor type of breast cancer patients Breast-cancer-training.txt 100 30 Patient-1 165 52 … 210 cancer Patient-2 170 50 … 230 normal … Patient-100 … 160 47 … 250 Breast-cancer-test.txt 10 30 Patient-1 163 55 … 215 Patient-2 155 50 … 240 165 45 … 235 … Patient-10 cancer To evaluate the performance of prediction algorithms, we need a performance measure (Accuracy). Gold Standard (Truth) Prediction Result Positive Negative Positive True Positive False Positive Negative False Negative True Negative Suspicious Patients with Breast Cancer Prediction Result Positive (Cancer) Negative (Normal) Positive (Cancer) True Positive False Positive Negative (Normal) False Negative True Negative Accuracy = (True Positive + True Negative) / (True Positive + False Positive + False Negative + True Negative) Gold Standard (Truth) Prediction Result Positive Negative Positive True Positive False Positive Negative False Negative True Negative Suspicious Patients with Breast Cancer Prediction Result Positive (Cancer) Negative (Normal) Positive (Cancer) 30 5 Negative (Normal) 10 55 Accuracy = (30 + 55) / (30 + 5 + 10 + 55) = 0.85 (85%) References # Textbooks 1) R.O. Duda, et al., “Pattern Classification” 2) S. Theodoridis., “Pattern Recognition” 3) T.M. Mitchell., “Machine Learning” # Advanced Topic: Emotional data mining Personalized music recommendation (Nov.)