* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Lecture Notes - Active Power, Reactive Power, Power Factor and the
Survey
Document related concepts
Transcript
Chapter 11 AC Power Analysis Chapter Objectives: Know the difference between instantaneous power and average power Learn the AC version of maximum power transfer theorem Learn about the concepts of effective or Rms value Learn about the complex power, apparent power and power factor Understand the principle of conservation of AC power Learn about power factor correction Huseyin Bilgekul Eeng224 Circuit Theory II Department of Electrical and Electronic Engineering Eastern Mediterranean University EENG 224 ‹#› An Electical Power Distribution Center EENG 224 ‹#› Apparent Power and Power Factor The Average Power depends on the Rms value of voltage and current and the phase angle between them. P 12 Vm I m cos(v i ) VRms I Rms cos(v i ) The Apparent Power is the product of the Rms value of voltage and current. It is measured in Volt amperes (VA). 1 S Vm I m VRms I Rms 2 The Power Factor (pf) is the cosine of the phase difference between voltage and current. It is also the cosine of the angle of load impedance. The power factor may also be regarded as the ratio of the real power dissipated to the apparent power of the load. P pf cos(v i ) S P Apparent Power Power Factor S pf EENG 224 ‹#› Apparent Power and Power Factor Not all the apparent power is consumed if the circuit is partly reactive. Purely resistive load (R) θv– θi = 0, Pf = 1 P/S = 1, all power are consumed Purely reactive load (L or C) θv– θi = ±90o, pf = 0 P = 0, no real power consumption θv– θi > 0 θv– θi < 0 • Lagging - inductive load • Leading - capacitive load P/S < 1, Part of the apparent power is consumed Resistive and reactive load (R and L/C) EENG 224 ‹#› EENG 224 ‹#› Power equipment are rated using their appparent power in KVA. EENG 224 ‹#› Apparent Power and Power Factor Both have same P Apparent Powers and pf’s are different Generator of the second load is overloaded EENG 224 ‹#› Apparent Power and Power Factor Overloading of the generator of the second load is avoided by applying power factor correction. EENG 224 ‹#› Complex Power The COMPLEX Power S contains all the information pertaining to the power absorbed by a given load. 2 V 1 S VI VRms IRms I 2 Rms Z Rms 2 Z VRms VRms v I Rms I Rms i S VRms I Rms (v i ) VRms I Rms cos(v i ) jVRms I Rms sin(v i ) P jQ Re{S} j Im{S} Real Power+Reactive Power EENG 224 ‹#› Complex Power The REAL Power is the only useful power delivered to the load. The REACTIVE Power represents the energy exchange between the source and reactive part of the load. It is being transferred back and forth between the load and the source The unit of Q is volt-ampere reactive (VAR) S P jQ Re{S} j Im{S} =Real Power+Reactive Power S I 2 Rms Z I 2 Rms ( R jX ) P jQ P=VRms I Rms cos(v i ) Re{S} I 2 Rms R Q=VRms I Rms sin(v i ) Im{S} I 2 Rms X EENG 224 ‹#› Resistive Circuit and Real Power v(t ) Vm sin(t ) i (t ) I m sin(t ) 1 1 p(t ) v(t )i(t ) Vm I m cos( ) 1 cos(2t ) Vm I m sin( ) sin(2t ) 2 2 VRms I Rms cos( ) 1 cos(2t ) VRms I Rms sin( ) sin(2t ) VRms I Rms VRms I Rms cos(2t ) p(t ) is always Positive 0 RESISTIVE EENG 224 ‹#› Inductive Circuit and Reactive Power v(t ) Vm sin(t ) i (t ) I m sin(t ) 1 1 pL (t ) v(t )i (t ) Vm I m cos( ) 1 cos( 2t ) Vm I m sin( ) sin(2t ) 2 2 VRms I Rms cos( ) 1 cos(2t ) VRms I Rms sin( ) sin(2t ) VRms I Rms sin(2t ) 90 INDUCTIVE pL (t ) is equally both positive and negative, power is circulating EENG 224 ‹#› Inductive Circuit and Reactive Power If the average power is zero, and the energy supplied is returned within one cycle, why is a reactive power of any significance? At every instant of time along the power curve that the curve is above the axis (positive), energy must be supplied to the inductor, even though it will be returned during the negative portion of the cycle. This power requirement during the positive portion of the cycle requires that the generating plant provide this energy during that interval, even though this power is not dissipated but simply “borrowed.” The increased power demand during these intervals is a cost factor that must that must be passed on to the industrial consumer. Most larger users of electrical energy pay for the apparent power demand rather than the watts dissipated since the volt-amperes used are sensitive to the reactive power requirement. The closer the power factor of an industrial consumer is to 1, the more efficient is the plant’s operation since it is limiting its use of “borrowed” power. EENG 224 ‹#› Capacitive Circuit and Reactive Power v(t ) Vm sin(t ) i (t ) I m sin(t ) 1 1 pC (t ) v(t )i (t ) Vm I m cos( ) 1 cos(2t ) Vm I m sin( ) sin(2t ) 2 2 VRms I Rms cos( ) 1 cos(2t ) VRms I Rms sin( ) sin(2t ) VRms I Rms sin(2t ) 90 CAPACITIVE pC (t ) is equally both positive and negative, power is circulating EENG 224 ‹#› Complex Power The COMPLEX Power contains all the information pertaining to the power absorbed by a given load. 1 Complex Power=S P jQ VI VRms I Rms ( v i ) 2 Apparent Power=S S VRms I Rms P 2 Q 2 Real Power=P Re{S} S cos( v i ) Reactive Power=Q Im{S} S sin( v i ) P Power Factor= =cos( v i ) S • Real Power is the actual power dissipated by the load. • Reactive Power is a measure of the energy exchange between source and reactive part of the load. EENG 224 ‹#› Power Triangle The COMPLEX Power is represented by the POWER TRIANGLE similar to IMPEDANCE TRIANGLE. Power triangle has four items: P, Q, S and θ. a) Power Triangle b) Impedance Triangle Q0 Q0 Resistive Loads (Unity Pf ) Capacitive Loads (Leading Pf ) Q0 Inductive Loads (Lagging Pf ) Power Triangle EENG 224 ‹#› Power Triangle Finding the total COMPLEX Power of the three loads. PT 100 200 300 600 Watt QT 0 700 1500 800 Var ST 600 j800 1000 53.13 EENG 224 ‹#› Power Triangle S P jQ S1 S2 ( P1 P2 ) j (Q1 Q2 ) EENG 224 ‹#› Real and Reactive Power Formulation EENG 224 ‹#› Real and Reactive Power Formulation EENG 224 ‹#› Real and Reactive Power Formulation EENG 224 ‹#› Real and Reactive Power Formulation v(t ) Vm cos(t v ) i (t ) I m cos(t i ) p(t ) VRms I Rms cos(v i ) 1 cos 2(t v ) VRms I Rmssin(v i ) sin 2(t v ) =P 1 cos 2(t v ) Q sin 2(t v ) =Real Power R eactive Power P is the REAL AVERAGE POWER Q is the maximum value of the circulating power flowing back and forward P Vrms I rms cos Q Vrms I rms sin EENG 224 ‹#› Real and Reactive Powers REAL POWER CIRCULATING POWER EENG 224 ‹#› Real and Reactive Powers • Vrms =100 V Irms =1 A Apparent power = Vrms Irms =100 VA • From p(t) curve, check that power flows from the supply into the load for the entire duration of the cycle! • Also, the average power delivered to the load is 100 W. No Reactive power. EENG 224 ‹#› Real and Reactive Powers Power Flowing Back • Vrms =100 V Irms =1 A Apparent power = Vrms Irms =100 VA • From p(t) curve, power flows from the supply into the load for only a part of the cycle! For a portion of the cycle, power actually flows back to the source from the load! • Also, the average power delivered to the load is 50 W! So, the useful power is less than in Case 1! There is reactive power in the circuit. EENG 224 ‹#› Practice Problem 11.13: The 60 resistor absorbs 240 Watt of average power. Calculate V and the complex power of each branch. What is the total complex power? EENG 224 ‹#› Practice Problem 11.13: The 60 resistor absorbs 240 Watt of average power. Calculate V and the complex power of each branch. What is the total complex power? EENG 224 ‹#› Practice Problem 11.14: Two loads are connected in parallel. Load 1 has 2 kW, pf=0.75 leading and Load 2 has 4 kW, pf=0.95 lagging. Calculate the pf of two loads and the complex power supplied by the source. LOAD 1 2 kW Pf=0.75 Leading LOAD 2 4 kW Pf=0.95 Lagging EENG 224 ‹#› EENG 224 ‹#› Conservation of AC Power The complex, real and reactive power of the sources equal the respective sum of the complex, real and reactive power of the individual loads. a) Loads in Parallel b) Loads in Series For parallel connection: S 1 1 1 1 V I* V (I1* I*2 ) V I1* V I*2 S1 S2 2 2 2 2 Same results can be obtained for a series connection. EENG 224 ‹#› EENG 224 ‹#› EENG 224 ‹#› Complex power is Conserved EENG 224 ‹#›