Download model of synchronous machine

Document related concepts
no text concepts found
Transcript
Synchronous Machines
POWER SYSTEM MODELLING AND CONTROL (EEEN40550)
Prof. Federico Milano
Email: [email protected]
Tel.: 01 716 1844
Room 157a – Engineering & Materials Science Centre
School of Electrical & Electronic Engineering
University College Dublin
Dublin, Ireland
Dublin, 2021
Synchronous Machines - 1
Synchronous Machine Overview
• Generator Overview
• Model of the Synchronous Machine
• Models for Stability Analysis and Control:
◦ Subtransient Model
◦ Transient Model
◦ Electro-Mechanical Model
• Steady-State Model
Dublin, 2021
Synchronous Machines - 2
Generator Components
Steam, Pressure
Fuel
Synchronous
Machine
Torque
Speed Ω
Entropy
Boiler
Valve
V, I
Turbine
Power
Control
field
Primary
Frequency
Control
Governor
voltage
Excitation
Primary
Voltage
Control
AVR
V ref
− Ω
Power set-point
Grid
GEN.
pressure
meas.
Firing
Control
Elec Power
+
− V
+
Control
Center
Ωref
Signals from control
centers, market and AGC
Ω
OEL,
UEL,
PSS, etc,
V
Auxiliary Controllers
Dublin, 2021
Synchronous Machines - 3
3-Phase Synchronous Machines
• Complete dynamic equations of 3-phase synchronous machines
• Characterisation of machine inductances
• Why transforming machine variables?
• Park’s transformation
• Transformed (d-q -0) circuit equations
• Steady-state open circuit operation
Dublin, 2021
Synchronous Machines - 4
Synchronous Machine Types (I)
• Round Rotor
◦ Solid state rotor with (generally) only one pair of poles (Ωn = 3,000 rpm at 50Hz).
This is used in steam or gas turbine groups.
• Salient Pole Rotor
◦ Laminated rotor with several pairs of poles (Ωn 3,000 rpm at 50 Hz). This is
used in big hydro plants coupled with Kaplan’s turbines.
• Permanent Magnet/Brushless Rotor
◦ Mainly used for motors or for “small” generators (∼ 1 MVA). Since there is no need
for brushes, the machine is compact and robust. However, no reactive power
regulation is possible.
Dublin, 2021
Synchronous Machines - 5
Synchronous Machine Scheme
a
ωr
Damper
windings
c
b
Effects of induced currents f
in the rotor core
q2
b
dr
q1
q2
d
d
θr
ar
f
DC Field
a
Dublin, 2021
q1
c
qr
Synchronous Machines - 6
Synchronous Machine Windings
• a − a , b − b , c − c
→ stator windings (ac)
• f − f
→ field winding (dc)
• q1 − q1
→ effect of induced currents in the rotor core
• d − d , q2 − q2
→ damper windings (fictitious!)
Dublin, 2021
Synchronous Machines - 7
Circuit Equations for 3-Phase Machine
• 3 stator coils (a, b, c)
• 2 rotor coils in direct axis:
◦ Field winding
◦ Direct-axis damper
• 1 rotor coil in quadrature (damper)
• The machine is represented by 6 coils
• There is no mutual coupling between the circuits in the direct axis and those in the
quadrature axis
• Rotor-stator and stator-stator inductances are a function of θr
Dublin, 2021
Synchronous Machines - 8
Stator Flux Linkage Equations
ψa = + Laa ia − Lab ib − Lac ic
− Laf if − Lad id1 − Laq iq1
ψb = − Lab ia + Lbb ib − Lbc ic
− Lbf if − Lbd id1 − Lbq iq1
ψc = − Lac ia − Lcb ib + Lcc ic
− Lcf if − Lcd id1 − Lcq iq1
Dublin, 2021
Synchronous Machines - 9

ψa


−lab
laa
  
 ψb  = −lab
  
ψc
−lac

−ψa


lbb
−lcb
−lab
laa



 −ψb  = − −lba



−ψc
−lca
ψs
Dublin, 2021
lbb
−lcb
In Matrix Form
  
ia
laf
−lac
  
 ib  −  lbf
−lbc 
  
lcc
ic
lcf
lad
lbd
lcd
  
ia
−lac
laf
  
 ib  +  lbf
−lbc 
  
lcc
ic
lcf
lad
lbd
lcd
laq

if

 
id1 
lbq 
 
lcq
iq1
laq

if

 
id1 
lbq 
 
lcq
iq1
= − Ls is + Lsr ir
Synchronous Machines - 10
Rotor Flux Linkage Equations
ψf = − Laf ia − Lbf ib − Lcf ic
+ Lf f if + Lf d id1
ψd1 = − Lad ia − Lbd ib − Lcd ic
+ Lf d if + Ldd id1
ψq1 = − Laq ia − Lbq ib − Lcq ic
+ Lqq iq1
Dublin, 2021
Synchronous Machines - 11

ψf


In Matrix Form
  
ia
lf f
lf b lf c
  
 ib  +  ldf
ldb ldc 
  
lqb lqc
ic
0
lf a



ψd1  = − lda



ψq1
lqa
ψr
Dublin, 2021
lf d
ldd
0
0

if

 
id1 
0
 
iq1
lqq
= − Lrs is + Lr ir
Synchronous Machines - 12
Stator Voltage Equations
•
•
•
Dublin, 2021
dψa
− Ra i a
ea = −
dt
dψb
− Rb i b
eb = −
dt
dψc
− Rc i c
ec = −
dt
Synchronous Machines - 13
In Matrix Form

 
 
−ψa
ea
Ra 0

 
 
 eb  = d  −ψb  −  0 Rb
  dt 
 
ec
−ψc
0
0
 
ia
0
 
 ib 
0
 
ic
Rc
d ψ + Rs i s
es =
dt s
Dublin, 2021
Synchronous Machines - 14
Rotor Voltage Equations
•
dψf
+ Rf i f
ef = +
dt
•
ed1
dψd1
=+
+ Rd1 id1
dt
•
eq1 = +
Dublin, 2021
dψq1
+ Rq1 iq1
dt
Synchronous Machines - 15
In Matrix Form

 
 
ψf
ef
Rf
0

 
 
ed1  = d ψd1  +  0 Rd1
  dt 
 
eq1
ψq1
0
0
0

if

 
id1 
0 
 
iq1
Rq1
d ψ + Rr i r
er =
dt r
Dublin, 2021
Synchronous Machines - 16
General Equations in Matrix Form (I)
• Magnetical Equations:
• Electrical Equations
• Where:
ψ = L i
d ψ + R i
e =
dt
T
e = ea , eb , ec , ef , ed1 , eq1
T
i = ia , ib , ic , if , id1 , iq1
T
ψ = −ψa , −ψb , −ψc , ψf , ψd1 , ψq1
Dublin, 2021
Synchronous Machines - 17
General Equations in Matrix Form (II)


lac laf lad laq
−laa lab


 l
−lbb
lbc
lbf lbd lbq 

 ab


 l
lcb
−lcc lcf lcd lcq 

 ca

L =
−lf a −lf b −lf c lf f lf d 0 




−lda −ldb −ldc ldf ldd 0 


0 lqq
−lqa −lqb −lqc 0

−[Ls ]

L =
−[Lrs ]
Dublin, 2021

[Lsr ]

[Lr ]
Synchronous Machines - 18
General Equations in Matrix Form (III)


0
0
0
0
0
−Ra


 0
0
0
0
0 
−Rb




 0
0
0 
0
−Rc 0



R =
 0
0
0 
0
0
Rf




 0
0 
0
0
0 Rd1


0
0
0
0
0
Rq1

[Rs ]

R =
[0]
Dublin, 2021

[0]

[Rr ]
Synchronous Machines - 19
Partitioned Matrix Equations
• Flux Linkage:
• Voltage Equations:
Dublin, 2021
ψs = − Ls is + Lsr ir
ψr = − Lrs is + Lr ir
d ψs + Rs i s
es =
dt
d ψr + Rr i r
er =
dt
Synchronous Machines - 20
Self & Mutual Inductances
• We make the following assumptions:
1. There is no saturation →The system is linear
2. Stator surface is smooth →We ignore the tooth ripple
3. We have a sinusoidally distributed MMF in the air gap. The winding and pole shape
are such that there are no space harmonics. In this case only fundamental
frequency EMF will be induced in the windings at steady-state.
Dublin, 2021
Synchronous Machines - 21
Stator Self Inductance
• For the round rotor, the self inductance is constant i.e. not a function of θr .
Hence:
laa = lbb = lcc = constant
• For the salient pole rotor, there is a constant (average) and a variable part of the self
inductance dependent on θr .
Hence:
laa =laao + laa2 cos(2θr )
lbb
lcc
Dublin, 2021
2π
=laao + laa2 cos(2(θr −
))
3
2π
=laao + laa2 cos(2(θr +
))
3
Synchronous Machines - 22
Stator Self Inductance of Salient Pole Rotors
• Variation of laa (θr ) in arbitrary units:
laa2
laao
0
θr
π
2
π
laa (θr ) = laao + laa2 cos(2θr )
Dublin, 2021
Synchronous Machines - 23
Stator Mutual Inductances (I)
• For the round rotor case, the stator-stator mutual inductances are constant, i.e. not a
function of θr .
Hence:
lab = lbc = lca = labo = constant
• Observe that for symmetry:
lab = lba ,
Dublin, 2021
lbc = lcb ,
lca = lac
Synchronous Machines - 24
Stator Mutual Inductances (II)
• For the salient pole rotor, the stator-stator mutual inductances is a constant plus a
sinusoidal function:
Hence:
lab
=
lbc
=
lca
=
π
))
6
π
labo + lab2 cos(2(θr − ))
2
5π
labo + lab2 cos(2(θr +
))
6
labo + lab2 cos(2(θr +
• Note that the argument of the cosine depends on 2θr , not θr .
Dublin, 2021
Synchronous Machines - 25
Stator Mutual Inductances (II)
• Variation of lab (θr ):
lab
labo
0
θr
π
2
π
lab (θr ) = labo + lab2 cos(2(θr + π6 ))
Dublin, 2021
Synchronous Machines - 26
Mutual Inductance Between Rotor and Stator (I)
• Stator to rotor mutuals vary with rotor position
• d-axis rotor circuits (field and armortisseurs) vary as cos(θr )
• q -axis rotor circuits vary as sin(θr )
• Hence:
laf
Dublin, 2021
=
lbf
=
lcf
=
laf 0 cos(θr )
2π
laf 0 cos(θr −
)
3
2π
laf 0 cos(θr +
)
3
Synchronous Machines - 27
Mutual Inductance Between Rotor and Stator (II)
• Variation of laf (θr ):
laf
laf 0
π
0
θr
2π
laf (θr ) = laf 0 cos θr
Dublin, 2021
Synchronous Machines - 28
Mutual Inductance Between Rotor and Stator (III)
• For the damper winding we have:
lad
=
lbd
=
lcd
=
lad0 cos(θr )
2π
lad0 cos(θr −
)
3
2π
lad0 cos(θr +
)
3
• In the quadrature axis, we have:
Dublin, 2021
laq
=
lbq
=
lcq
=
π
) =
2
2π
)
−laq0 sin(θr −
3
2π
−laq0 sin(θr +
)
3
laq0 cos(θr +
−laq0 sin(θr )
Synchronous Machines - 29
Rotor Self and Mutual Inductances
• For both the round rotor and the salient pole case, rotor self-inductances are all
constant:
lf f
=
lf f 0 =
constant
ldd
=
ldd0 =
constant
lqq
=
lqq0
constant
=
• For both the round and the salient pole rotor mutual inductances are:
lf q
=
ldq
=
0
i.e., there is no mutual coupling between d- and q -axis circuits
• Moreover, we have:
lf d
Dublin, 2021
=
lf d0
=
constant
Synchronous Machines - 30
Inductance Matrices (I)
• Round Rotor:

Ls
laao

=
−labo
−labo
−labo
laao
−labo
−labo


−labo 

laao
• Salient pole rotor:

laao + laa2 cos 2(θr )

π
Ls = 
 −labo − lab2 cos 2(θr + 6 )
−labo − lab2 cos 2(θr + 5π
)
6
Dublin, 2021
−labo − lab2 cos 2(θr + π6 )
laao + laa2 cos 2(θr − 2π
)
3
−labo − lab2 cos 2(θr − π2 )

−labo − lab2 cos 2(θr + 5π
)
6 
−labo − lab2 cos 2(θr − π2 ) 

laao + laa2 cos 2(θr + 2π
)
3
Synchronous Machines - 31
Inductance Matrices (II)
• Rotor-rotor inductances are all constant:

 lf f 0
LR = 
lf d0
0
lf d0
ldd0
0
0


0 

lqq0
• Stator and rotor inductances are the same in the round rotor and salient pole cases.


lad0 cos(θr )
−laq0 sin(θr )
 laf 0 cos(θr )

2π
2π
2π

Lsr = laf 0 cos(θr − 3 ) lad0 cos(θr − 3 ) −laq0 sin(θr − 3 )

2π
2π
)
l
cos(θ
+
)
−l
sin(θ
+
laf 0 cos(θr + 2π
ad0
r
aq0
r
3
3
3 )
• Moreover, due to symmetry: [Lsr ] = [Lrs ]T
Dublin, 2021
Synchronous Machines - 32
Variable Transformation (I)
• Looking at the flux linkage equations, we see a possible transformation:
ψr = − Lrs is + Lr ir
⇓
T  
ia
lad0 cos(θr )
−laq0 sin(θr )
ψf
laf 0 cos(θr )
 
  

ψd1  = laf 0 cos(θr − 2π ) lad0 cos(θr − 2π ) −laq0 sin(θr − 2π )  ib 
 

3
3
3   
2π
2π
ψq1
ic
laf 0 cos(θr + 2π
3 ) lad0 cos(θr + 3 ) −laq0 sin(θr + 3 )
 

if
0
lf f 0 lf d0
 

id1 

+ lf d0 ldd0
0 
 
iq1
0
0
lqq0

Dublin, 2021


Synchronous Machines - 33
Variable Transformation (II)
• The rotor flux linkages are then:
2π
2π
ψf = − laf 0 [ia cos(θr ) + ib cos(θr −
) + ic cos(θr +
)] + lf f 0 if + lf d0 id1
3
3
2π
2π
ψd1 = − lad0 [ia cos(θr ) + ib cos(θr −
) + ic cos(θr +
)] + lf d0 if + ldd0 id1
3
3
2π
2π
ψq1 = − laq0 [ia sin(θr ) + ib sin(θr −
) + ic sin(θr +
)] + lqq0 iq1
3
3
Dublin, 2021
Synchronous Machines - 34
Variable Transformation (III)
• If we define a new variable proportional to:
2π
2π
ia cos(θr ) + ib cos(θr −
) + ic cos(θr +
)
3
3
• then the dependence on θr of the flux linkage could be eliminated from the direct-axis
flux linkage equations.
• Let:
id = K(ia cos(θr ) + ib cos(θr −
2π
2π
) + ic cos(θr +
))
3
3
• id is the direct axis quantity.
Dublin, 2021
Synchronous Machines - 35
Variable Transformation (IV)
• Similarly, if we define a new current proportional to:
2π
2π
−(ia sin(θr ) + ib sin(θr −
) + ic sin(θr +
))
3
3
the dependence on θr is eliminated.
• Let iq = −K(ia sin(θr ) + ib sin(θr −
2π
3 )
+ ic sin(θr +
2π
3 ))
• iq is the quadrature axis quantity.
Dublin, 2021
Synchronous Machines - 36
Zero Sequence Variables
• We have introduced id and iq in place of ia , ib and ic .
• To retain the complete information of a, b, c quantities, we introduce a third variable.
• A possible choice is as follows:
io =
1
(ia + ib + ic )
3
• io is called the zero-sequence current and has no mutual coupling to any circuit on the
d and q axes.
• The zero sequence is null for balanced conditions.
Dublin, 2021
Synchronous Machines - 37
Variable Transformation (V)
• For balanced 3-phase steady-state operation:
ia =IM cos(ωt)
2π
ib =IM cos(ωt −
)
3
2π
ic =IM cos(ωt +
)
3
• Substituting into the expression of id :
3
id = K IM cos(θr − ωt)
2
• Hence the maximum value for id is:
so we select: K = 23
id = K 32 IM
• The constant K is arbitrary, but we choose it to make id and ia numerically equivalent.
Dublin, 2021
Synchronous Machines - 38
Physical Interpretation
• id is a fictitious current that can be interpreted as the instantaneous current in a
winding that is rotating with the rotor and is symmetrical to the direct axis.
• id produces the same MMF on the direct axis as does the 3-phase currents in the real
stator windings.
• iq has the same interpretation but in the quadrature axis.
• io is the homopolar current.
Dublin, 2021
Synchronous Machines - 39
Steady State
• For balanced operation:
id =IM cos(θr − ωt)
iq = −IM sin(θr − ωt)
where ω is the frequency of the current and θr is the angle of the rotor:
θr = ωr t + θr0
• For steady state synchronous speed operation
id =
⇒
ω = ωr , hence:
IM cos θr0
iq = − IM sin θr0
Dublin, 2021
Synchronous Machines - 40
Park’s Transformation
• The transformation we have described is known as
Park’s Transformation
• For example:
3
ψf = − Laf id + Lf f if + Lf d id1
2
3
ψd1 = − Lad id + Lf d if + Ldd id1
2
3
ψq1 = − Laq iq + Lqq iq1
2
Dublin, 2021
Synchronous Machines - 41
Park’s Transformation
• Projecting the phase quantities (abc) onto the (dq0) axis, we obtain:
2
fd = (fa cos θr + fb cos(θr − 120◦ ) + fc cos(θr + 120◦ ))
3
2
fq = − (fa sin θr + fb sin(θr − 120◦ ) + fc sin(θr + 120◦ ))
3
1
fo = (fa + fb + fc )
3
Dublin, 2021
Synchronous Machines - 42
Inverse Park’s Transformation
• The inverse Park’s Transformation (dq0) to (abc) is:
fa = fd cos θr − fq sin θr + fo
fb = fd cos(θr − 120◦ ) − fq sin(θr − 120◦ ) + fo
fc = fd cos(θr + 120◦ ) − fq sin(θr − 120◦ ) + fo
Dublin, 2021
Synchronous Machines - 43
Park’s Transformation Matrix
• In shorthand notation:
 
f d 

fdq = 
 fq  ;
fo
• hence:
fdq
• where:

cos θr
2
P = 
− sin θr
3
1
2
Dublin, 2021
 
 fa 

fs = 
 fb  ;
fc
= P fs
cos(θr − 120◦ )
◦
− sin(θr − 120 )
1
2
cos(θr + 120◦ )


− sin(θr + 120 
◦
1
2
Synchronous Machines - 44
Inverse Park’s Transformation Matrix
• In shorthand notation:
• where:
−1 fs = P
fdq

cos θr
−1 
◦
=
P
cos(θr − 120 )
cos(θr + 120◦ )
Dublin, 2021
− sin θr
1
◦
− sin(θr − 120 )
− sin(θr + 120◦ )


1

1
Synchronous Machines - 45
Alternative Park’s Transformation Matrices
• Sometimes it is required that:
T
P̂ = [P̂ ]−1
• To this aim we can define:

cos θr
2
− sin θr
P̂ =
3
√1
2
◦
cos(θr − 120 )
◦
− sin(θr − 120 )
√1
2
◦
cos(θr + 120 )


− sin(θr + 120 
◦
√1
2
• Using this formulation, the formal expression of instantaneous power is conserved:
P (t) =[Vs ]T [Is ] = [[P̂ ]−1 [Vs ]]T [[P̂ ]−1 [Is ]]
=[Vs ]T {[P̂ ]−1 }T [P̂ ]−1 [Is ] = [Vpq ][Ipq ]
Dublin, 2021
#
Synchronous Machines - 46
Derivatives of the Transformed Variables
• We define the time derivative of the transformed variables:
d
[fs (t)]
dt
d
= [P ] {[P ]−1 [fdq (t)]}
dt
d
d
= {[P ] [P ]−1 }[fdq (t)] + [P ][P ]−1 [fdq (t)]
dt
dt
[P ]
• where [P ][P ]−1 = [I3 ]
Dublin, 2021
Synchronous Machines - 47
Derivatives of the Transformed Variables
d
• and where: [P ] dt
[P ]−1 =

cos θr

2
− sin θr
3
cos(θr −
− sin(θr −
cos(θr +

120◦ )
0
2 
3
ωr 

2
3
0
− 32
0
0
120◦ )


− cos θr
− sin θr


◦

− sin(θr + 120◦ 
 ωr − sin(θr − 120 )
1
◦)
−
sin(θ
+
120
r
2
1
2
1
2
=
120◦ )
0



0

0
=
0

ωr 
1
0

−1 0

0 0

0 0
− cos(θr −
− cos(θr + 120◦ )
=
120◦ )
ωr Pω
where
dθr
= ωr
dt
Dublin, 2021
Synchronous Machines - 48
0


0

0
Derivatives of the Transformed Variables
• Therefore:
d
d
[P ] [fs (t)] = [fdq (t)] + ωr [Pω ][fdq (t)]
dt
dt
• In scalar form:
d
f˙d (t) = fd + ωr fq
dt
d
f˙q (t) = fq − ωr fd
dt
d
f˙o (t) = fo
dt
Dublin, 2021
Synchronous Machines - 49
Rotor Equations

ψf



ψd1  =


ψq1

ef
− 32 Laf

− 3 Lad
 2
0

0
Laf
Lf d
0
Lf d
Ldd
− 32 Laq
0
0
ψf


Rf

 
 
ed1  = d ψd1  +  0
 
  dt 
eq1
ψq1
0
Dublin, 2021

id



0
Rd
0
0
 

0 
 iq 
 
 
0 
  if 
 

Lqq 
i
d1
 
iq1

if

 
 
0
 id1 
iq1
Rq
Synchronous Machines - 50
Stator Equations
• We now transform the stator flux linkages and currents to the (dqo) frame.
 
i
 a
i 
 
 b
 
ψa
 i 
  c
 ψb  = −[LS ][LSR ] 
 
 
 if 
 
ψc
 
id1 
 
iq1
Dublin, 2021
Synchronous Machines - 51
Expanding the Flux Linkage Equations
ψa = −[Laao + Laa2 cos 2θr]ia
π
+[Labo + Laa2 cos 2(θr + )]ib
6
5π
+[Labo + Laa2 cos 2(θr +
)]ic
6
+Laf cos θr if
+Lad cos θr id1
+Laq sin θr iq1
Dublin, 2021
Synchronous Machines - 52
Applying the Inverse Transformation
ψd cos θr − ψq sin θr + ψo =
−[Labo + Laa2 cos 2θr ](id cos θr − iq sin θr + io )
π
2π
2π
+[Labo + Laa2 cos 2(θr + )](id cos(θr −
) − iq sin(θr −
) + io )
6
3
3
5π
2π
2π
+[Labo + Laa2 cos 2(θr +
)](id cos(θr +
) − iq sin(θr +
) + io )
6
3
3
+Laf cos θr if + Lad cos θr id1 − Laq sin θr iq1
Dublin, 2021
Synchronous Machines - 53
Some Identities
• We now use the identities:
2π
2π
cos(θr −
) − cos(θr +
) = − cos θr
3
3
2π
2π
sin(θr −
) − sin(θr +
) = − sin θr
3
3
√
2π
2π
) − cos(θr +
) = 3 sin θr
cos(θr −
3
3
√
2π
2π
sin(θr −
) − sin(θr +
) = − 3 cos θr
3
3
Dublin, 2021
Synchronous Machines - 54
Stator Equations (contd.)
ψd cos θr − ψq sin θr + ψo =
−Laao id cos θr + Laao iq sin θr − Labo id cos θr + Labo iq sin θr
π
2π
5π
2π
−Laa2 id [cos 2θr cos θr − cos 2(θr + ) cos(θr −
) − cos 2(θr +
) cos(θr +
)]
6
3
6
3
π
2π
5π
2π
−Laa2 iq [cos 2θr sin θr − cos 2(θr + ) sin(θr −
) − cos 2(θr +
) sin(θr +
)]
6
3
6
3
+(−Laao + 2Labo )io
+Laf cos θr if + Lad cos θr id1 + Laq sin θr iq1
Dublin, 2021
Synchronous Machines - 55
Stator Equations (contd.)
• The first term in square brackets can be simplified as:
π
2π
5π
2π
) cos(θr −
) − cos 2(θr +
) cos(θr +
)
6
3
6
3
3
3
cos 2θr cos θr + sin 2θr sin θr
2
2
3
=
cos θr
2
cos 2θr cos θr − cos 2(θr +
=
• The second term in square brackets can be simplified as:
π
2π
5π
2π
cos 2θr sin θr − cos 2(θr + ) sin(θr −
) − cos 2(θr +
) sin(θr +
)
6
3
6
3
3
3
cos 2θr sin θr + sin 2θr cos θr
=
2
2
3
= − sin θr
2
Dublin, 2021
Synchronous Machines - 56
Stator Equations (contd.)
• Substituting, we find:
ψd cos θr − ψq sin θr + ψo =
3
[Laf if + Lad id1 − (Laao + Labo + Laa2 )id ] cos θr
2
3
+[−Laq iq1 + (Laao + Labo − Laa2 )iq ] sin θr
2
−(Laao − 2Labo )io
• Equating similar terms in each side, we obtain:
3
ψd = −(Laao + Labo + Laa2 )id + Laf if + Lad id1
2
3
ψq = −(Laao + Labo − Laa2 )iq + Laq iq1
2
ψo = −(Laao − 2Labo )io
Dublin, 2021
Synchronous Machines - 57
Definition of Inductances
• We now define the inductances:
3
Ld =Laao + Labo + Laa2
2
3
Lq =Laao + Labo − Laa2
2
Lo =Laao − 2Labo
• The stator flux linkage equations can be rewritten as:
ψd = −Ld id + Laf if + Lad id1
ψq = −Lq iq + Laq iq1
ψo = −Lo io
Dublin, 2021
Synchronous Machines - 58
Round Rotor Machine
• For round rotor machines:
Laa2 = 0
• Hence, the inductances become:
Ld = Lq = Laao + Labo
and
Lo = Laa2 − 2Labo
• Note that:
Dublin, 2021
L d > Lq > Lo
Synchronous Machines - 59
Stator Voltage Equations
• The transformation is done as follows.
• We begin with the voltage equations:
  
 
ψa
ea
Ra
  
 
 e b  = d  ψb  −  0
  dt   
ec
ψc
0
• We now expand the equation ea =
d
dt ψa
0
Rb
0
 
ia
0
 
 ib 
0
 
ic
Rc
− Ra i a
and use the inverse transformation of variables.
Dublin, 2021
Synchronous Machines - 60
Stator Voltage Equations (contd.)
• This gives:
ed cos θr − eq sin θr + eo
d
(ψd cos θr − ψq sin θr + ψo ) − Ra (id cos θr − iq sin θr + io )
dt
d
d
dψo
= − ωr ψd sin θr + ψd cos θr − ωr ψq cos θr − ψq sin θr +
dt
dt
dt
− Ra (id cos θr − iq sin θr + io )
=
Dublin, 2021
Synchronous Machines - 61
Stator Voltage Equations (contd.)
• Equating similar terms on each side gives:
d
e d = ψd − ω r ψq − Ra i d
dt
d
e q = ψq + ω r ψd − Ra i q
dt
d
e o = ψo − Ra i o
dt
Dublin, 2021
Synchronous Machines - 62
Summary of Transformed Equations - Rotor


id

ψf


− 32 Laf

 
ψd1  = − 3 Lad

  2
ψq1
0



0
0 Lf f
0
0
Lf d
− 32 Laq
0
0


ψf
ef
Rf


 

ed1  = d ψd1  +  0
 
  dt 
eq1
ψq1
0
Dublin, 2021
0
Rd
0
 


 iq 

Lf d
0 

  io 


Ldd
0 
 

 if 
0
Lqq  
id1 
 
iq1
 
if
0
 
 
0
 id1 
iq1
Rq
Synchronous Machines - 63
Summary of Transformed Equations - Stator


id
 

  

i


q
3
3


ψd
0
0
0
−Ld
2 Laf
2 Lad

  
  io 

3
 ψq  =  0



0
0
0
L
−L
q
  
2 aq  

 if 
ψo
0
0
−Lo
0
0
0
 
id1 
 
iq1
 

 
 
 
ψd
−ψq
id
0
ed
Ra 0







 

d
 

 
 
 eq  =
  dt ψq  + ωr  ψd  −  0 Ra 0  iq 
eo
ψo
0
io
0
0 Ra
Dublin, 2021
Synchronous Machines - 64
Mechanical Equations
• Mechanical equations are:
d
θ r = ωr
dt
d
J ωr = Tm − Te
dt
• In the equation above, ωr is the mechanical rotor speed.
If the number of pairs of poles p = 1, mechanical and electrical rotor speeds are
equal.
Otherwise:
ωr,elec = p · ωr
Dublin, 2021
Synchronous Machines - 65
Electrical Torque (I)
• In general, the electrical torque of a machine is given by:
1 T d
Te = −p [I]
[L(θr )][I]
2
dθr
• Imposing the structure of the synchronous machine, we obtain:
 

d
[Is ]
−[Ls ]
[Lsr ]
1 T
T




Te = −p [Is ] [−Ir ]
2
dθr −[Lsr ]T [Lr ]
[Ir ]
• Observe that [Lr ] does not depend on θr . Hence:
p
Te = + {+[Is ]T [Ls,θr ][Is ] + [Is ]T [Lsr,θr ][Ir ] + [Ir ]T [Lsr,θr ]T [Is ]}
2
Dublin, 2021
Synchronous Machines - 66
Electrical Torque (II)
• Observe that, since Te ∈ R:
[Ir ]T [Lsr,θr ]T [Is ] = ([Ir ]T [Lsr,θr ]T [Is ])T
• Moreover:
([Ir ]T [Lsr,θr ]T [Is ])T = [Is ]T [Lsr,θr ][Ir ]
• Finally, we obtain:
p
Te = + [Is ]T [Ls,θr ][Is ] + p[Is ]T [Lsr,θr ][Ir ]
2
Dublin, 2021
Synchronous Machines - 67
Electrical Power and Torque (I)
• The instantaneous 3-phase power output of the stator is:
P (t) = ea ia + eb ib + ec ic
• Substituting in terms of dqo components we have:
P (t) =
3
(ed id + eq iq + 2eo io )
2
• Under balanced conditions:
P (t) =
Dublin, 2021
3
(ed id + eq iq )
2
Synchronous Machines - 68
Electrical Power and Torque (II)
• The electromagnetic torque Te can be determined using:

 e = dψ −ψ ω −R i
d
q r
a d
dt d
 e q = d ψ q + ψd ω r − R a i q
dt
• and substituting ed and eq in P (t):
P (t) =
d
3
[(i
d
2
dt ψd
d
+ iq dt
ψq ) ← Rate of change of armature magnetic energy
+(ψd iq − ψq id )ωr ← Power transferred across the air gap
−(i2d + i2q )Ra ]
Dublin, 2021
← Armature losses
Synchronous Machines - 69
Electrical Power and Torque (III)
• The air-gap torque Te is obtained by dividing the power transferred across the air-gap
by the rotor speed:
Te
=
=
3
ωr
(ψd iq − ψq id )
2
ωr,mec
3
(ψd iq − ψq id )p
2
• where p is the number of pairs of field poles.
Dublin, 2021
Synchronous Machines - 70
Reducing Rotor Quantities to the Stator
• Let’s define
3 Ns
=vj (
)
2 Nj
Nj 1
s
)
ij =ij (
Ns 3
vjs
2
ψjs
=ψj (
3 Ns
)
2 Nj
• where:
◦ j is the index of the j -th rotor winding;
◦ Ns is the number of turns of stator windings; and
◦ Nj is the number of turns of the j -th rotor winding.
Dublin, 2021
Synchronous Machines - 71
Summary of Reduced Equations - Rotor


ψfs


− 32 L̂af

 
ψ s  = − 3 L̂ad
 d1   2
s
ψq1
0

esf


0
3
L̂
2 ff
3
L̂
2 fd
3
L̂
2 fd
3
L̂
2 dd
0
0
0
0
0
0
− 32 L̂aq
ψfs


3
R̂
2 f
 
 

e s  = d  ψ s  +  0
 d1 
dt  d1  
s
esq1
ψq1
0
• where L̂f f =
Dublin, 2021
Ns2
L , L̂dd
Nf2 f f
=
Ns2
2 Ldd
Nd1
0
3
R̂
2 d
0
0

id
 


 iq 
 
0

io 



0 
 s 

i
f


3
L̂


qq
2
isd1 
 
isq1

isf

 
i s 
0 
  d1 
s
3
R̂
i
q
q1
2
etc.
Synchronous Machines - 72
Summary of Reduced Equations - Stator


id
 

  

i


q
3
3


ψd
0
0
0
−Ld
2 L̂af
2 L̂ad

  
  io 

3
 ψq  =  0



L̂
0
0
0
−L
q
  
2 aq   s 
 if 
ψo
0
0
−Lo
0
0
0
s 
id1 
 
isq1
 

 
 
 
ψd
−ψq
id
0
ed
Ra 0







 

d
 

 
 
 eq  =
  dt ψq  + ωr  ψd  −  0 Ra 0  iq 
eo
ψo
0
io
0
0 Ra
Dublin, 2021
Synchronous Machines - 73
Per Unit System for the Stator Quantities
• Es,base = peak value of rated line-to-neutral voltage [V]
• Is,base = peak value of rated line current [A]
• fbase = fn = rated frequency [Hz]
⇒ Derived quantities:
ωn = ωbase = 2πfbase
Zs,base = Zn =
Dublin, 2021
Es,base
Is,base [ω]
ωm,base = ωmn = p1 ωbase
Ls,base = Ln =
Zn
ωn [H]
Synchronous Machines - 74
Other Derived Per Unit Quantities
Es,base
• Flux base: Ψs,base = Ψn = Ls,base Is,base =
[Wb·t]
ωbase
3
Es,base Is,base
√
= Es,base Is,base
• 3-phase power base: Sbase = Sn = 3 √
2
2
2
• Torque base: Tbase
Dublin, 2021
Sn
3
= Tn =
= pΨs,base Is,base
ωmn
2
[VA]
[Nm]
Synchronous Machines - 75
Summary of Per Unit Equations - Rotor



−xaf

 
ψ s  = −xad
 d1  
s
ψq1
0
ψfs


esf

 
es  = 1 d
 d1 
ωn dt
s
eq1
• where xsaf = 32 L̂saf /Ln , etc.
Dublin, 2021
0
0
xsf f
xsf d
0
0
xsf d
xsdd
−xaq
0
0
0

ψfs


rfs
 

ψ s  +  0
 d1  
s
ψq1
0
rfs =
3 R̂f
,
2 Zn
0
s
rd1
0

id
 


 iq 

0 

  io 


0 
 s 

i
f


xsqq  s 
id1 
 
isq1
0

isf

 
i s 
0 
  d1 
s
isq1
rq1
etc.
Synchronous Machines - 76
Summary of Per Unit Equations - Stator


id

ψd


−xd
  
 ψq  =  0
  
ψo
0
0
0
xsaf
xsad
−xq
0
0
0
0
−xo
0
0
 
 
 

ψd
ed
−ψq
ra



 


 e q  = 1 d  ψq  + ω  ψd  −  0
 
  ωn dt  

eo
ψo
0
0
where ω
Dublin, 2021
=
 


 iq 
 
0


i
o


3 s 


x
2 aq   s 
 if 
0
s 
id1 
 
isq1
 
id
0 0
 
 
ra 0 
  iq 
io
0 ro
ωr
ωn
Synchronous Machines - 77
Mechanical Equations in Per Unit (I)
• Torque equation in per unit:
τ e = ψd i q − ψq i d
• Mechanical equation:
⇒
⇒
Dublin, 2021
Tm
=
Tm
Tn
=
τm
=
d
ωr,mec
dt
Te
ωmn d
+J
ω
Tn
Tn dt
2
d
ωmn
τe + J
ω
Tn ωmn dt
Te + J
Synchronous Machines - 78
Mechanical Equations in Per Unit (II)
2
ωmn
Sn is called
• The quantity J
M = start − up time
(observe that Tn · ωmn = Sn )
• It is often defined H = inertia constant as:
2H = M
• hence:
τm = τe + 2H
d
ω
dt
• If considering damping:
τm
Dublin, 2021
d
= τe + D(ω − ωs ) + 2H ω
dt
Synchronous Machines - 79
Leakage Reactance
• Let’s define:
xd = x + xmd
xq = x + xmq
where x is the leakage reactance.
• hence
ψd = −x id + ψmd
ψq = −x iq + ψmq
where:
ψmd = −xmd id + xaf if + xad id1
ψmq = −xmq iq + xaq iq1
• hence: τ = ψd iq − ψq id = ψmd iq − ψmq id
Note that flux leakage does not contribute to the air-gap torque!
Dublin, 2021
Synchronous Machines - 80
Steady-State Conditions
• In steady-state, we put all
d
dt ψj terms to zero
• Therefore all amortisseur currents are zero: id1 = iq1 = 0
• Then:
Dublin, 2021
ed
=
−ωr ψq − ra id
eq
=
ω r ψd − ra i q
esf d
=
rfs d isf
ψd
=
−xd id + xsad isf
ψq
=
−xq iq
ψfs
=
xsf f isf − xsad id
ψd1
=
xsf d isf − xsad id
ψq1
=
−xsaq iq
Synchronous Machines - 81
Steady-state Field Current
• According to the previous equations, the steady-state field current is:
isf
ψd + x d i d
=
xsad
• Then, substituting ψd in terms of ed and iq in terms of ψd and eq :
isf
eq + ra iq + ωxd id
=
ωxsad
• Finally, observing that in steady state ω = ωs = 1 pu, one has:
isf =
Dublin, 2021
e q + ra i q + x d i d
xsad
Synchronous Machines - 82
Phasor Representation (Steady-State)
• Given:
ea =eT cos(ωs t + α)
2π
+ α)
3
2π
ec =eT cos(ωs t +
+ α)
3
eb =eT cos(ωs t −
• Applying the d-q axis transformation, we obtain:
ed =eT cos(ωs t + α − θr )
eq =eT sin(ωs t + α − θr )
where θr
Dublin, 2021
= ωr t + θo , where θr is the angle by which the d axis leads the a phase.
Synchronous Machines - 83
Phasor Representation (II)
• We can define the terminal bus voltage phasor as:
q -axis
ēT = ed + jeq
eq
ēT
where:
ed = eT sin δ
eq = eT cos δ
δ
α−θ
ed
d-axis
where δ is the angle by which the q axis leads the phasor ēT
Dublin, 2021
Synchronous Machines - 84
Phasor Representation (III)
• The terminal current īT is defined as:
īT = id + j iq

 i = i sin(δ + φ)
d
T
 iq = iT cos(δ + φ)
where:
q -axis
ēT
īT
iq
φ
id
Dublin, 2021
d-axis
Synchronous Machines - 85
Example - Park’s Vectors (I)
• Let consider a 3-phase symmetrical, time-invariant linear load:
a
b
c
L
R
n
Dublin, 2021
Synchronous Machines - 86
Example - Park’s Vectors (II)
• Let assume to apply three-phase voltages at the terminals a, b, c.
• The circuit equations, in time domain, are:
Va (t)
=
Vb (t)
=
Vc (t)
=
In (t)
=
dIa (t)
+ RIa (t)
dt
dIb (t)
L
+ RIb (t)
dt
dIc (t)
L
+ RIc (t)
dt
Ia (t) + Ib (t) + Ic (t)
L
• The equations above are always valid.
Dublin, 2021
Synchronous Machines - 87
Example - Park’s Vectors (III)
• We can rewrite circuit equations using Park’s vectors.
• Let define:
V̄p (t)
I¯p (t)
• Then:
V̄p (t) = (
=
Vd (t) + jVq (t)
=
Id (t) + jIq (t)
d
+ jω(t))LI¯p + RI¯p
dt
• Where ω(t) is the speed of the Park’s transformation.
• Note that ω(t) can be any function of time (i.e., it is not necessarily constant).
Dublin, 2021
Synchronous Machines - 88
Example - Park’s Vectors (IV)
• The vector representation can be rewritten as:
Vd (t)
=
Vq (t)
=
dId (t)
− Lω(t)Iq (t) + RId (t)
dt
dIq (t)
+ Lω(t)Id (t) + RIq (t)
L
dt
L
• The equations above are always valid, but incomplete.
Dublin, 2021
Synchronous Machines - 89
Example - Park’s Vectors (V)
• To complete the set of equations, we write the zero component equation:
Vo (t) = L
dIo (t)
+ RIo (t)
dt
• and the current balance:
In (t) = 3Io (t) if we use [P ]
• and
In (t) =
Dublin, 2021
√
3Io (t) if we use [P̂ ]
Synchronous Machines - 90
Example - Park’s Vectors (VI)
• Hence, in Park’s coordinates we have:
Vd (t)
=
Vq (t)
=
Vo (t)
=
In (t)
=
dId (t)
L
− Lω(t)Iq (t) + RId (t)
dt
dIq (t)
L
+ Lω(t)Id (t) + RIq (t)
dt
dIo (t)
L
+ RIo (t)
dt
3Io (t)
• The equations above are always valid.
Dublin, 2021
Synchronous Machines - 91
Example - Park’s Vectors (VII)
• If we assume balanced and symmetrical conditions (In = Io = 0), then the Park’s
vector equation fully describes the three-phase system for any transient condition.
• If we assume also steady-state conditions and that Va , Vb and Vc are symmetric and
√
sinusoidal, then, the Park’s vector coincides, except possibly for a factor 2, with the
well-known phasor representation if the reference speed ω is constant and equal to the
pulsation of the voltages Va , Vb and Vc .
• Hence, in steady-state, absolute values and for ω constant:
V̄p = jωLI¯p + RI¯p
Dublin, 2021
Synchronous Machines - 92
Example - Park’s Vectors (VIII)
• Let rewrite the Park’s vector equations in per unit.
• We use the bases Vn , In and ωn , then:
Vn
Zn =
In
and
Zn
Ln =
ωn
• If ω = ωn , we have:
1 dīp
v̄p (t) =
+ (r + jx)īp
ωn dt
• Using d- and q -axis quantities:
Dublin, 2021
vd (t)
=
vq (t)
=
1 did (t)
x
− xiq (t) + rid (t)
ωn dt
1 diq (t)
+ xid (t) + riq (t)
x
ωn dt
Synchronous Machines - 93
No-load or open circuit conditions
• Let’s go back to the synchronous machine model.
• In open circuit conditions id = iq = 0
• Substituting in steady-state equations:
ψd
=
xsad isf
ψq
=
0
ed
=
0
eq
=
xsad isf
• Therefore the terminal voltage is:
ēT = ed + jeq = jxsad isf
Dublin, 2021
Synchronous Machines - 94
Steady-State Equivalent Circuit
• If saliency is neglected: xd = xq = xs
where xs is defined as synchronous reactance.
• We have:
ēq = ēT + (ra + j xs )īT
where eq
= xsad isα
rα
xs
ēT ∠0
eq ∠δ
Dublin, 2021
Synchronous Machines - 95
Operational Impedances
• Most rotor circuits are short-circuited
• So, voltages are zero (eq1 = ed1 = 0) and currents of short circuited circuits can be
eliminated from the system
• This leads to a formulation of stator equations in an operational form, i.e., transfer
functions
• Hence:
Dublin, 2021
ψd (s)
=
−xd (s)id (s) + Gf (s)vfs (s)
ψq (s)
=
−xq (s)iq (s)
Synchronous Machines - 96
Operational Impedances (II)
• Hence:
xd (s)
Dublin, 2021
=
(1 + sTd )(1 + sTd )
xd
)(1 + sT )
(1 + sTdo
do
xq (s)
=
(1 + sTq )(1 + sTq )
xq
)(1 + sT )
(1 + sTqo
qo
Gf (s)
=
Gs
(1 + sTf )
)(1 + pT )
(1 + pTdo
do
Synchronous Machines - 97
Operational Impedances (III)
• The order of the transfer functions depends on the number of circuits in the rotor
• Definition of time constants:
Dublin, 2021
Tdo
, Tdo
, Tqo
, Tqo
Open circuit time constants
Td , Td , Tq , Tq
Shortcircuit time constants
Tdo
, Tqo
, Td , Tq
Transient time constants
Tdo
, Tqo
, Td , Tq
Sub-transient time constants
Synchronous Machines - 98
Definition of Time Constants
• For example:
Tqo
=
1
s
(x
aq + xmq )
s
ωn rq1
Tdo
=
1
s
(x
af + xmd )
s
ω n rf
=
s
x
x
1
md
af
s
(x
+
)
ad
s
s
ωn rd1
xmd + xaf
Tdo
etc.
Dublin, 2021
Synchronous Machines - 99
Definition of Machine Parameters
• In steady-state:
xd (0) = xd
xd is the d-axis synchronous reactance
• During rapid transients, s → ∞, hence:
T
d Td
xd = xd (∞) = xd Tdo Tdo
xd is the sub-transient d-axis reactance
Dublin, 2021
Synchronous Machines - 100
Definition of Machine Parameters (II)
• If we neglect the damper winding:
xd
T
d
∼
= xd (s) ∼
= xd Tdo
• From the definitions of the machine time constants:
xd
xmd xsaf
= x +
xmd + xsaf
xd is the d-axis transient reactance
• Finally:
xd = x +
Dublin, 2021
xmd xsaf
xmd xsaf xsad1
+ xmd xsad1 + xsaf xsad1
Synchronous Machines - 101
Definition of Machine Parameters (III)
• Similarly we define xq , xq (and xq if we have a second q -axis amortisseur)
◦ Synchronous q -axis reactance xq = xq (0)
•
Tq
xq T qo
◦
Transient q -axis reactance xq
◦
Sub-transient q -axis reactance x
q
Then: xq
= x +
=
=
Tq Tq
xq T T qo qo
xmq xsaq1
xmq +xsaq1 , etc.
• The following inequalities hold:
xd xq > xq xd > xq xd
Tdo
> Td > Tdo
> Td > Tf
Tqo
> Tq > Tqo
> Tq
Dublin, 2021
Synchronous Machines - 102
Typical Values of Standard Parameters
Dublin, 2021
Parameter
Hydro
Thermal
xd
0.6-1.5
1.0-2.3
xq
0.4-1.0
1.0-2.3
xd
0.2-0.5
0.15-0.4
xq
-
0.3-1.0
x
d
0.15-0.35
0.12-0.25
x
q
0.2-0.45
0.12-0.25
Tdo
1.5-9.0 s
3.0-10.0 s
Tqo
-
0.5-2.0 s
Tdo
0.01-0.05 s
0.02-0.05 s
Tqo
0.01-0.09 s
0.02-0.05 s
x
0.1-0.2
0.1-0.2
ra
0.002-0.02
0.0015-0.005
Synchronous Machines - 103
dq -axis models of Synchronous Machines
• We assume the machine is connected to bus h with voltage v̄h = vh ∠θh
• Common equations:
◦ Power injections:
ph
=
v d id + v q iq
qh
=
v q id − v d iq
◦ AC-grid interface:
vd
=
vh sin(δ − θh )
vq
=
vh cos(δ − θh )
◦ Electromagnetic Torque:
τ e = ψd i q − ψq i d
Dublin, 2021
Synchronous Machines - 104
dq -axis models of Synchronous Machines
• Mechanical Equations:
δ̇
=
ω̇
=
ωn (ω − ωs )
1
(τm − τe − D(ω − ωs ))
2H
where:
◦ D is a damping coefficient.
◦ ωn is the base synchronous frequency in rad/s, e.g. 314.16 rad/s at 50 Hz.
◦ τm is the mechanical torque provided by the turbine.
Dublin, 2021
Synchronous Machines - 105
Stator Electrical Equations
• Full dynamic equations:
ψ˙d
ψ˙q
=
ωn (ra id + ωψq + vd )
=
ωn (ra iq − ωψd + vq )
(∗)
• If we consider flux dynamics “fast”: ψ˙d = 0 and ψ˙q = 0, hence:
0
=
ra id + ωψq + vd
0
=
ra iq − ωψd + vq
(∗∗)
• If we assume that speed deviations are small then ω ≈ 1 pu:
Dublin, 2021
0
=
r a i d + ψq + v d
0
=
r a i q − ψd + v q
(∗ ∗ ∗)
Synchronous Machines - 106
Sauer-Pai’s Model (I)
• Common model typically used for simulating US grids:
ėq
=
(−eq − (xd − xd )(id + γd2 ψ̇d ) + vf )/Tdo
ėd
=
(−ed + (xq − xq )(iq + γq2 ψ̇q ))/Tqo
ψ̇d
=
(−ψd + eq − (xd − x )id )/Tdo
ψ̇q
=
(−ψq − ed − (xq − x )iq )/Tqo
• Substituting the expressions of ψ̇d and ψ̇q :
Dublin, 2021
ėq
=
(−eq − (xd − xd )(id − γd2 ψd − (1 − γd1 )id + γd2 eq ) + vf )/Tdo
ėd
=
(−ed + (xq − xq )(iq − γq2 ψq − (1 − γq1 )iq − γd2 ed ))/Tqo
ψ̇d
=
(−ψd + eq − (xd − x )id )/Tdo
ψ̇q
=
(−ψq − ed − (xq − x )iq )/Tqo
Synchronous Machines - 107
Sauer-Pai’s Model (II)
where:
γd1
=
γq1
=
γd2
=
γq2
=
xd − x
xd − x
xq − x
xq − x
xd − xd
1 − γd1
= (xd − x )2
xd − x
xq − xq
1 − γq1
= (xq − x )2
xq − x
and with the algebraic constraints:
Dublin, 2021
0
=
ψd + xd id − γd1 eq − (1 − γd1 )ψd
0
=
ψq + xq iq − γq1 ed − (1 − γq1 )ψq
Synchronous Machines - 108
Marconato’s Model(I)
• An alternative model is the following (used by ENEL, Italian ISO):
ėq
ėd
ėq
ėd
Dublin, 2021
=
=
=
=
(−eq − (xd − xd − γd )id + (1 −
Tdo
TAA
)vf )
Tdo
(−ed + (xq − xq − γq )iq )
Tqo
(−eq + eq − (xd − xd + γd )id +
Tdo
TAA
vf )
Tdo
(−ed + ed + (xq − xq + γq )iq )
Tqo
Synchronous Machines - 109
Marconato’s Model(II)
where:
γd
γq
=
=
xd
Tdo
(x
−
x
d
d)
Tdo xd
xq
Tqo
(x
−
x
q
q)
x
Tqo
q
• and the additional algebraic constraints:
Dublin, 2021
0 =
ψd + xd id − eq
0 =
ψq + xq iq + ed
Synchronous Machines - 110
Marconato’s Model - d-axis equivalent circuit
id
(xd − xd ) + γd
(xd − xd ) − γd
−
+
TAA
1− Td0
+
−
1
sTd0
−
eq
+
+
TAA
Td0
xd
+
−
1
sTd0
eq
− ψd
+
d-axis
vf
Dublin, 2021
Synchronous Machines - 111
Marconato’s Model - q -axis equivalent circuit
q -axis
iq
(xq − xq ) + γq
(xq − xq ) − γq
+
−
Dublin, 2021
1
sTq0
+
ed
+
xq
+
−
1
sTq0
ed
+ −ψq
+
Synchronous Machines - 112
Anderson-Fouad’s Model
• Most common model that can be found in text books:
e˙q =
(−eq − (xd − xd )id + vf )/Tdo
ėd
=
(−ed + (xq − xq )iq )/Tqo
ėq
=
(−eq + eq − (xd − xd )id )/Tdo
ėd
=
(−ed + ed + (xq − xq )iq )/Tqo
• This model can be considered a simplification of the Sauer Pai’s model with:
eq = ψd ,
ed = −ψd ,
γd1 ≈ γq1 ≈ 0,
γd2 ψ̇d ≈ 0,
γq2 ψ̇q ≈ 0,
• This model can also be viewed as a simplification of the Marconato’s model with:
γd = γq = TAA ≈ 0
Dublin, 2021
Synchronous Machines - 113
Simplified Magnetic Equations (I)
• Two d- and one q -axis model
• One d- and two q -axis model
• One d- and one q -axis model
• One d-axis model
• Electromechanical model
• “Classical” model
Dublin, 2021
Synchronous Machines - 114
Two d- and one q -axis model (I)
• Let’s assume Tqo
≈ 0 and xq ≈ xq →ed ≈ 0. Hence:
ėq
=
(−eq − (xd − xd )(id − γd2 ψd − (1 − γd1 )id + γd2 eq ) + vf )/Tdo
ψ̇d
=
(−ψd + eq − (xd − x )id )/Tdo
ψ̇q
=
(−ψq − (xq − x )iq )/Tqo
• Plus the algebraic equations:
Dublin, 2021
0
=
ψd + xd id − γd1 eq − (1 − γd1 )ψd
0
=
ψq + xq iq − (1 − γq1 )ψq
Synchronous Machines - 115
Alternative Two d- and q -axis model
• Using Marconato’s model and imposing Tqo
≈ 0, we obtain:
ėq
=
ėq
=
ėd
=
TAA
)v
)/T
f
do
Tdo
TAA
(−eq + eq − (xd − xd + γd )id + vf )/Tdo
Tdo
(−eq − (xd − xd − γd )id + (1 −
(−ed + (xq − xq )iq )/Tqo
• Plus the algebraic equations:
Dublin, 2021
0
=
vq + ra iq − eq + xd id
0
=
vd + ra id − ed − xq iq
Synchronous Machines - 116
One d- and Two q -axis model
• Let’s assume that: xd ≈ xd ≈ xq , hence we have:
ėq
=
(−eq − (xd − xd )id + vf )/Tdo
ėd
=
(−ed + (xq − xq − γq )iq )/Tqo
ėd
=
(−ed + ed + (xq − xd + γq )iq )/Tqo
• Plus the algebraic equations:
Dublin, 2021
0
=
vq + ra iq − eq + xd id
0
=
vd + ra id − ed − xq iq
Synchronous Machines - 117
One d- and one q -axis model
• If we assume that Tdo
≈ Tqo
≈ 0, then we obtain the so-called two axis model. This
is the model used in most stability studies. We have:
ėq
=
(−eq − (xd − xd )id + vf )/Tdo
ėd
=
(−ed + (xq − xq )iq )/Tqo
• Plus the algebraic equations:
Dublin, 2021
0 =
vq + ra iq − eq + xd id
0 =
vd + ra id − ed − xq iq
Synchronous Machines - 118
One d-axis model
• Further simplifying the machine magnetical equations, we can neglect the dynamic on
≈ 0). We obtain:
the q-axis (Tqo
ėq = (−eq − (xd − xd )id + vf )/Tdo
• Plus the algebraic equations:
Dublin, 2021
0
=
vq + ra iq − eq + xd id
0
=
v d + ra i d − x q i q
Synchronous Machines - 119
Electromechanical model
• A pure electromechanical model neglects all dynamics of magnetical equations. As a
consequence, the field voltage is substituted by a constant eq . Another assumption is
that ω ≈ 1, hence pe ≈ ωTe ≈ Te . We have:
pe = (vq + ra iq )iq + (vd + ra id )id
• Moreover if ra ≈ 0, pe = ph (power injected into the grid at bus h).
• Finally let assume that xq = xd . These assumptions lead to: eq = constant emf
behind the transient reactance ed . We have:
Dublin, 2021
0
=
vq + ra iq − eq + xd id
0
=
vd + ra id − xd iq
Synchronous Machines - 120
Electromechanical (classical) model
• In summary the most simplified dynamic model is the following:
δ̇ = Ωb (ω − 1)
ω̇ = (pm − pe − D(ω − 1))/2H
0 = (vq + ra iq )iq + (vd + ra id )id − pe
0 = vq + ra iq − eq + xd id
0 = vd + ra id − xd iq
0 = vh sin(δ − θh ) − vd
0 = vh cos(δ − θh ) − vq
ph = v d i d + v q i q
qh = v q id − v d iq
Dublin, 2021
Synchronous Machines - 121
Sub-transient Electromechanical Model
• For very fast transients, it may be convenient to assume constant eq and ed .
• Hence:
vd
=
ed − ra id + xq iq
vq
=
eq − ra iq − xd id
• This is an alternative electromechanical model where we define a “constant emf”
behind the sub-transient reactance
• Observe that the so-called classical machine model also assumes that ra ≈ 0 and
D ≈ 0. ⇒ Lossless Model
Dublin, 2021
Synchronous Machines - 122
Comparison of Machine Models of Different Orders
6.a ⇒ (∗ ∗ ∗)
6.d ⇒ (∗∗)
8.a ⇒ (∗)
All models are based on the Sauer-Pai’s model for magnetic equations.
Dublin, 2021
Synchronous Machines - 123
Comparison of Models of Different Types
All simulations are solved using same integration step.
Dublin, 2021
Synchronous Machines - 124
Dynamic Shaft Model (I)
δ̇HP
ω̇HP
= ωn (ωHP −ωs )
= (Tm −DHP (ωHP −ωs )−D12 (ωHP −ωIP )
+KHP (δIP −δHP ))/2HHP
We model the shaft as a
mass-spring system
δ̇IP
ω̇IP
= ωn (ωIP −ωs )
= (−DIP (ωIP −ωs )−D12 (ωIP −ωHP )−D23 (ωIP −ωLP )
+KHP (δHP −δIP )+KIP (δLP −δIP ))/2HIP
δ̇LP
ω̇LP
τm
= ωn (ωLP −ωs )
= (−DLP (ωLP −ωs )−D23 (ωLP −ωIP )−D34 (ωLP −ω)
+KIP (δIP −δLP )+KLP (δ−δLP ))/2HLP
δ̇ = ωn (ω−1)
ω̇ = (−Te −D(ω−ωs )−D34 (ω−ωLP )−D45 (ω−ωEX )
KLP (δLP −δ)+KEX (δEX −δ))/2H
τe
HP
IP
LP
rotor
EX
δ̇EX = ωn (ωEX −ωs )
ω̇EX = (−DEX (ωEX −ωs )−D45 (ωEX −ω)
+KEX (δ−δEX ))/2HEX
Dublin, 2021
Synchronous Machines - 125
Time Domain Simulation using a Dynamic Shaft
Dublin, 2021
Synchronous Machines - 126
Subsynchronous Resonance Model
τm
τe
r
vd + jvq
HP
IP
LP
Rotor
EX


i̇L,d =




 i̇
L,q =
Line Model →

v̇C,d =




 v̇
=
xL
xC
vh ∠θh
+
iL,d + jiL,q
−
h
vC,d + jvC,q
ωn (iL,q + (vd − riL,d − vC,d − vh sin(δ − θh ))/xL )
ωn (−iL,d + (vq − riL,q − vC,q − vh cos(δ − θh ))/xL )
ωn (xC iL,d + vC,q )
ωn (xC iL,q − vC,d )


ψ̇f = ωn (vf − xf if )




 ψ = x i − (x − x )i
f
f f
d
L,d
Generator Model →

ψd = (xd − x )if − xd iL,d




 ψ = −x i
C,q
q
Dublin, 2021
and flux eqs. (*)
q L,q
Synchronous Machines - 127
Time domain simulation with subsynchronous resonance
The resonance model has a frequency ≈
Dublin, 2021
ωn (1 +
xC
xL )
Synchronous Machines - 128
Infinite Bus Model
• Let’s consider the simplified electromechanical equations of the synchronous machine:
δ̇ =ωn (ω − ωs )
ω̇ =
1
(pm − pe (δ))
2H
• A common approximation of network equivalents with “high” energy/power is to
consider the network as a machine with H → ∞ and eq = constant.
• Observe that if H → ∞ then ω̇ → 0, then ω = constant (typically ω = ωs is
assumed).
• Then if ω = ωs ⇒ δ̇ = 0 ⇒ δ = constant ⇒ Phase Reference.
Dublin, 2021
Synchronous Machines - 129
Electromechanical Oscillations
• Let’s consider the One-Machine Infinite-Bus (OMIB) system:
e∠δ
v∠0
xd
xL
xTh
Infinite Bus
• From machine equations we obtain:
p
δ̇ = ωn (ω − ωs )
1
ω̇ = 2H
(pm − pe (δ))
pe
A
B
pm
xeq
π
2
Dublin, 2021
π
pe = xev
sin δ
eq
= xd + xL + xTh
with:
δ
Synchronous Machines - 130
Equilibrium Points of the OMIB
• The OMIB has two equilibrium points:
• Let x = [δ, ω]T , then:
• Assume:
e = v = pm = 1.0 pu
xeq = 0.5 pu
xA = [0.5236, 1]T
xB = [2.6180, 1]T
Dublin, 2021
Synchronous Machines - 131
Stability of the equilibrium points of the OMIB
• Point xA :
Let’s assume a small perturbation ∂δ
>0
Then pe (δA + ∂δ) > pm ⇒ ω̇ < 0 ⇒ ω decreases
⇒ ω < ωA = 1 ⇒ δ̇ < 0 ⇒ δ decreases
A similar conclusion can be drawn if ∂δ < 0
Point xA is a “sink” ⇒ Stable equilibrium point
• Point xB :
Let’s assume a small perturbation ∂δ
>0
Then pe (δB + ∂δ) < pm ⇒ ω̇ > 0 ⇒ ω increases
⇒ ω > ωB = 1 ⇒ δ̇ > 0 ⇒ δ increases
A similar conclusion can be drawn if ∂δ < 0
Point xB is a “source” ⇒ unstable equilibrium point
Dublin, 2021
Synchronous Machines - 132
General Approach to define the stability of E.P.s
• Let’s consider an ODE system:
ẋ = f (x), x ∈ Rn
• Be xo an E.P. of f such that 0 = f (xo )
• Then the solution λ of
det(F x|xo − λI n ) = 0
are the eigenvalues of the system (or characteristic roots)
• F x|xo ≡ As is the system STATE MATRIX.
• I n the identity matrix of order n.
Dublin, 2021
Synchronous Machines - 133
First Lyapunov’s Stability Criteria
• If all {λj } < 0 for j = 1, . . . , n then the E.P. is stable.
• If exists at least one {λj } > 0 for j = 1, . . . , n then the E.P. is unstable.
• If exists at least one {λj } = 0 for j = 1, . . . , n then the stability of the E.P. cannot
be defined ⇒ the E.P. is a bifurcation point.
Dublin, 2021
Synchronous Machines - 134
OMIB Example
• Let’s compute the eigenvalues of the OMIB system with e = v = pm = 1 pu and
xeq = 0.5 pu, H = 8 MWs/MVA and ωn = 314.16 rad/s
• We have:
det(As − λI 2 ) = 0

where
As = 
• For xA ⇒ λ1,2 = ±

0
ωn
1 ev
− 2H
xeq cos δ
0

1 ev
−ωn 2H
xeq cos δA = ±j5.8317 → stable?
• For xB ⇒ λ1,2 = ±5.8317 ⇒ U.E.P.
Dublin, 2021
Synchronous Machines - 135
Effect of Damping
• Point xA leads to {λ1,2 }=0, hence we do not know if the point is stable or not.
• However, let consider the following modification:
1
ω̇ =
(pm − pe (δ) − D(ω − ωs ))
2H
• Hence:

As = 
For D

0
ωn
1 ev
− 2H
xeq cos δ
D
− 2H

> 0 ⇒ λ1,2 = −α ± jβ with α > 0 ⇒ hence xA is a weakly stable
equilibrium point.
Dublin, 2021
Synchronous Machines - 136
Synchronisation of Synchronous Machines
• Let’s assume the two-machine system:
pA
A
A
• pmA − pA = MA dω
dt
pB
B
B
pmB − pB = MB dω
dt
then
pA = A sin δAB + B cos δAB + C
pB = −A sin δAB + B cos δAB + D
where A, B , C and D depend on machine and system parameters:
eA , eB , xdA , xdB , xLine , etc.
• Finally:
Dublin, 2021
dδA
dt
= ωn (ωA − ωs ),
dδB
dt
= ωn (ωB − ωs )
Synchronous Machines - 137
Synchronisation of Synchronous Machines (II)
• If the two machines are synchronous ⇒ ωA = ωB and δAB = δA − δB is constant
⇒ δAB = const
• Scheme of the whole system:
pmA
+
−
eA
pA
δAB
Grid
pB
+
ωn
s
−
eB
−
pmB +
ωA
1
sMA
1
sMB
ωB
• In steady-state the input signals to the integrators must be 0.
Dublin, 2021
Synchronous Machines - 138
Relative motion between machine rotors
• Let’s consider again the two machine system and define:
δAB
=
δA − δB
ωAB
=
ωA − ωB
• Then we can combine the differential equations of the two machines:
dωAB
dt
dδAB
dt
Dublin, 2021
=
pmB − pB
pmA − pA
−
MA
MB
=
ωn (ωA − ωB )
Synchronous Machines - 139
Relative Motion between Machine Rotors (II)
⇒
Expanding the
dωAB
dt equation:
dωAB
dt
MB pmA − MB pA − MA pmB + MA pB
MA MB
MB pmA − MA pmB
MB pA − MA pB
−
MA MB
MA M B
MB pmA − MA pmB + ((MA + MB )pmA − (MA + MB )pmA )
MA MB
−MB pA − MA pB + ((MA + MB )pA − (MA + MB )pB )
MA MB
=
=
⇒
dωAB
dt
=
+
Dublin, 2021
Synchronous Machines - 140
Relative Motion between Machine Rotors (III)
• Let’s define:
MAB
=
pmAB
=
pAB
=
MA MB
MA + MB
pmA − MA (pmA + pmB )/(MA + MB )
MAB
pA − MA (pA + pB )/(MA + MB )
MAB
• Hence we obtain:
dωAB
dt
dδAB
dt
Dublin, 2021
=
pmAB − pAB
MAB
=
ωn ωAB
Synchronous Machines - 141
Relative Motion between Machine Rotors (IV)
• The resulting scheme is as follows:
pmAB +
ωAB
1
sMAB
−
pAB
Grid
δAB
ωn
s
pAB
• We have obtained a system similar to the OMIB
If pmAB = constant, eA and eB are constant,
then the stability can be defined based on δAB .
(The OMIB can be obtained by imposing MB
pmAB
→ ∞)
δ1
Dublin, 2021
δ2
δAB
Synchronous Machines - 142
WSCC 9-bus 3-machine system
WSCC 3−machine, 9−bus system (Copyright 1977)
Example 2.6−2.7, pp. 41−46, Power System Control and Stability, P.M. Anderson and A.A. Fouad
Bus 9
Bus 7
Bus 8
Bus 3
Bus 2
Bus 5
Bus 6
Bus 4
Bus 1
Dublin, 2021
Synchronous Machines - 143
Eigenvalues at the E.P. (no damping)
15
10
Imag
5
0
−5
−10
−15
−1
Dublin, 2021
−0.8
−0.6
−0.4
−0.2
0
Real
0.2
0.4
0.6
0.8
1
Synchronous Machines - 144
Eigenvalues at the E.P. (with damping)
15
10
Imag
5
0
−5
−10
−15
−0.025
−0.02
−0.015
−0.01
−0.005
0
Real
Dublin, 2021
Synchronous Machines - 145
Transient following a fault
12
10
Rotor angles (rad)
8
6
4
δSyn 1
δSyn 2
2
0
δSyn 3
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
time (s)
A fault occurs at bus 7 at t
Dublin, 2021
= 1 and is cleared at t = 1.083 s
Synchronous Machines - 146
Center of Inertia (COI)
• It is useful to refer machine angles and speeds to the center of inertia (COI), which is a
weighted sum of all machine angles and speeds:
δCOI
=
j∈G
ωCOI
=
Hj δ j
j∈G
j∈G
Hj
Hj ω j
j∈G
Hj
where G is the set of generators.
• Machine rotor angle equations are modified as follows:
δ̇ = ωn (ω − ωCOI )
Dublin, 2021
Synchronous Machines - 147
Transient following a fault (with COI)
1.2
δSyn 1
1
δSyn 2
δ
Syn 3
Rotor angles (rad)
0.8
0.6
0.4
0.2
0
−0.2
−0.4
0
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
time (s)
Dublin, 2021
Synchronous Machines - 148
Small Signal Stability of a General System
• In general we have several machines (with their controllers) connected to the grid
(power flow equations).
• The resulting model is:
ẋ
=
f (x, y)
0
=
g(x, y)
where
◦ x ∈ Rn ,
◦ y ∈ Rm ,
◦ f : R(n+m) → Rn , and
◦ g : R(n+m) → Rm .
• The equilibrium point is (x0 , y 0 )
Dublin, 2021
s.t.
0 = f (x0 , y 0 ), 0 = g(x0 , y 0 ).
Synchronous Machines - 149
State Matrix of a General System
• Let’s determine the state matrix As :
  
 
 
Fy
∆ẋ
∆x
∆x
F
 = x
   = Ac  
Gx Gy
0
∆y
∆y
As = F x − F y G−1
y Gx ,
• Let
with Gy non-singular!
D = F y G−1
y Gx
which is often called degradation matrix
• D provides a “measure” of the effect of the grid on the stability of the dynamic system,
i.e., F x (which is generally stable!)
→ ONLY the eigenvalues of As provide information on the stability of the system.
Dublin, 2021
Synchronous Machines - 150