* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Biodiversity - Infra Eco Network Europe
Survey
Document related concepts
Transcript
TAKING INTO ACCOUNT ENVIRONMENTAL BENEFITS OF URBAN INFRASTRUCTURAL PROJECTS’ VEGETATION IN LIFE CYCLE ASSESSMENT State-of-the-art and perspective approaches Anne de Bortoli Laboratoire Ville Mobilité Transport Ecole des Ponts ParisTech Context : urban projects with vegetation ever more popular An important urban planning trend from the XIXth Century… •Garden city concept, Ebenezer Howard (1898) •Le Corbusier & post World War II => dwelling blocks and abundant greenspaces (Athen’s Charter 1933) •Aalborg charter (1994) •Paris’ vegetalizing program for 2014-2020 => 2 to 46% of urban spaces are green spaces in Answering to an urban dweller demand Europe (Fuller and Gaston 2009) •Strong correlation between urban environmental satifsaction and green spaces proximity (French project EvalPDU’s finding, 2012) •green spaces proximity : a dwelling priority for 70% of French people (IPSOS survey, 2013) •Needs of vegetal proximity : 90% of surveyed people (IPSOS survey, 2013) Barbecue effect (Orfeuil and Soleyret 2002, Nessi 2012) or not (Mufano 2015) 2 What is Life Cycle Assessment ? Standards ISO 14040 & 14044 (indicators) QUANTIFIED environmental IMPACTS on a functional unit ROAD LIFE CYCLE 3 3 Example of the life cycle Assessment of a bus line de Bortoli et al. 2016 4 Life cycle phases of vegetation systems Construction Consumptions : *Engine fuel for excavation *Materials (concrete, granulate, plastics…) *Transport *Water *Etc Use Maintenance (Vegetation growth) End-of-life Green waste Other waste 5 Contribution of each BRT construction batch to the different impact categories de Bortoli et al. 2016 6 Quantifying vegetation benefits in LCA of transportation systems : state-of-the-art Methodology 1. Defining infrastructure project vegetation systems 2. Listing potential qualitative benefits of vegetation 3. Investigating if these effects can be quantified today in LCA 4. Pointing out what LCA indicators must be affected by these effects 5. Giving order of magnitude of the benefits 7 Defining vegetation systems of urban infrastructure project Three main strata of vegetals • Grass (<1,5m) • Bush (0,3m < x < 7m) • Trees (>8m) Project vegetation systems types • On-ground greenery • “Soilless” systems : (tree allay, street tree, hedges, verges, banks, pocket parks, ) • Green roofs (intensive or extensive depending on substrate thickness) • Green walls (ground based or façade-bound) 8 Potential qualitative benefits of vegetation Landscape & visual aspect Purification of water & air Climate change (carbon storage, Vegetal production : food, albedo, ..) Microclimate & urban heat island energy, biomass, … Operation Maintenance Vegetation growth Land use End-of-life Green waste/production Other waste Biodiversity (depending on the scale => network effects) Building thermics Image & city perception … Water retention SUSTRATE (flash flooding, runoff) Urban behavioral patterns (sport, transport) Public health and well-being (social cohesion, stress reduction, …) Environnemental pedagogy Sources :Tratalos et al. 2007, Bolund and Hunhammar 1999 for global overview , Berardi et al 2014 for green roofs 9 Groups of effects towards LCA quantification Carbon sequestration and albedo CLIMATE CHANGE Purification of water & air (ECO-)TOXICITIES EUTROPHICATION Biodiversity Direct LCA indicators BIODIVERSITY 1 (+eutrophication, acidification, climate change, , land use, ecotoxicities…) 3 2 Not ready/suitable for LCA quantification Potential complex LCA inclusion 10 Life Cycle Assessment and impact assessment 11 Groups of effects towards LCA quantification Carbon sequestration Phytoremediation of water & air Biodiversity Direct LCA indicators Microclimate & urban heat island Building thermics CLIMATE CHANGE Landscape & visual aspect (ECO-)TOXICITIES EUTROPHICATION Image & city perception … Environnemental pedagogy Public health and well-being (social BIODIVERSITY 1 (+eutrophication, acidification, climate change, , land use, ecotoxicities…) Water retention Urban behavioral patterns (transport) (flash flooding, runoff) Vegetal production : food, energy, biomass, … 3 2 cohesion, stress reduction, …) Not ready/suitable for LCA quantification Potential complex LCA inclusion • MORE OR LESS EASY TO QUANTIFY • QUESTION OF « AVOIDED IMPACTS » • CONSEQUENTIAL LCA? 12 Conclusion LCA catches ecological and environmental impacts not taken into account in other existing assessment methodologies From a road ecology perspective : • It does not catch local project-scale impacts on biodiversity (fragmentation effects) • But for global environmental pressures than have indirect effects on ecosystems, it is more complete as it includes : • The whole life cycle • The supply chain => LCA IS COMPLEMENTARY TO « CLASSICAL ROAD ECOLOGY APPROACH » AND ENVIRONMENTAL IMPACT STUDIES On a holistic point of view : LCA could reinforce environmental externalities considered in cost-benefit analyses performed on public-funded infrastructures in France 13 Thank you for your attention Thanks to the Vinci-ParisTech chair « ecodesign of buildings and infrastructures » and especially to : • Charlotte Roux (Mines ParisTech, Consequential LCA and carbon storage) • Patrick Stella (AgroParisTech, Building thermics) Any questions? [email protected] 14 Effects with direct LCA indicators : Carbon sequestration Environmental balance depends on : vegetation type (trees, bushes, etc.) ; growth rate ; Management type (Thinning, Clear cutting) ; Wood use (fuel, objects, etc.) ; Potential avoided impacts : wood as fuel avoiding gas or coal? 15 Source: DOE, 1998 Effects with direct LCA indicators : Carbon sequestration Environmental balance depends on : vegetation type (trees, bushes, etc.) ; growth rate ; Management type (Thinning, Clear cutting) ; Wood use (fuel, objects, etc.) ; Potential avoided impacts : wood as fuel avoiding gas or coal? Figure extracted from Matthews et al. 2014 See also : Levasseur et al. 2013, Cherubini et al. 2012 16 Effects with direct LCA indicators : Phytoremediation of water… Water epuration Studies on forest : Krieger 2001 : case of american forests, 77M acres => 8600m3 of quality water Fiquepron, Picard et Toppan 2012 : denitrification European national project LIFE water and forests : launched in 2015, no results yet Studies on grasslands and forests : Puydarrieux et Devaux 2013 : 110m3/ha/year of quality water production Biased : the scale is not the same for infrastructure project vegetation Green roof studies : Versini et al 2014 : water on green roofs would be more polluted than water on standard roofs (=> fertilizing and roof metal residues) Preservation programs for a forest and a drainage basin in the USA => ecosystem services are estimated to be higher than the cost of artificial system to preserve quality water : • in New Jersey (Sterling Forest) : $55M for the forest instead of $160M of filtration system • and Portland (Bull Run drainage basin) : $920k/year (instead of $200M invesment for a treatment plant) 17 Effects with direct LCA indicators : Biodiversity Biodiversity affected by (Millenium Ecosystem Assessment 2005) 1. Modification of terrestrial and aquatic habitats 2. Climate change 3. Pollution 4. Invasive species 5. Overexploitation LCA midpoint indicators related to biodiversity : • Climate change • Eutrophication • Acidification (aquatic and terrestrial) • Eco-toxicities (aquatic (freshwater and marine) and terrestrial) • Land use End point indicator : biodiversity (no distinction between common and rare species) 18 Greenery factor affecting biodiversity and example of systems • Effect of greenery systems depends on : • Size of the system • Diversity of habitats • Diversity of vegetal strata • Connectivity • Soil permeability Trees Noélie Maurel thesis : street trees as a corridor 19 Effects requiring complex inclusion in LCA Building thermics Green walls and roofs provide building insulation and therefore help to decrease buidling energy consumption (e.g., Spala et al., 2008; Castelton et al., 2010; Jaffal et al., 2012; Jim, 2014) This effect sharply depends on initial building insulation Castelton et al., 2010 Other parameters need to be taken into account: local climate, vegetation type and management, etc… Trees : shade trees reduce building energy use (Akbari 2002, Grimmond and Hubble 1996) 20 Effects requiring complex inclusion in LCA Urban water retention Water systems : • are costy, • Are designed for special raining events (« ten-year rain ») => Savings can be done if part of rain water is absorbed and/or released after a time interval Green roofs Versini et al 2014 : modelling of green roofs impact on potential Seine flood (Paris) Graceson et al (and 2 dozens of other references) : water retention depending on substrate (=« growing media ») 21 Effects requiring complex inclusion in LCA Trade production Direct effects FOOD : Whittihghill, Rowe and Cregg 2103 : vegetable production on extensive green roofs BIOMASS : studies in forestry principally (Rantien et al, Madguni et Singh 2013) ENERGY : dry matter for energy (Vidal et al 2010) Indirect effets Fret reduction because of short supply chains (farmers’ markets) Increase in renewable energy production 22 Bibliography 1/3 Akbari, H. 2002. “Shade Trees Reduce Building Energy Use and CO2 Emissions from Power Plants.” Environmental Pollution 116 (March): S119–26. doi:10.1016/S0269-7491(01)00264-0. Berardi, Umberto, AmirHosein GhaffarianHoseini, and Ali GhaffarianHoseini. 2014. “State-of-the-Art Analysis of the Environmental Benefits of Green Roofs.” Applied Energy 115 (February): 411–28. doi:10.1016/j.apenergy.2013.10.047. Bolund, Per, and Sven Hunhammar. 1999. “Ecosystem Services in Urban Areas.” Ecological Economics, 29 edition. Castleton, H.F., V. Stovin, S.B.M. Beck, and J.B. Davison. 2010. “Green Roofs; Building Energy Savings and the Potential for Retrofit.” Energy and Buildings 42 (10): 1582–91. doi:10.1016/j.enbuild.2010.05.004. Cherubini, Francesco, Ryan M Bright, and Anders H Strømman. 2012. “Site-Specific Global Warming Potentials of Biogenic CO 2 for Bioenergy: Contributions from Carbon Fluxes and Albedo Dynamics.” Environmental Research Letters 7 (4): 045902. doi:10.1088/1748-9326/7/4/045902. De Bortoli, Anne, Adélaïde Féraille, and Fabien Leurent. 2016. “Life Cycle Assessment of the Environmental Performance of Urban Transportation Modes: Integrated Methodology with Application to Bus Rapid Transit.” In . Hamburg, Germany. http://dx.doi.org/10.5445/IR/1000051699. Desjardins, Xavier. 2011. “Pour L’atténuation Du Changement Climatique, Quelle Est La Contribution Possible de L’aménagement Du Territoire ?” Cybergeo, March. doi:10.4000/cybergeo.23531. “European Commission - Environment - LIFE Programme.” 2016. Accessed August 30. http://ec.europa.eu/environment/life/. Fiquepron, Julien, and François Charnet. 2013. “Expertise et Synthèse Bibliographique - Effets Des Pratiques Forestières Sur La Qualité Des Eaux.” http://www.life-semeau.eu/sites/www.lifesemeau.eu/files/documents/7.1.3.%20Rapport%20sur%20la%20contribution%20forestiere%20-%20Action%202.2.pdf. Graceson, Abigail, Martin Hare, Jim Monaghan, and Nigel Hall. 2013. “The Water Retention Capabilities of Growing Media for Green Roofs.” Ecological Engineering 61 (December): 328–34. doi:10.1016/j.ecoleng.2013.09.030. Grimmond, Csb, C Souch, and Md Hubble. 1996. “Influence of Tree Cover on Summertime Surface Energy Balance Fluxes, San Gabriel Valley, Los Angeles.” Climate Research 6: 45–57. doi:10.3354/cr006045. Groth, Philip, Rawlings Miller, Nikhil Nadkarni, Marybeth Riley, and Lilly Shoup. 2008. “Quantifying the Greenhouse Gas Benefits of Urban Parks.” The Trust for Public Land. http://cloud.tpl.org/pubs/benefits_greenhouse_gases_and_parks_whitepaper.pdf. Howard, Ebenezer. 1902. Garden Cities of To-Morrow. Second edition of “To-morrow: a peaceful path to real reform.” “ISO 14040:2006 - Environmental Management -- Life Cycle Assessment -- Principles and Framework.” 2006. International Organization for Standardization. Krieger, Douglas. 2001. “Economic Value of Forest Ecosystem Services : A Review.” The Wilderness Society. http://www.cfr.washington.edu/classes.esrm.465/2007/readings/ws_valuation.pdf. 23 Bibliography 2/3 “Le Budget Primitif 2015 - Rapport Budgétaire.” 2015. Mairie de Paris, Direction des finances et des achats. http://budgetprimitif2015.paris.fr/pdf/2015/chiffres_cles.pdf. Levasseur, Annie, Pascal Lesage, Manuele Margni, and Réjean Samson. 2013. “Biogenic Carbon and Temporary Storage Addressed with Dynamic Life Cycle Assessment: Biogenic Carbon and Temporary Storage in LCA.” Journal of Industrial Ecology 17 (1): 117–28. doi:10.1111/j.1530-9290.2012.00503.x. Madguni, Omprakash, and Deep Narayan Singh. 2013. “Potential of Forest Biomass for Energy Conversion.” International Journal of Research in Applied, Natural and Social Sciences 1 (1): 53–58. Matthews, Robert, and et al. 2014. “Review of Literature on Biogenic Carbon and Life Cycle Assessment of Forest Bioenergy Final Task 1 Report, DG ENER Project, ‘Carbon Impacts of Biomass Consumed in the EU.’” The Research Agency of the Forestry Commission. https://ec.europa.eu/energy/sites/ener/files/2014_biomass_forest_research_report_.pdf. Millennium Ecosystem Assessment (Program), ed. 2005. Ecosystems and Human Well-Being: Synthesis. Washington, DC: Island Press. Munafo, Sebastien. 2015. Questioning the Barbecue Effect - Sebastien Munafo. Forum Vies Mobiles. https://vimeo.com/113263403. Nelson, Arthur, and David Allen. 1997. “If You Build Them, Commuters Will Use Them: Association Between Bicycle Facilities and Bicycle Commuting.” Transportation Research Record: Journal of the Transportation Research Board 1578 (January): 79–83. doi:10.3141/1578-10. Nessi, Hélène. 2012. “Incidences Du Contexte Urbain et Du Rapport Au Cadre de Vie Sur La Mobilité de Loisir.” http://www.theses.fr/2012PEST1182. Newman, Peter, and Jeffrey R. Kenworthy. 1999. Sustainability and Cities: Overcoming Automobile Dependence. Washington, D.C: Island Press. Noland, Robert, and Lem Lewinson. 2000. “Induced Travel: A Review of Recent Literature and the Implications for Transportation and Environmental Policy.” Orfeuil, J, and D Soleyret. 2002. “Quelles interactions entre les marchés de la mobilité à courte et à longue distance ?What are the interactions between the short and long-distance travel markets?” Recherche - Transports - Sécurité 76 (October): 208–21. doi:10.1016/S0761-8980(02)00013-4. Puydarrieux, Philippe, and Jérémy Devaux. 2013. “Quelle Évaluation Économique Pour Les Services Écosystémiques Rendus Par Les Prairies En France Métropolitaine ?” NESE n° 37. CENTRE D’ÉTUDES ET DE PROSPECTIVE - SERVICE DE LA STATISTIQUE ET DE LA PROSPECTIVE. http://agreste.agriculture.gouv.fr/IMG/pdf/nese130737A3.pdf. 24 Bibliography 3/3 Rantien, Caroline, and et al. 2009. “Biomasse Forestière, Populicole et Bocagère Disponible Pour L’énergie À L’horizon 2020.” Agence de l’environnment et de la maitrise de l’énergie. Strohbach, Michael W., Eric Arnold, and Dagmar Haase. 2012. “The Carbon Footprint of Urban Green space—A Life Cycle Approach.” Landscape and Urban Planning 104 (2): 220–29. doi:10.1016/j.landurbplan.2011.10.013. Tratalos, Jamie, Richard A. Fuller, Philip H. Warren, Richard G. Davies, and Kevin J. Gaston. 2007. “Urban Form, Biodiversity Potential and Ecosystem Services.” Landscape and Urban Planning 83 (4): 308–17. doi:10.1016/j.landurbplan.2007.05.003. Versini, Pierre-Antoine, Pascal Jouve, David Ramier, Emmanuel Berthier, and Bernard de Gouvello. 2016. “Use of Green Roofs to Solve Storm Water Issues at the Basin Scale – Study in the Hauts-de-Seine County (France).” Urban Water Journal 13 (4): 372–81. doi:10.1080/1573062X.2014.993993. Vidal, C, S Colin, and S Lucas. 2010. “Bois Énergie, Les Forêts Ont de La Ressource... À Mobiliser ! !” 24. L’Inventaire Forestier. Wang, Ting, In-Sung Lee, Alissa Kendall, John Harvey, Eul-Bum Lee, and Changmo Kim. 2012. “Life Cycle Energy Consumption and GHG Emission from Pavement Rehabilitation with Different Rolling Resistance.” Journal of Cleaner Production 33 (September): 86–96. doi:10.1016/j.jclepro.2012.05.001. Whittinghill, Leigh J., D. Bradley Rowe, and Bert M. Cregg. 2013. “Evaluation of Vegetable Production on Extensive Green Roofs.” Agroecology and Sustainable Food Systems 37 (4): 465–84. doi:10.1080/21683565.2012.756847. 25