Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Special Right Triangles 45-45-90 EQ: What are the relationships between the sides on a 45 -45-90 triangle? Moody Mathematics Take a square… Moody Mathematics Find its diagonal Here it is Moody Mathematics Find its length x d x Moody Mathematics x x d 2 2 2x d 2 2x d 2 2 2 2 x d x x 2 2 d x 2 d Moody Mathematics Summarize the pattern: Moody Mathematics o o o 45 -45 -90 leg leg 2 leg Moody Mathematics o o o 45 -45 -90 6 6 2 6 Moody Mathematics o o o 45 -45 -90 8 8 2 8 Moody Mathematics o o o 45 -45 -90 5 5 2 5 Moody Mathematics o o o 45 -45 -90 10 10 2 10 Moody Mathematics o o o 45 -45 -90 2 2 2 Moody Mathematics o o o 45 -45 -90 3 2 6 3 2 Moody Mathematics o o o 45 - 45 -90 4 2 4 2 8 Moody Mathematics o o o 45 -45 -90 10 2 20 10 2 Moody Mathematics The legs of 45 45 90 a triangle are equal, the hypotenuse is calculated immediately from the equation c = a√2 . If the hypotenuse value is given, the side length will be equal to a = c√2/2 Special Right Triangles 30-60-90 Triangles EQ: How do I find the lengths of sides of a 30-60-90 triangle Now Let’s take an Equilateral Triangle… Moody Mathematics … Find its Altitude Moody Mathematics 2 x 2 x 2 2 a x 2 2 x 2 2 a x 4 2 2 4x x 2 x xa 4 4 a 2 3x 2 a 4 x 2 x Moody Mathematics a 2 a x2 3 4 a 2 x a x 2 x 3x 2 3x 4 4 x 2 x 3 a 2 Moody Mathematics 2 Summarize the pattern: Moody Mathematics Shorter Leg o o o 30 -60 -90 60 30 Longer leg Moody Mathematics ½ Hyp. o o o 30 -60 -90 60 30 ½ Hyp. 3 Moody Mathematics o o o 30 -60 -90 10 60 20 30 10 3 Moody Mathematics In a 30-60-90 triangle, the ratio of the sides is always in the ratio of 1:√3: 2. This is also known as the 30-60-90 triangle formula for sides. y:y√3:2y. Practice: Moody Mathematics o o o 30 -60 -90 14 60 28 30 14 3 Moody Mathematics o o o 30 -60 -90 8 60 16 30 8 3 Moody Mathematics o o o 30 -60 -90 9 60 18 30 9 3 Moody Mathematics o o o 30 -60 -90 1 60 2 30 3 Moody Mathematics o o o 30 -60 -90 3 60 6 30 3 3 Moody Mathematics o o o 30 -60 -90 7 60 2 7 2 7 30 3 Moody Mathematics o o o 30 -60 -90 2 60 4 30 2 3 Moody Mathematics o o o 30 -60 -90 9 60 2 9 2 9 30 3 Moody Mathematics o o o 30 -60 -90 60 4 3 2 3 30 6 Moody Mathematics o o o 30 -60 -90 60 8 3 4 3 30 12 Moody Mathematics Review Both Patterns: Moody Mathematics o o o 45 -45 -90 leg leg 2 leg Moody Mathematics ½ Hyp. o o o 30 -60 -90 60 30 ½ Hyp. 3 Moody Mathematics Mixed Practice: Moody Mathematics 12 60 24 30 12 3 Moody Mathematics 3 60 6 30 3 3 Moody Mathematics 8 8 2 8 Moody Mathematics 10 10 2 10 Moody Mathematics 1 60 2 30 3 Moody Mathematics 10 10 5 3 10 Moody Mathematics 15 60 30 30 15 3 Moody Mathematics 8 8 8 2 8 8 Moody Mathematics 8 3 30 16 8 60 Moody Mathematics 4 2 4 2 8 Moody Mathematics 3 60 6 30 3 3 Moody Mathematics 15 15 15 2 15 15 Moody Mathematics 60 10 3 5 3 30 15 Moody Mathematics 60 8 3 4 3 30 12 Moody Mathematics 4 2 4 4 Moody Mathematics 2 2 2 Moody Mathematics 18 18 9 3 18 Moody Mathematics