Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
3. 1- Basic systems & Msys Physical A systems &¥=O (conservation surroundings M=dd¥ When : - can 8Q heat ] of produce a mass net moment M about the centre of mass of the system causing rotation : # (w ) I - H={(r×V)8m Where Fluid Mechanics control Volumes const - of Laws angular momentum is added , is of work 8W or system done is . on a the system , system energy DE will also change accordingly SQ -8W DE - - Q w=¥- - Entropy change / & Volume All of heat addition absolute temperature with ¥ ds>_ T: Mass Rate of Flow analysis the this in volume flow chapter discusses Q or mass flow (imaginary ) der Vdtdtcos A) - - t volume t velocity of Integral =/Vin)dAdt f¥ : Q=f(V )dA=SsVndA - n surface Where Vn we the is in the velocity ↳ Vn positive outflow ↳ Vn negative inflow can also constant multiply P and m'=pQ=pAV V: normal volume flow direction by Varying density p or to get mass V: mi=fspN )dA=fspVndA - n flow in in passing through a surface 3. 2- The 3 control main fixed ↳ ↳ moving ↳ general - Bev - ex Outflow inflow : devout =Vou+ dtoutcosooutdt - 3 ways : any fluid C. V. : we momentum, enthalpy change of instantaneous + outflow B in the to system can etc . ) - fcgddB-mpvndtout-fcsddB-mpvndh-in-f.es#mdm' combine have fixed 1- be : inflow dd-tffeuddB-mpdtftfcsddB-mpvcosfdtout-fgdB-mpvcosfdA.in/ = , out - out * transport Reynolds ! fcsddB-mdmi.in dm°=pVndA outflow and inflow to a dd-tfBsys-d-tdf.eu#mPdV)tfcsddB-mp(v.n)dA If , ¥ (f ,u¥mpdV ) fc.g.ddB-mPVCOSO-d.lt : property (energy fcsad-nf.pl/cosO-dAin within - - be with us terms we with pressure Volume let B the force drag =V hdAdt Where If with changing Control in 2. (Bsys) ship fcvddt-mdm-f.eu#-zPdV within change Flow - change Leaving ex V. ndtdt 1. 3. nozzle C. V. Fixed cases : B can ex C. V. Theorem : consider : volumes to Vin d. Aincosoindt = = For Transport C. V. deforming Arbitrary devin Reynolds Dimensional inlets and outlets , we net flow vector single can , simplify dd-tfBsys-dd-tf.eu#mdm)tLddB-m(pAV)ou+-&daB-m(PA- Yin to : we can write Reynolds Transport Theorem as : 3. 3 - For Conservation of Mass : of conservation mass : dd-tfscvpdlltf.se/Vr-n)dA=o If only Scu one - For steady flow f. Aivi ) out RAN We + &(PiAiVi/ in -0 out inflow = Pz Ask =P A. V. tPyAyVy , also know : :{ miout { thin pAV=mi For - : §(Piti Vi)in=&(PiAiVi) outflow inlets /outlets : dimensional §( debt -_ multidimensional inlets and outlets : mics __fcsp( Vin )dA ¥ cross section Incompressible Q=VA Flow volume flow multidimensional Qcs - Pau a given cross - section . : average velocity is : -_¥= Shin)dA When Vau Same for through Scs (Vin )dA The eqn for var passing density is multiplied by : fpdA Mass flow : ( pv )au=¥fp(V - n )dAñPavVav the cross-sectional area we get the correct volume flow . 3.4- Linear Momentum dd-tfmvlsys-EF-ad-tf cvvpdtlt,sup( fcsvpfvr.tn/dA8Fr--dd-t(fcuUpdV)tf Vin)dA One Dimensional Lets denote Mcs - - Momentum with M momentum Sse , Msa Viki Vni Ai ) - - ; For 1- Dimensional : Vp tin )dA flow - - mi ;Vi : {F- dd-tffcuvpd.tl/tKmiiVi)ou+-8(mi-Vi)in - Energy if E- : Energy DE Jt -_e= : Energy with heat and per mass work : df-t-dlfd-dd-F-dd-tffcvepdtltfcsepfv.tn/dA + Q → heat added to by system tw → work done etot-l.int e + kinetic + e system potential te other ↳ chemical nuclear , ↳ etot EV it - ' Three parts Wp Work - us by electrostatic , course = stresses Nst Np ÑV + pressure : fcspfv.tn/dA--fcg done Wv , this work : twpresstwvis.co done in gz of W=Ñ shaft Work + neglect - - - by fest shear / - Viscous stresses : VDA Q-wsnaft-ddt-fcqepdvtfcslepi-PJti.li/dA--O @ steady state . Q-wsnaft-fcsfltY-tgztppfpfri.ir/dA Specific Volume : Enthalpy One : W = tp h=utPW inlet + I outlet with uniform velocities Q-wsnafi-mfhz-h.lt?zNi-V.YtgfZz-Z )) , : magnetic field etc . Bernoulli Velocity and Assumptions → → = . no pressure inverse an relationship : internal friction incompressible const → velocity → laminar flow = Émv ' tmgh ↳ have + PA or tpt.ir?tpt.gh.tP.V.---'-zpV-zY+pV-zghztPeVT incompressible V-i V- tzpvftpgh.tl?- tzpvitpgh.tP Pt zpv2tpgh. : const @ any point ↳ dynamic pressure z ↳ static pressure z Eta : . Equation of 4. 2- Differential From Previous conservation Chapter : J-tfcu-pd.tt/esp(ri-V)dA=O - l down the breaking first f-tfcv-pdt-J-tpsd.lt term : dt= dssdydz It fcv-pdt~ndf-dsrdy.dz Right adjustments f) U =p so / + ¥ ¥ ;=Ut¥r ¥ Mass - - net Conservation U + - ← ( Pu) dsrdydz → continuity equation Tyler)t¥(w)=o djf-tp.PT)=0 ¥ Is / Flux : of Mass a) + : - a Rate of adjustments plea; =p ¥2s did , dog • + miss + left : ¥ U - ¥ss¥ of Mass :