* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download controlo de um dirigível
Three-phase electric power wikipedia , lookup
Electrical ballast wikipedia , lookup
History of electric power transmission wikipedia , lookup
Electrical substation wikipedia , lookup
Control system wikipedia , lookup
Power inverter wikipedia , lookup
Pulse-width modulation wikipedia , lookup
Flip-flop (electronics) wikipedia , lookup
Variable-frequency drive wikipedia , lookup
Power MOSFET wikipedia , lookup
Analog-to-digital converter wikipedia , lookup
Distribution management system wikipedia , lookup
Current source wikipedia , lookup
Stray voltage wikipedia , lookup
Immunity-aware programming wikipedia , lookup
Integrating ADC wikipedia , lookup
Alternating current wikipedia , lookup
Surge protector wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Two-port network wikipedia , lookup
Voltage optimisation wikipedia , lookup
Mains electricity wikipedia , lookup
Power electronics wikipedia , lookup
Voltage regulator wikipedia , lookup
Schmitt trigger wikipedia , lookup
Buck converter wikipedia , lookup
Switched-mode power supply wikipedia , lookup
PROJECTO I EM ENGª ELECTRÓNICA E COMPUTADORES CONTROLO DE UM DIRIGÍVEL JOÃO ALEXANDRE Nº 3408 SÉRGIO ALMEIDA Nº 3594 24 DE OUTUBRO DE 2003 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso ESCOLA SUPERIOR DE TECNOLOGIA DE SETÚBAL INSTITUTO POLITÉCNICO DE SETÚBAL DEPARTAMENTO DE ENGENHARIA ELECTROTÉCNICA CONTROLO DE UM DIRIGÍVEL João Alexandre Sérgio Almeida Projecto para obtenção do Bacharelato em Engª Electrónica e Computadores Outubro de 2003 Instituto Politécnico de Setúbal I Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Projecto realizado sob a orientação do Prof. António Abreu Departamento de Engenharia Electrotécnica Escola Superior de Tecnologia de Setúbal Instituto Politécnico de Setúbal Instituto Politécnico de Setúbal II Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Agradecimentos Em primeiro lugar há que salientar a elevada importância do Prof. António Abreu que apresentou uma “infinita” disponibilidade durante todo o decorrer do projecto, disponibilidade esta que permitiu o esclarecimento de dúvidas que foram surgindo ao longo do tempo. O contributo dos seguintes colegas foi também muito importante para a realização deste projecto. Agradecimentos aos colegas Marco Silva e Rui Pimenta, pelo apoio dado no que diz respeito a fornecimento de material necessário e também pelos conhecimentos úteis. A todos os colegas que realizaram os seus projectos, que contribuíram dando apoio e incentivo. Há que referir a disponibilidade mostrada por um dos funcionários da empresa Balão Balão, no que diz respeito ao fornecimento de Hélio e ao contributo para o aumento de conhecimentos úteis ao projecto. Por último, há que referir o contributo do Sr. Vítor Neves pelos conhecimentos relativamente a uma ferramenta de software que foi utilizada. Instituto Politécnico de Setúbal III Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Resumo Este trabalho tem como objectivo o desenvolvimento de um controlador de um dirigível a hélio, de modo a que este se possa deslocar num ambiente tridimensional. O dirigível é composto por um balão, três motores de corrente contínua e sensores ópticos. Dois dos motores controlam o deslocamento do Balão na horizontal, tendo o outro motor a função de controlar o Balão na vertical. Os sensores determinam a distância do balão aos obstáculos que estejam na direcção do eixo dos sensores. São apresentados os pormenores relativos aos desenvolvimentos realizados (software e hardware) e são mostrados dois exemplos de controlo sobre o balão. O primeiro exemplo assenta num controlo da altitude e o segundo num sistema autónomo simples, denominado Robot Minimalista. Instituto Politécnico de Setúbal IV Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Abstract The purpose of this work is to develop an autonomous system that has ability to fly on a three-dimensional environment. A blimp, three DC motors and optical sensors compose the system. Two motors control the horizontal movements of the system. The third motor controls the system movement in the vertical. The sensors determine the distance between the Blimp and obstacles that are in the sensor axis direction. All details regarding the development of the project (software and hardware) are shown, as are two examples of control over the blimp. The first example shows an altitude control of the blimp and the second is based on a very simple autonomous system, called Robot Minimalista. Instituto Politécnico de Setúbal V Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Palavras Chave Sensor Controlo Dirigível Motor Hélio Estabilidade Instituto Politécnico de Setúbal VI Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Keywords Sensor Control Blimp Motor Helium Stability Instituto Politécnico de Setúbal VII Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Índice 1. Introdução ................................................................................................................... 1 1.1 Abordagem Genérica .......................................................................................... 1 1.2 Organização do Relatório do Projecto ................................................................ 2 2. Dirigível ...................................................................................................................... 3 2.1 Aquisição do Dirigível........................................................................................ 3 2.2 Características do Dirigível................................................................................. 3 2.2.1 Motores ....................................................................................................... 4 2.2.1.1 Motores de corrente contínua.................................................................. 4 2.2.1.2 Motores do Balão.................................................................................... 5 2.2.2 Cockpit........................................................................................................ 6 2.2.3 Balão ........................................................................................................... 7 2.2.3.1 Tipos de Balões....................................................................................... 7 2.2.3.2 Calculo do peso suportado pelo Balão utilizado..................................... 7 2.2.3.3 Estabilidade do Balão ........................................................................... 10 2.2.3.3.1 Testes efectuados ............................................................................ 11 2.2.3.3.2 Resultados ....................................................................................... 11 3. Hardware Desenvolvido............................................................................................ 14 3.1. Controlo de Motores ......................................................................................... 14 3.1.1 PWM ......................................................................................................... 14 3.1.2 Controlo do sentido de rotação ................................................................. 15 3.1.3 Ponte em H................................................................................................ 16 3.1.4 CPLD ........................................................................................................ 17 3.2 SENSORES....................................................................................................... 17 3.2.1 SENSOR DE MEDIÇÃO DE DISTÂNCIAS .......................................... 17 3.2.1.1. Caracterização do Sensor.................................................................. 18 3.3. ADCs................................................................................................................. 19 3.4. FOTOTRANSÍSTORES................................................................................... 22 3.5. LDRs ................................................................................................................. 24 3.6. ALIMENTAÇÃO ............................................................................................. 26 4. Experiências.............................................................................................................. 27 4.1. Controlo de Altitude ......................................................................................... 27 4.1.1 Controlo em malha fechada ...................................................................... 27 4.1.1.1. Acção proporcional........................................................................... 28 4.1.1.2. Acção Integral................................................................................... 29 4.1.1.3. Acção Derivativa .............................................................................. 30 4.1.2 Software de Controlo ................................................................................ 31 4.1.3 Resultados ................................................................................................. 32 4.2 Robot Minimalista ............................................................................................ 39 5.1 Conclusões ........................................................................................................ 43 5.2 Futuros desenvolvimentos ................................................................................ 44 Referências Bibliográficas ................................................................................................ 45 Instituto Politécnico de Setúbal VIII Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Lista de Figuras Figura 2. 1 - Cockpit do Dirigível....................................................................................... 3 Figura 2. 2- Caracterização da rotação de um motor corrente contínua ............................. 5 Figura 2. 3 – Hélice de um dos motores do Dirigível......................................................... 6 Figura 2. 4 – Desenho do Balão em AutoCad .................................................................... 8 Figura 2. 5 - Calculo do volume do Balão .......................................................................... 8 Figura 2. 6 - Forças que actuam sobre o Dirigível............................................................ 10 Figura 2. 7 - Balão com fios.............................................................................................. 11 Figura 2. 8 – Gráfico da altitude do balão com fios lançado abaixo do PE...................... 12 Figura 2. 9 – Gráfico da altitude do balão com fios lançado acima do PE....................... 12 Figura 3. 1 - Circuito PWM .............................................................................................. 15 Figura 3. 2 - Circuito descodificador ............................................................................... 15 Figura 3. 3 - Ponte H......................................................................................................... 16 Figura 3. 4 - Sensor de infravermelhos............................................................................. 18 Figura 3. 5 - Caracterização do sensor relativamente a objectos de diferentes cores....... 18 Figura 3. 6 – Tipo de ADCs quanto ao Interface.............................................................. 19 Figura 3. 7 – Resposta Característica do ADC ................................................................. 20 Figura 3. 8 – Ciclo de conversão do ADC (MAX1112) ................................................... 21 Figura 3. 9 – Fototransistor............................................................................................... 22 Figura 3. 10 - Resposta do fototransistor face às diferentes cores.................................... 22 Figura 3. 11 - Circuito implementado para o Fototransistor............................................. 23 Figura 3. 12 - LDR............................................................................................................ 24 Figura 3. 13 - Ligação do LDR......................................................................................... 24 Figura 3. 14 - Circuito implementado para medir a tensão no LDR................................. 25 Figura 3. 15 - Bateria (Idêntica à utilizada) ...................................................................... 26 Figura 4. 1 - Controlo proporcional .................................................................................. 28 Figura 4. 2 - Controlo Integral .......................................................................................... 29 Figura 4. 3 - Controlo Derivativo ..................................................................................... 30 Figura 4. 4 – Janela do Software realizado ....................................................................... 31 Figura 4. 5 - Controlo proporcional com Kp = 5 .............................................................. 32 Figura 4. 6 - Controlo proporcional com Kp = 10 ............................................................ 32 Figura 4. 7 - Controlo proporcional com Kp = 15 ............................................................ 33 Figura 4. 8 - - Controlo proporcional com Kp = 20......................................................... 33 Figura 4. 9 - Controlo Pd com Kd = 5 .............................................................................. 34 Figura 4. 10 - Controlo Pd com Kd = 7 ............................................................................ 34 Figura 4. 11 - Controlo Pd com Kd = 9 ............................................................................ 35 Figura 4. 12 - Controlo Pi com Ki = 1 .............................................................................. 36 Figura 4. 13 - Controlo Pi com Ki = 2 .............................................................................. 36 Figura 4. 14 - Controlo Pi com Ki = 3 .............................................................................. 37 Figura 4. 15 – Gráfico de altitude do balão com fios........................................................ 38 Figura 4. 16 – Gráfico de altitude do balão com fios passado uma hora.......................... 38 Figura 4. 17 – Cockpit do Dirigível com os LDRs e o Fototransistor acoplados ............. 39 Figura 4. 18 – Sinal à saída do circuito do PWM para um nível de luminosidade inferior ao valor de referencia................................................................................ 40 Instituto Politécnico de Setúbal IX Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Figura 4. 19 – Foco de luz a incidir sobre o LDR do lado direito do cokpit do balão...... 41 Figura 4. 20 – Foco de luz a incidir sobre o Fototransistor .............................................. 42 Instituto Politécnico de Setúbal X Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Lista de Tabelas Tabela 4. 1 – Peso de todos os componentes utilizados no Robot Minimalista ............... 42 Instituto Politécnico de Setúbal XI Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Lista de Abreviaturas ADC Conversor Analógico Digital CPLD Circuito de Lógica Programável LDR Resistência Variável com a Luz (Light Dependent Resistor) PWM Modulação em Largura de Pulso (Pulse Width Modulation) P Controlador Proporcional PD Controlador Proporcional-Derivativo PI Controlador Proporcional-Integral DC Corrente contínua (Direct current) Instituto Politécnico de Setúbal XII Escola Superior de Tecnologia de Setúbal 1. Projecto Final de Curso Introdução Este capítulo encontra-se divido em duas partes. A primeira é relativa à caracterização do projecto, que passa primeiro por uma abordagem genérica à área em que o projecto se engloba, e por último, na particularização do sistema em questão, mostrando as possíveis aplicações que um projecto com estas características poderá ter. Na segunda parte é feita uma descrição da organização do relatório, nomeadamente o conteúdo geral de cada um dos capítulos. 1.1 Abordagem Genérica A robótica é uma área de investigação que tem despertado desde há muito tempo o interesse de muitas empresas. Tem-se como exemplo a empresa japonesa Honda, que desde algumas décadas tem vindo a desenvolver vários protótipos de robots terrestres. Robots estes que têm como objectivo parecerem-se o mais possível com um ser humano, no que diz respeito à forma e locomoção. No entanto, quando se fala de robótica aérea, a situação já é diferente. A investigação nesta vertente da robótica não se encontra tão desenvolvida. Como robots aéreos podem-se ter aviões, helicópteros e balões. As diferenças entre estes residem na sua constituição, o que requer tipos de controlo diferente. No caso dos aviões existe a necessidade de se atingir uma determinada velocidade, de modo a que o efeito aerodinâmico de sustentação funcione e o avião permaneça no ar. Com efeito, quando isso não acontece, o avião perde sustentação, podendo despenhar-se. Por seu turno, no helicóptero existe a possibilidade de o poder estabilizar num dado ponto, i.e., ter-se velocidade de deslocamento nula. Isto é possível devido à disposição dos motores. Por ultimo têm-se os balões. A sustentação de um balão no ar é garantida pelo composto químico que é utilizado para encher o mesmo. O balão é considerado o robot aéreo mais estável por não necessitar da actuação de motores para se sustentar no ar. Instituto Politécnico de Setúbal 1 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso De referir duas das principais aplicações que os robots aéreos podem ter. A primeira aplicação refere-se a uma possível utilização em funções de entretenimento. A outra aplicação diz respeito à utilização em sistemas de vigilância (incêndios e aplicações militares). Neste documento relata-se o projecto do controlo de um balão a hélio com aproximadamente 120 litros de capacidade, adquirido recentemente pelo Departamento de Engenharia Electrotécnica da Escola Superior de Tecnologia de Setúbal do Instituto Politécnico de Setúbal. É descrito o projecto do controlo dos motores, baseado em microcontrolador, e são descritos os sensores utilizados. São ainda relatadas duas experiências de controlo com objectivos diferentes. Numa faz-se o controlo da posição em altitude, recorrendo a controladores P, PI e PD. Na outra descreve-se um sistema simples em que os sensores são ligados directamente aos motores. Em ambas as situações são realizadas experiências e discutidos os resultados. O balão revelou-se um sistema difícil de controlar, dado ser muito leve, ou seja, é muito sensível a interferências externas e praticamente não ser influenciado pelo atrito, ou seja, pequenos movimentos demoram muito tempo a desaparecer. 1.2 Organização do Relatório do Projecto Este projecto encontra-se organizado em cinco capítulos: • No capítulo 2 caracteriza-se o Dirigível utilizado. • No capítulo 3 descreve-se o hardware desenvolvido. • No capítulo 4 vão ser descritas as experiências e discutidos os resultados obtidos. • Por fim, no capítulo 5 apresentam-se as conclusões do trabalho desenvolvido e as perspectivas de trabalho futuro. Instituto Politécnico de Setúbal 2 Escola Superior de Tecnologia de Setúbal 2. Projecto Final de Curso Dirigível Este capítulo irá assentar inicialmente numa introdução relativamente à obtenção do dirigível, sendo posteriormente descritos todos os elementos que o constituem. 2.1 Aquisição do Dirigível De modo a realizar o projecto, foi necessário primeiro que tudo obter um balão e motores. Como tal foram realizadas inúmeras pesquisas na Internet com vista a este fim. Em Portugal os resultados da pesquisa foram praticamente nulos. Como tal optou-se por adquirir um dirigível a uma empresa sediada no estrangeiro, mais propriamente no Canadá. 2.2 Características do Dirigível A opção da compra de um dirigível foi uma mais valia em relação a uma possível compra de um balão e dos motores à parte. A mais valia reside no facto de o dirigível já trazer uma estrutura que suporta os motores e um cockpit que permite colocar uma possível electrónica e alimentação. Na Figura 2.1 pode ver-se a estrutura que suporta os motores e o cockpit do dirigível. Figura 2. 1 - Cockpit do Dirigível Instituto Politécnico de Setúbal 3 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso O dirigível adquirido é constituído por um pacote que engloba um balão, um cockpit que suporta os três motores, uma placa PCB com a electrónica de controlo dos motores e um comando de radio frequência para comandar o dirigível. Deste pacote foi aproveitado apenas o balão, o cockpit e respectivos motores. A possível utilização do modulo de RF que o balão trazia foi posta de lado devido a este ser Unidireccional. 2.2.1 Motores Nesta secção irá ser realizada uma introdução relativamente aos motores de corrente contínua, para depois ser feita uma caracterização dos motores utilizados no Dirigível. 2.2.1.1 Motores de corrente contínua Todos os motores eléctricos valem-se dos princípios do electromagnetismo, mediante os quais condutores situados num campo magnético e atravessados por correntes eléctricas sofrem a acção de uma força mecânica, por exemplo, electroímans exercem forças de atracção ou repulsão sobre outros materiais magnéticos. Na verdade, um campo magnético pode exercer força sobre cargas eléctricas em movimento. Como uma corrente eléctrica é um fluxo de cargas eléctricas em movimento num condutor, conclui-se que todo condutor percorrido por uma corrente eléctrica, imerso num campo magnético, pode sofrer a acção de uma força. Num motor há dois electroímans em que um impulsiona o outro. O electroíman tem algumas vantagens sobre um íman permanente: • Podemos torná-lo mais forte. • O seu magnetismo pode ser criado ou suprimido. • Os seus pólos podem ser invertidos. Instituto Politécnico de Setúbal 4 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Figura 2. 2- Caracterização da rotação de um motor corrente contínua Um íman permanente tem os pólos norte e sul definidos. Um electroíman também os tem mas a característica de cada pólo (norte ou sul) depende do sentido da corrente eléctrica. Quando se altera o sentido da corrente, a posição dos pólos também se altera, do norte para o sul e de sul para norte. Um dos electroímans de um motor tem uma posição fixa; está ligado à armação externa do motor e é chamado rotor . O outro electroíman está colocado no eixo de rotação e tem o nome de estator. Quando se liga o motor, a corrente chega à bobina do campo, determinando os pólos norte e sul. Há, também, o fornecimento de corrente ao íman da armadura, o que determina a situação norte ou sul dos seus pólos. Os pólos opostos dos dois electroímans atraem-se, como acontece nos imanes permanentes. O íman da armadura, tendo movimento livre, gira, a fim de que o seu pólo norte se aproxime do pólo sul do íman do campo e o seu pólo sul do pólo norte do outro. Se nada mais acontecesse, o motor pararia completamente. Um pouco antes de se encontrarem os pólos opostos, no entanto, a corrente é invertida no electroíman da armadura, (com o uso de um comutador) invertendo, assim a posição de seus pólos; o norte passa a ser o que está próximo ao norte do campo e o sul passa a ser o que está próximo ao sul do campo (Figura 2.1). Eles então repelem-se e o motor continua em movimento. Esse é o princípio de funcionamento do motor de corrente contínua. 2.2.1.2 Motores do Balão Como foi referido anteriormente, o Dirigível é constituído por 3 motores (Figura 2.1). Os motores são de corrente contínua e apresentam um tamanho e peso reduzidos. Na extremidade do eixo de cada um dos motores encontra-se acoplada uma hélice (Figura 2.3) que tem como função fazer deslocar o ar e assim movimentar o balão. Instituto Politécnico de Setúbal 5 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Figura 2. 3 – Hélice de um dos motores do Dirigível Têm-se as seguintes características dos motores: • A velocidade dos motores é máxima para um valor próximo dos 3 Volts; • Para a velocidade máxima tem-se que o valor da corrente consumida ronda os 200mA para cada um dos motores; • Os motores rodam nos dois sentidos; para mudar o sentido de rotação basta mudar a polaridade da alimentação. 2.2.2 Cockpit O cockpit do balão apresenta um formato aerodinâmico e tem como função suportar os motores. Outra possível função do cokpit pode ser o sustento de alguma electrónica e uma possível bateria. Os dois motores laterais encontram-se suportados por uma haste que se encontra ligada ao cockpit. O outro motor encontra-se na parte detrás do Cockpit. O cockpit é feito de plástico, permitindo assim que seja o mais leve possível. A haste por outro lado é feita de um metal que apresenta alguma rigidez. Instituto Politécnico de Setúbal 6 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso 2.2.3 Balão Nesta secção faz-se uma introdução relativamente a balões, sendo posteriormente calculado o peso suportado pelo balão utilizado e analisada a estabilidade do mesmo. 2.2.3.1 Tipos de Balões Como materiais mais conhecidos para a construção de balões tem-se o látex e o foil. O látex é um material mais resistente que o foil mas que apresenta uma maior permeabilidade ao hélio ou hidrogénio. Por um lado, a resistência do balão é uma mais valia, pois permite que o balão aguente uma maior pressão relativamente aos balões de foil. Todavia a permeabilidade é uma grande desvantagem. Como tal, o dirigível utilizado é constituído por um balão de foil. O balão utilizado apresenta uma forma aproximada de um elipsoide. 2.2.3.2 Calculo do peso suportado pelo Balão utilizado Tendo em vista que o sistema controlador irá ser suportado pelo balão, calculou-se o peso máximo que este é capaz de sustentar. De salientar que só através da obtenção desse peso se poderá saber a quantidade de electrónica a utilizar. Para calcular o peso máximo suportado pelo balão começou-se por calcular o volume. Puseram-se várias hipóteses para o cálculo do volume. Uma das hipóteses seria emergir o balão dentro de um depósito com água e verificar a diferença de nível antes e após emergir o balão. Esta hipótese foi posta de lado devido à diferença de pressões (água e hélio) ser muito grande. A técnica utilizada para calcular o volume do balão assentou na utilização de uma ferramenta que permite desenhar sólidos tridimensionalmente, permitindo posteriormente calcular o volume dos mesmos. A ferramenta utilizada foi o programa AutoCad, versão 2004. Instituto Politécnico de Setúbal 7 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Figura 2. 4 – Desenho do Balão em AutoCad Antes de se começar a utilizar o programa AutoCad, tiraram-se as medidas necessárias para a realização do desenho do balão, de modo a ficar o mais idêntico possível ao modelo original. Seguidamente, desenhou-se o balão (Figura 2.4) e por último cálculouse o volume, recorrendo a uma das muitas funcionalidades do programa (Figura 2.5). Figura 2. 5 - Calculo do volume do Balão Instituto Politécnico de Setúbal 8 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Como se pode observar o volume do balão anda na ordem dos 119,7 dm ³. De notar que o cálculo do peso máximo que o balão suporta foi efectuado com base nas características do composto químico utilizado para encher o balão. O composto químico utilizado foi o elemento He (Hélio). O hélio é obtido unicamente a partir de algumas explorações de gás natural, pelo que o seu custo é elevado. As principais fontes encontram-se nos EUA, Rússia e Argélia. O hélio é um gás nobre, incolor, inodoro, inerte e com uma densidade inferior à do ar, o que lhe confere o poder de elevação. Por cada metro cúbico de hélio irá obter-se um poder de elevação de aproximadamente 1Kg em condições normais, sendo de levar em conta que a variação das condições atmosféricas implica alterações. Como variáveis atmosféricas que afectam as propriedades do balão tem-se a humidade relativa, a temperatura e a pressão. Condições que favoreçam um aumento do volume de Hélio no interior do Balão podem ocasionar uma sobrepressão que pode colocar em causa a integridade dos utilizadores. Também a situação contraria pode originar situações de risco. Alem do hélio também se pode utilizar Hidrogénio, mas dado que se trata de um gás inflamável, a sua utilização neste tipo de aplicações é normalmente não aconselhada, carecendo o seu uso de um parecer especializado. Como foi descrito, o hélio puro é muito raro, sendo o seu preço em Portugal muito elevado. O seu uso é muito restrito. Apenas as estações meteorológicas o adquirem para uso. Não havendo assim a possibilidade de comprar hélio puro, a opção tomada foi adquirir hélio a uma empresa que vende outros compostos gasosos, tais como azoto e o hidrogénio. Como tal alugou-se uma botija de hélio de modo a poder encher o balão sempre que necessário. Através de informações dadas por um empregado da empresa, a botija adquirida contém cerca de 70% de hélio, sendo os outros 30% compostos mais densos. Instituto Politécnico de Setúbal 9 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Através de uma regra de três simples, cálculou-se o peso real suportado pelo balão. 119.7 g ----------- 100% X ----------- 65% X = 78 g Finalmente chegou-se à conclusão que o balão suporta aproximadamente 78 gramas. Subtraindo 40 gramas (cockpit, motores e estrutura que suporta os mesmos) fica-se com 38 gramas, para suportar o hardware a implementar. 2.2.3.3 Estabilidade do Balão Por estabilidade do balão entende-se um determinado intervalo de tempo onde o balão se encontra parado. Essa estabilidade vai ser garantida pela anulação de duas forças com sentidos opostos (Figura 2.6). a força gravítica (P) e a impulsão (I). Essa força é garantida pela quantidade de hélio que se encontra dentro do balão. Figura 2. 6 - Forças que actuam sobre o Dirigível Instituto Politécnico de Setúbal 10 Escola Superior de Tecnologia de Setúbal 2.2.3.3.1 Projecto Final de Curso Testes efectuados Foram feitos alguns testes referentes à estabilidade do Dirigível em duas situações distintas; em ambas é necessário adicionar peso para que o balão fique parado. A primeira situação diz respeito ao balão, no seu estado original e na segunda situação são colocados fios eléctricos (que conduzirão sinais eléctricos) como se pode ver na Figura 2.7. Outro dos testes realizados pretende avaliar a influência causada pelos fios no balão. Figura 2. 7 - Balão com fios 2.2.3.3.2 Resultados No primeiro teste sentiu-se uma grande dificuldade em estabilizar o balão, devido a que este é suficientemente sensível ao acrescento de algumas miligramas. Adicionalmente o balão tem fugas de hélio com o passar do tempo, através das zonas de junção (zonas de soldadura do foil). Essas fugas alteram substancialmente as características do balão, o que torna difícil o estabilizar do balão. Instituto Politécnico de Setúbal 11 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Para o segundo caso a situação é diferente, pois o arco formado pelos fios vai fazer com que haja um auto- ajuste entre o peso do balão e a sua impulsão, que vai fazer com que haja estabilidade num determinado ponto denominado ponto de estabilidade ou PE. 1 0,9 0,8 0,7 0,6 Amostra 1 0,5 Amostra 2 Amostra 3 0,4 0,3 0,2 0,1 521 501 481 461 441 421 401 381 361 341 321 301 281 261 241 221 201 181 161 141 121 81 101 61 41 1 21 0 Figura 2. 8 – Gráfico da altitude do balão com fios lançado abaixo do PE 1,1 1 0,9 0,8 0,7 Amostra 1 Amostra 2 Amostra 3 0,6 0,5 0,4 0,3 0,2 0,1 426 409 392 375 358 341 324 307 290 273 256 239 222 205 188 171 154 137 120 103 86 69 52 35 1 18 0 Figura 2. 9 – Gráfico da altitude do balão com fios lançado acima do PE Instituto Politécnico de Setúbal 12 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Como se pode analisar pelas figuras 2.8 e 2.9, o balão com fios vai andar em torno de PE. Outra conclusão é que o balão não vai exercer a mesma força quando estiver acima do ponto de estabilidade ou abaixo, devido à influência dos fios. Quando o balão está acima do ponto de estabilidade o gráfico apresenta um comportamento quase estável, ou seja, vai ter um tempo de estabelecimento rápido; já quando o balão estiver abaixo do ponto de estabilidade, o balão vai ter um comportamento muito mais instável e um menor tempo de estabelecimento. As conclusões que se podem tirar é que os fios no balão vão interferir bastante com o balão, seja devido ao seu peso ou devido à sua rigidez. O fio é assim um factor de complexidade no balão. Instituto Politécnico de Setúbal 13 Escola Superior de Tecnologia de Setúbal 3. Projecto Final de Curso Hardware Desenvolvido 3.1. Controlo de Motores Entende- se como controlo dos motores o controlo da velocidade e sentido de rotação dos mesmos. 3.1.1 PWM Para controlar a velocidade de rotação dos motores será necessário controlar a tensão que se aplica aos terminais dos mesmos. A velocidade de rotação será imposta através da utilização de PWMs (Modulação em largura de Pulso). Este tipo de modulação tem por base manter a amplitude do pulso variando a sua largura, mas mantendo a frequência permitindo assim que a velocidade de rotação dos motores varie segundo o pulso que é transmitido aos mesmos. Basicamente o que está a ser feito é ligar e desligar a alimentação do motor, permitindo assim que esta varie entre 0 e o seu máximo. Na experiência referente ao Controlo da Altitude os PWMs foram implementados através de um contador e um comparador de 4 bits (Figura 3.1). De notar que também se podia ter implementado os PWMs recorrendo ao microcontrolador, através dos contadores. Mas como são necessários 3 PWMs e o microcontrolador (89C51) só tem 2 contadores, foi posta de parte esta hipótese. No caso do trabalho referente ao Robô Minimalista foi utilizado um circuito integrado já com a função de PWM (GL494), em que as características se encontram em anexo. Instituto Politécnico de Setúbal 14 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Figura 3. 1 - Circuito PWM 3.1.2 Controlo do sentido de rotação Para controlo do sentido de rotação dos motores do balão vai utilizar-se um descodificador de 1 bit (Figura 3.2), cuja implementação é feita através de duas portas AND e uma NOT. Figura 3. 2 - Circuito descodificador Instituto Politécnico de Setúbal 15 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso 3.1.3 Ponte em H Uma solução para comandar os motores a partir de sinais lógicas (de baixa energia) é a utilização de um transístor, mas esta solução não permite mudar o sentido de rotação dos motores. A solução encontrada foi a utilização de uma ponte H. Esta montagem permite que se possa mudar o sentido de rotação. Outra vantagem é que permite separar a tensão de alimentação do circuito com a tensão de alimentação dos motores. Podia-se ter implementado o circuito da Figura 3.3 mas optou-se por utilizar um circuito integrado com as mesmas características (L293E) cujas características podem-se ver nos anexos . Figura 3. 3 - Ponte H Instituto Politécnico de Setúbal 16 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso 3.1.4 CPLD Outro dos problemas encontrados na implementação da lógica de controlo dos motores foi o elevado número de bits necessários para o controlo dos mesmos, já que, para cada motor seriam necessários 5 bits (4 bits de controlo de velocidade e 1 bit de controlo do sentido de rotação), ter-se-ia um total de 15 bits. Como tal, para resolver este problema optou-se por uma implementação de uma interface série através da utilização de um registo de 15 bits. Tendo assim necessidade da utilização de apenas 2 bits: 1 bit para os dados e outro bit (Clk) para o controlo dos mesmos. Para que a implementação de todo o circuito de controlo não se tornasse muito extensa no que diz respeito ao número de integrados, optou-se por utilizar um circuito de lógica programável, nomeadamente uma CPLD (XC9536PC44). 3.2 SENSORES Os sensores são os elementos chave de qualquer sistema de robótica. Estes providenciam o único método de medida das condições envolventes do meio. Os sensores podem medir vários tipos de informação, tal como a intensidade da luz, a temperatura, a pressão, etc. A informação mais importante para um sistema de robótica móvel é a sua proximidade em relação aos objectos. Esta informação é vital para o sistema cumprir as tarefas de navegação evitando os objectos. 3.2.1 SENSOR DE MEDIÇÃO DE DISTÂNCIAS O sensor de distância que se utilizou foi o sensor de infravermelhos. Os critérios que levaram à escolha deste sensor foram as distâncias que este podia medir. Este mede distancias que vão desde 20cm a 150cm. Outro dos critérios que favoreceram a escolha do sensor foi o seu baixo consumo de corrente e a pouca influência à cor dos objectos. O sensor utilizado para a medição de distâncias foi o sensor da marca SHARP com o modelo GP2Y0A02YK (Figura 3.4). Instituto Politécnico de Setúbal 17 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Figura 3. 4 - Sensor de infravermelhos A técnica de medição utilizada pelo sensor GP2. é denominada por triangulação. Neste processo, uma luz é emitida pelo sensor, sendo reflectida pelo seu alvo para por ultimo ser recebida novamente pelo sensor. Existem três pontos envolvidos, o emissor, o ponto de reflexão e o receptor. A disposição dos pontos formam um triângulo, daí o seu nome. 3.2.1.1. Caracterização do Sensor Tensão (Volts) Distância do Sensor a um objecto 3 2,75 2,5 2,25 2 1,75 1,5 1,25 1 0,75 0,5 0,25 0 Folha branca Caderno cinzento Caderno vermelho Plastico preto 2 6 10 14 18 30 50 70 90 110 130 150 Distância (cm) Figura 3. 5 - Caracterização do sensor relativamente a objectos de diferentes cores Como se pode ver pela análise da Figura 3.5 o sensor vai ter pouca influência à cor. Um dos problemas deste sensor é que a partir de uma determinada distância o sensor repetirá os valores de outras distâncias, ou seja, vai ter dois valores iguais de saída para distâncias diferentes. Logo, optou-se não utilizar o sensor para distâncias inferiores a 20 cm. Instituto Politécnico de Setúbal 18 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso 3.3. ADCs Hoje em dia exige-se frequentemente que os dados extraídos num sistema físico sejam convertidos na forma digital. Normalmente estes dados aparecem sob a forma analógica de natureza eléctrica. Surge portanto a necessidade de um dispositivo que converta a informação analógica na forma digital. Foram inventados vários dispositivos deste tipo. Os 4 sistemas mais conhecidos são: 1 - ADC de contagem 2 - ADC de aproximações sucessivas 3 - ADC de comparadores em paralelo ou Flash 4 - ADC de dupla rampa. O ADC é um componente com uma entrada analógica e uma saída digital de n bits. Em relação ao Interface pode-se ter ADCs Série ou Paralelo (Figura 3.6). Figura 3. 6 – Tipo de ADCs quanto ao Interface Instituto Politécnico de Setúbal 19 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso O ADC apresenta um número binário na saída que corresponde ao valor da tensão de entrada (Figura 3.7). Figura 3. 7 – Resposta Característica do ADC Tem-se que: • O número de bits na saída, n, denomina-se número de bits do ADC. • O número de intervalos de quantificação é • A resolução do conversor, R, é definida da seguinte forma: R= 2n AMax 2n AMAX − Gama de tensão de entrada do ADC n – Número de bits do ADC O último parâmetro associado aos ADCs é a sua velocidade de operação. Devido a não ser exigida uma grande velocidade de operação, nem uma resolução muito elevada, no optou-se por utilizar o MAX1112 que tem as seguintes características: • ADC de Aproximações Sucessivas; • Número de bits = 8; • Interface Série; • Número de Canais = 8; Instituto Politécnico de Setúbal 20 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Resolução do ADC utilizado: R= 4.096 = 0,016V 28 De notar que se optou por um ADC de interface série, apenas com o intuito de se utilizar menos linhas de dados para realizar a interface. A escolha do ADC de 8 canais assentou em possíveis melhorias que se possam fazer ao projecto, nomeadamente um acréscimo de sensores. O ADC utilizado requer 4 pinos para Controlo e um pino para Dados. Para realizar a interface entre o ADC e o microcontrolador definiram-se 5 pinos de um dos portos do Microcontrolador para realizar o controlo. Como pinos de controlo do ADC tem-se o CS, SCLK, DIN, SSTRB. O pino de Dados é designado por DOUT. Na Figura 3.8 pode ver-se o diagrama temporal de um ciclo de conversão do ADC. Figura 3. 8 – Ciclo de conversão do ADC (MAX1112) O pino DIN é utilizado para programar o ADC. Este pino tem as seguintes funções: • permite escolher se a tensão de referência é interna ou externa; • o canal do ADC que se pretende ler; • o tipo de conversão (unipolar ou bipolar); • o tipo de Clock (interno ou externo). Instituto Politécnico de Setúbal 21 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso 3.4. FOTOTRANSÍSTORES Figura 3. 9 – Fototransistor De seguida irão ser descritas algumas das características principais dos fototransístores: • Resposta Espectral A saída de um fototransistor depende do comprimento de onda da luz incidente. Estes componentes respondem a uma luz que se encontre num intervalo de comprimento de onda caracterizado pelos UVs (ultravioletas), passando pela luz visível, acabando nos IR (infravermelhos). Figura 3. 10 - Resposta do fototransistor face às diferentes cores Como se pode observar na Figura 3.10, os fototransístores tanto respondem a luz fluorescente como a luz incandescente, mas o seu comportamento é tanto mais perfeito quando é estimulado por uma luz IR (infravermelha). • Sensibilidade Para um dado nível de iluminação de uma fonte de luz, a saída de um fototransístor é definida pela área da junção colector-base e pelo ganho em corrente DC do transístor. Instituto Politécnico de Setúbal 22 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso A junção colector-base do fototransístor funciona como um foto-díodo, que cria uma foto-corrente que é alimentada na secção da base do transístor. Esta corrente (Ip) depois é amplificada pelo ganho de corrente do transístor. No caso onde não é aplicada externamente nenhuma corrente na base, tem- se: IC = hFE (IP) onde: IC – Corrente no colector hFE – Ganho em corrente dc IP – Foto-corrente A Figura seguinte ilustra o circuito Prático utilizado para a implementação do Fototransistor: Figura 3. 11 - Circuito implementado para o Fototransistor Instituto Politécnico de Setúbal 23 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso 3.5. LDRs Figura 3. 12 - LDR Como o próprio nome indica, as LDRs (Light dependent resistors) são resistências variáveis com a luz visível. Como se pode observar na Figura 3.12, a LDR é composto por uma linha em zigzag de cor castanha. De acordo com o nível de luz que incide nessa linha, a resistência aumenta ou decresce. A resistência das LDRs tem o seu valor máximo para situações em que esta se encontra no escuro e tem o seu valor mínimo para ocasiões de muita claridade. A situação descrita caracteriza uma LDR denominada LDR de coeficiente negativo. Caso o comportamento seja inverso a LDR denomina-se de coeficiente positivo. De modo a usar este dispositivo num circuito simples, inicialmente começou-se por usar um multímetro de modo a medir a corrente que circula no LDR. No entanto, a medição de corrente não se tornou muito útil. Como tal, colocou-se uma resistência em série com a LDR, e mediu-se a tensão na LDR. Com esta montagem realizou-se um divisor de tensão, sendo a tensão no LDR proporcional à corrente. As figuras que se seguem mostram o conceito descrito. Figura 3. 13 - Ligação do LDR Instituto Politécnico de Setúbal 24 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Como se pode observar na Figura 3.13, a corrente é proporcional à resistência do LDR. Figura 3. 14 - Circuito implementado para medir a tensão no LDR Sendo assim, tem- se que: VLDR = RLDR V RLDR + R Tendo em conta que R utilizado anda na ordem das centenas de Ω e o valor máximo da resistência no LDR é da ordem das dezenas de MΩ, tem-se RLDR _ MAX RLDR _ MAX + R ≈ 1 => V LDR ≈ V . De acordo com a análise feita ao circuito da Figura 3.14, tem-se que para zonas de muita claridade a tensão V LDR é máxima , sendo praticamente nula para zonas escuras. Instituto Politécnico de Setúbal 25 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso 3.6. ALIMENTAÇÃO Figura 3. 15 - Bateria (Idêntica à utilizada) Não foram realizados testes práticos no que diz respeito a possíveis baterias que satisfizessem as necessidades do sistema. No entanto, foi feita uma consulta que se baseou nos vários tipos de baterias existentes no mercado e que assentou nas relações entre os seguintes termos: • Energia fornecida (mAh) • Tensão fornecida (Volts) • Peso da bateria (gramas) As baterias NiMH e as baterias NiCd apresentam algumas semelhanças. No entanto as primeiras apresentam algumas vantagens. As vantagens são a energia fornecida e o tempo de vida. No entanto ambas apresentam uma desvantagem que diz respeito à relação peso/ energia. Sendo a tensão mínima necessária para o sistema funcionar aproximadamente 3,8V, ir-se-ia necessitar logicamente de uma bateria com um valor maior ou igual a este. O problema surge em adquirir uma bateria com esta tensão, com uma capacidade que satisfaça as necessidades do sistema e com um peso máximo de 20g. Devido ao baixo peso permitido para a alimentação recorreu-se ao uso de uma bateria de Li-Ion que apresenta as características pretendidas e que foi fácil adquirir A bateria utilizada é uma bateria de um telemóvel com as seguintes características: − Tensão Nominal = 3,6V; − Capacidade na ordem dos 820mAh; − Peso = 18g. Instituto Politécnico de Setúbal 26 Escola Superior de Tecnologia de Setúbal 4. Projecto Final de Curso Experiências 4.1. Controlo de Altitude A experiência consiste em estabilizar o balão a uma dada distância do tecto (PP), utilizando um sensor de distancia colocado no topo do balão e apontando para o tecto. A experiência reporta resultados com um controlador proporcional (P) e um controlador proporcional-derivativo (PD). Esta experiência começa com uma apresentação teórica deste tipo de controlo. 4.1.1 Controlo em malha fechada Um controlador em malha fechada e um dispositivo que realiza determinados cálculos de modo a conduzir o sistema para uma situação desejada. Uma medida do afastamento entre a saída actual (r) do sistema e a situação desejada (d) e avaliada através de e=r-d, que se denomina o erro da saída. O controlador avalia então o valor a aplicar ao sistema (neste caso os motores) de modo a que este estabilize na posição desejada. A saída do controlador denomina-se acção de controlo. Existem três tipos de acções de controlo: − Acção proporcional − Acção integral − Acção derivativa Com a combinação destas acções podemos gerar um sinal de controlo, que se pode chamar por controlo PID, que é genericamente representado por : t 1 de(t ) u (t ) = Kpe(t ) + ∫ e(τ )dτ + Td Ti 0 dt Instituto Politécnico de Setúbal 27 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso 4.1.1.1. Acção proporcional Na acção proporcional o sinal de controlo vai ser proporcional à amplitude do valor do erro. u (t ) = Kp × e(t ) e(t ) = d − r (t ) ,onde, Kp – ganho constante e(t) – diferença entre a distância final e a distância actual d – distância pretendida entre o sensor e a parede que se deve encontrar no final deste controlo Ps(t) – distância medida entre o sensor e o tecto Esta acção consiste essencialmente num amplificador com ganho ajustável. Sensor Sentido do controlo u(t)<0 e(t) < 0 PE e(t) > 0 Sentido do controlo u(t) > 0 Sensor Figura 4. 1 - Controlo proporcional Note-se que, quanto maior o ganho Kp menor o erro em regime permanente, isto é, melhor a precisão do sistema em malha fechada. Este erro pode ser diminuído com o aumento do ganho, entretanto nunca conseguiremos anular completamente o erro. Por outro lado, quanto maior o ganho, mais oscilatório tende a ficar o comportamento transitório do sistema em malha fechada. Na maioria dos processos físicos, o aumento excessivo do ganho proporcional pode levar o sistema a instabilidade. Instituto Politécnico de Setúbal 28 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso 4.1.1.2. Acção Integral Na acção Integral o valor de controlo depende do integral do erro. 1 e(t )dt Ti ∫ Ti (tempo integral) é o tempo necessário para que a contribuição da acção integral iguale a da acção proporcional, onde : u (t ) = Ki = 1 Ti A acção integral tem assim uma função "armazenadora de energia". A acção integral está então directamente ligada à melhoria da precisão do sistema. Se, por um lado, a acção integral elimina o erro estacionário, por outro, aumenta o tempo de estabelecimento e piora a estabilidade relativa, o que usualmente é indesejável. Como consequência, o ganho da acção proporcional deve ser reduzido, sempre que esta esteja combinada com a acção integral. Figura 4. 2 - Controlo Integral Instituto Politécnico de Setúbal 29 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso 4.1.1.3. Acção Derivativa Na acção Derivativa o sinal de controlo depende da taxa de variação do erro. u (t ) = Td de(t ) dt Td (tempo derivativo) é o período de tempo antecipado pela acção relativamente à acção proporcional. Este tipo de controlo tem justamente a função de "antecipar" a acção de controlo a fim de o processo reaja mais rapidamente A adição do modo derivativo ao modo proporcional resulta num controlador altamente sensível, uma vez que o primeiro, ao responder a uma taxa de variação do erro, permite correcções antes deste ser elevado. Não obstante o modo derivativo não afectar directamente o erro estacionário, adiciona amortecimento ao sistema (melhora a estabilidade) e assim permite o uso de valores de Kp mais elevados, o que implica um menor erro estacionário. Um inconveniente deste modo é o de acentuar o ruído de alta frequência. Figura 4. 3 - Controlo Derivativo Logo a forma final do PID será dada por: de(t ) u (t ) = Kp × e(t ) + Ki × ∫ (e(t )dt ) + Kd × dt Instituto Politécnico de Setúbal 30 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso 4.1.2 Software de Controlo De modo a realizar o controlo do dirigível, foi desenvolvida uma aplicação em Visual Basic, cujo código é apresentado em ANEXOS (ANEXOS 1). Esta aplicação é constituída apenas por uma janela (Figura xx) que apresenta as seguintes funções: • Iniciar e terminar o processo de controlo; • Visualizar os valores do sensor; • Visualizar a velocidade do motor; • Ajustar os ganhos (Kp, Kd e Ki). Figura 4. 4 – Janela do Software realizado Instituto Politécnico de Setúbal 31 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso 4.1.3 Resultados Os testes efectuados para cada controlador vão ter como ponto de referência o ponto de estabilidade do balão. O primeiro teste consiste em variar o ganho da constante proporcional anular os restantes ganhos, ou seja, implementa-se, controlo proporcional (P). 0,9 0,8 0,7 0,6 0,5 Amostra 1 Amostra 2 0,4 0,3 0,2 0,1 507 485 463 441 419 397 375 353 331 309 287 265 243 221 199 177 155 133 89 111 67 45 1 23 0 Figura 4. 5 - Controlo proporcional com Kp = 5 0,9 0,8 0,7 0,6 0,5 Amostra 1 Amostra 2 0,4 0,3 0,2 0,1 501 481 461 441 421 401 381 361 341 321 301 281 261 241 221 201 181 161 141 121 101 81 61 41 1 21 0 Figura 4. 6 - Controlo proporcional com Kp = 10 Instituto Politécnico de Setúbal 32 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso 1 0,9 0,8 0,7 0,6 Amostra 1 Amostra 2 0,5 0,4 0,3 0,2 0,1 553 530 507 484 461 438 415 392 369 346 323 300 277 254 231 208 185 162 139 93 116 70 47 1 24 0 Figura 4. 7 - Controlo proporcional com Kp = 15 1,1 1 0,9 0,8 0,7 0,6 Amostra 1 0,5 Amostra 2 0,4 0,3 0,2 0,1 529 507 485 463 441 419 397 375 353 331 309 287 265 243 221 199 177 155 133 111 89 67 45 1 23 0 Figura 4. 8 - - Controlo proporcional com Kp = 20 Analisando os gráficos, verifica-se que com o aumento de Kp a sobreelevação e o tempo de estabelecimento aumenta, sendo que quanto mais aumentamos Kp mais o sistema tende a ficar instável. Por sua vez quanto menor for Kp mais suave vai ser o nosso controlador. Instituto Politécnico de Setúbal 33 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Agora analisa-se o controlador do tipo PD (controlador proporcional derivativo) 1 0,9 0,8 0,7 0,6 Amostra 1 0,5 Amostra 2 0,4 0,3 0,2 0,1 298 287 276 265 254 243 232 221 210 199 188 177 166 155 144 133 122 111 89 100 78 67 56 45 34 23 1 12 0 Figura 4. 9 - Controlo Pd com Kd = 5 1 0 ,9 0 ,8 0 ,7 0 ,6 A m o s tr a 1 A m o s tr a 2 0 ,5 0 ,4 0 ,3 0 ,2 0 ,1 301 291 281 271 261 251 241 231 221 211 201 191 181 171 161 151 141 131 121 111 101 91 81 71 61 51 41 31 21 1 11 0 Figura 4. 10 - Controlo Pd com Kd = 7 Instituto Politécnico de Setúbal 34 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso 1 0,9 0,8 0,7 0,6 Amostra 1 0,5 Amostra 2 0,4 0,3 0,2 0,1 298 287 276 265 254 243 232 221 210 199 188 177 166 155 144 133 122 111 89 100 78 67 56 45 34 23 1 12 0 Figura 4. 11 - Controlo Pd com Kd = 9 Analisando os gráficos ,verifica-se que com o aumento de Kd a sobreelevação e o tempo de estabelecimento vai aumentar. Instituto Politécnico de Setúbal 35 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Por último, testa-se o controlador do tipo Pi (controlador proporcional integral). 1 0,9 0,8 0,7 0,6 Amostra 1 0,5 Amostra 2 0,4 0,3 0,2 0,1 276 265 254 243 232 221 210 199 188 177 166 155 144 133 122 111 89 100 78 67 56 45 34 23 12 1 0 Figura 4. 12 - Controlo Pi com Ki = 1 1 0,9 0,8 0,7 0,6 Amostra 1 0,5 Amostra 2 0,4 0,3 0,2 0,1 276 265 254 243 232 221 210 199 188 177 166 155 144 133 122 111 100 89 78 67 56 45 34 23 1 12 0 Figura 4. 13 - Controlo Pi com Ki = 2 Instituto Politécnico de Setúbal 36 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso 1 ,2 1 0 ,8 A m o s tr a 1 A m o s tr a 2 0 ,6 0 ,4 0 ,2 281 271 261 251 241 231 221 211 201 191 181 171 161 151 141 131 121 111 91 101 81 71 61 51 41 31 21 1 11 0 Figura 4. 14 - Controlo Pi com Ki = 3 Como se pode observar pelas Figuras 4.12, 4.13, 4.14, este controlador aumenta a instabilidade do nosso sistema, pois quando se aumenta o ganho o sistema tende a ficar instável. Fazendo agora a comparação do controlador P com o PI e PD o que se verifica é que para o controlador PI em relação ao P é que o PI vai ter uma sobreelevação maior e uma frequência de oscilação também superior mas um tempo de estabelecimento inferior, em relação aos P com o PD não se conseguiu concluir muito devida as várias interferências que surgiram, onde um dos problemas é a variação do teste do ponto de estabilidade, devido a fugas de hélio do balão, pois no final de uma hora a referencia variava bastante, como se pode ver nas figuras 4.15 e Figura 4.16, onde na Figura 4.15 o valor médio da referencia vai ser de ±0.72V e em 4.16 é de 0.53V Instituto Politécnico de Setúbal 37 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso 1 0 ,9 0 ,8 0 ,7 0 ,6 A m o s tra 1 A m o s tra 2 0 ,5 0 ,4 0 ,3 0 ,2 0 ,1 323 309 295 281 267 253 239 225 211 197 183 169 155 141 127 99 113 85 71 57 43 29 15 1 0 Figura 4. 15 – Gráfico de altitude do balão com fios 0,7 0,6 0,5 0,4 Amostra 1 Amostra 2 0,3 0,2 0,1 313 300 287 274 261 248 235 222 209 196 183 170 157 144 131 118 105 92 79 66 53 40 27 14 1 0 Figura 4. 16 – Gráfico de altitude do balão com fios passado uma hora Instituto Politécnico de Setúbal 38 Escola Superior de Tecnologia de Setúbal 4.2 Projecto Final de Curso Robot Minimalista O Robot Minimalista é caracterizado por ter ligações directas dos sensores aos motores. A atribuição do nome ao Robot assentou precisamente na sua simplicidade. A experiência consiste em projectar um Robot que tem a capacidade de se deslocar de zonas de maior claridade para zonas de menor claridade (escuro). Para detectar a variação do nível de luz foram utilizados duas LDRs. As LDRs encontram-se acopladas na parte da frente do Cockpit do Dirigível. De notar que as LDRs foram dispostas no cockpit do dirigível formando um ângulo de 45º em relação a um eixo longitudinal, como se pode observar na Figura 4.17. A disposição escolhida para as LDRs foi implementada deste modo com o intuito de apresentar um campo de visão o mais alargado possível, relativamente ao seu sentido de deslocamento. Figura 4. 17 – Cockpit do Dirigível com os LDRs e o Fototransistor acoplados Instituto Politécnico de Setúbal 39 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso O LDR do lado direito do cockpit do Dirigível encontra-se ligado ao motor do lado direito do dirigível e vice versa. No caso da ligação dos motores às LDRs fosse cruzada (o motor do lado direito fosse ligado ao LDR do lado esquerdo e vice-versa) o dirigível em vez de se afastar das zonas de claridade, iria dirigir-se para as zonas de maior claridade. O PWM utilizado para o controlo da velocidade dos motores é gerado por um circuito integrado (referido anteriormente) que tem capacidade de controlar o duty cycle (largura do pulso) dos 50% (Figura 4.18) aos 100%. Sendo assim considerou-se que quando as LDRs estão a detectar um nível de luminosidade inferior ao nível de referencia, ambos os motores se encontram a funcionar a uma dada velocidade. Sendo assim, tem-se que o balão está sempre em movimento. Figura 4. 18 – Sinal à saída do circuito do PWM para um nível de luminosidade inferior ao valor de referencia No caso da LDR do lado direito (*), ao detectar um nível de luminosidade superior ao valor de luminosidade de referência, a tensão à entrada do PWM aumentará, o que provocará um aumento da largura do pulso à saída, incrementando assim a velocidade do motor do lado direito (Figura 4.19). (* )Nota : Quando se fala do lado direito do cokpit do Dirigível, está a ser referido o lado esquerdo das Figuras 4.17 e 4.19, visto a imagem ser de uma perspectiva da vista de baixo do cokpit. Instituto Politécnico de Setúbal 40 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Ao aumentar a velocidade do motor do lado direito o dirigível irá começar a virar para o lado esquerdo afastando-se assim da zona de maior luminosidade (Figura 4.19). Pelo mesmo processo, um aumento do nível de luminosidade na outra LDR faz com que o balão curve para a direita. Figura 4. 19 – Foco de luz a incidir sobre o LDR do lado direito do cokpit do balão Para além das LDRs foi também utilizado um fototransístor que tem como função controlar o motor que controla a altitude do dirigível. Como o balão é um sistema estável por não necessitar da actuação de motores para se manter no ar a uma dada altitude, implica que o motor de controlo de altitude, ao contrário dos outros motores não se encontra sempre a funcionar. Não se encontrando sempre a funcionar, a utilização do motor de altitude é necessária quando se pretende que o dirigível aumente a sua altitude ou no caso de este se encontrar a voar à muito tempo, é necessário compensar a perda de altitude que ocorre devido às fugas de hélio. De modo a colocar o motor a funcionar incide-se uma luz sobre o fototransístor através de uma lanterna vulgar (Figura 4.20). A intensidade da luz no fototransístor vai determinar se a polarização da base é suficiente para o fototransistor entrar em condução provocando o funcionamento do motor. Instituto Politécnico de Setúbal 41 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Figura 4. 20 – Foco de luz a incidir sobre o Fototransistor Na tabela seguinte (Tabela 4.1) é possível observar o peso de todos os componentes que foram utilizados para implementar o Robot Minimalista. Como se pode observar, a electrónica constituinte e a alimentação fazem um total de aproximadamente 34 gramas. Que somado ao peso do balão com cockpit é inferior a 78 gramas. Material Ics Resistências Potenciómetros LDRs Fototransístores Díodos Condensadores Conectores Placa PCB TOTAL1 = Electrónica + Placa PCB Alimentação (Bateria) TOTAL2 = TOTAL1 + Alimentação Cockpit TOTAL Quantidade 3X 5X 2X 2X 1X 1X 2X 12X 1X 1X 1X Peso (Unidade) 0.99 g 0,16 g 0,39 g 0.17 g 0.19 g 0,20 g 0,14 g 0,07 g 5,40 g 20 g 40 g Peso 3,97 g 0,80 g 0,78 g 0,34 g 0,19 g 0,20 g 0,28 g 0,84 g 7,00 g 14,50 g 19 g 33,5 g 42 g 75,5 g Tabela 4. 1 – Peso de todos os componentes utilizados no Robot Minimalista Instituto Politécnico de Setúbal 42 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso 5. Conclusões e Perspectivas de Trabalho Futuro 5.1 Conclusões Este projecto contribuiu para a aquisição de conhecimentos relativos ao funcionamento de diversos sensores ópticos que existem no mercado. O conhecimento alargou-se aos sensores que foram utilizados nos trabalhos, nomeadamente as LDRs, os fototransístores e os sensores de infravermelhos de medição de distâncias. Tomou-se também um conhecimento mais alargado do funcionamento dos motores de corrente contínua no que diz respeito ao seu controlo e interface com um controlador. De referir o importante desenvolvimento de conhecimentos relativos à área de controlo de sistemas, mais especificamente a implementação de controladores P, PD e PI que foram vocacionados no nosso caso para o controlo de um balão a hélio. De salientar algumas semelhanças entre o nosso projecto e um projecto de licenciatura de um aluno Suíço, denominado “Evolutionary Blimp”. O seu objectivo assentou na construção de um dirigível autónomo que tivesse a capacidade de circular livremente num local fechado. O dirigível é constituído por 3 motores, 6 detectores de obstáculos e 2 câmaras de imagem. Este trabalho teve como resultados a obtenção de um Dirigível que tem a capacidade de se deslocar num local fechado desviando-se de objectos. Como se observou, em termos genéricos, o objectivo do trabalho do aluno Suíço é idêntico ao nosso. As diferenças assentam no controlador implementado. Há que referir que implementar um controlador do tipo do “Evolutionary Blimp” torna-se mais simples comparando com o controlador implementado no nosso trabalho. De notar que a principal dificuldade encontrada na utilização de dirigíveis é o seu ponto de estabilidade. Visto o “Evolutionary Blimp” se encontrar permanentemente em deslocação não se coloca o problema da estabilidade do balão. Ou seja, é mais fácil controlar os movimentos de um dirigível em movimento do que controlar a ausência de movimentos. Instituto Politécnico de Setúbal 43 Escola Superior de Tecnologia de Setúbal 5.2 Projecto Final de Curso Futuros desenvolvimentos O trabalho descrito neste projecto, abre, no entender dos autores, diversas perspectivas no que diz respeito à realização do projecto, de acordo com os requisitos que eram propostos inicialmente, tal como a introdução de possíveis módulos. Para a realização dos requisitos iniciais do projecto, teria inicialmente que conceber-se um balão que suportasse aproximadamente o dobro do peso suportado pelo balão utilizado. Um desenvolvimento futuro poderia passar pela implementação de uma câmara digital que desempenhasse funções de vigilância. Outra das implementações passaria pela introdução de um módulo RF ou de um módulo Bluetooth. Esses módulos iriam favorecer o sistema na medida que se poderia utilizar electrónica fora do dirigível. Isso permitiria que o peso total do balão não aumentasse com o aumento da complexidade do controlador. Este seria implementado num PC, com todas as facilidades que daí adviriam. Instituto Politécnico de Setúbal 44 Escola Superior de Tecnologia de Setúbal Projecto Final de Curso Referências Bibliográficas [1] Sedra Smith, “Microelectronic Circuits”, Fourth Edition, Oxford, 1998 [2] Steven Holzner, “Visual Basic 6 Black Book”, The Coriolis Group, 1998 [3] http://users.pandora.be/educypedia/electronics/sensorsoptical.htm [4] http://www.draganfly.com [5] http://www.gasin.pt/index.htm [6] http://student.dee.uc.pt/~jalmeida/index_files/5.htm [7] http://www.delet.ufrgs.br/~jmgomes/pid/Apostila/apostila/node24.html [8] www.wizard.org_schem_motor.html Instituto Politécnico de Setúbal 45 ANEXOS ANEXOS i ANEXOS Índice ANEXOS 1 ........................................................................................................................ iii Listagem da Programação do Microcontrolador............................................................ iv Listagem Da Programação Do Software de Controlo.................................................. xiii ANEXOS 2 ....................................................................................................................... xx Esquemático do 1º Trabalho ....................................................................................... xxi Esquemático do 2º Trabalho ...................................................................................... xxiii PCB do 1º Trabalho .................................................................................................... xxv PCB do 2º Trabalho .................................................................................................. xxvii Esquemático da lógica implementada na CPLD........................................................ xxix ANEXOS 3 .................................................................................................................. xxxiv GP2Y0A02YK.......................................................................................................... xxxv L78xx ............................................................................................................................. xl 1N4001......................................................................................................................... lxv GL494 .......................................................................................................................lxviii L293 .......................................................................................................................... lxxvi MAX1112 ............................................................................................................. cxxxvii MAX233 ............................................................................................................... cxxxvii HEF4047 ................................................................................................................. clxxiv AT89C51......................................................................................................................cxc XC9536PC44 ........................................................................................................... ccviii ANEXOS 4 ..................................................................................................................ccxvii Lista do material implementado............................................................................. ccxviii ii ANEXOS 1 – Listagem do Código de Programação ANEXOS 1 iii ANEXOS 1 – Listagem do Código de Programação Listagem da Programação do Microcontrolador iv $mod51 ; identificador que permite o compilador do microcontrolador ; utilizado reconhecer as instruções deste ; ; ; ; ; ; ; ; ******************************** * ATRIBUIÇAO DOS BITS DE * * CONTROLO DO DAC A * * PORTOS DO MICRO * * * * P1.4 = Cont_bits * * P1.5 = I0 * ******************************** LETRAENVIA DATA 70H VALOR0 DATA 71H VALOR1 DATA 74H VALOR2 DATA 75H sentido0 data 76h sentido1 data 77h sentido2 data 78h LIXO DATA 2FH HIGH_BITS data 73H escolha data 69h ValorDAC DATA 32H MOV R2,#00h SETB P1.7 ORG 0000H LJMP MAIN ; Espaco de memoria de programa alocado para o inicio do programa ; O salto para a main do programa ; memoria depois da instrução ORG, logo torna-se necessario fazer um ; salto para um procedimento que vá executar o programa. ;********************************************************************************* ;************PROCEDIMENTO QUE RECEBE VALORES DA PORTA SÉRIE************** ;********************************************************************************* ORG 0023H jb ri,label1 ; salta a a label 1 quando receber algum caracter reti label1: clr ri ; rotina para receber um caracter mov a,sbuf MOV LETRAENVIA,a ACALL verifi reti ;********************************************************************** ;************PROCEDIMENTO QUE RECEBE BITS DO ADC**************** ;********************************************************************** RECEBER_ADC: ; Inicialização do ADC SETB P1.1 ; Colocar CS a HIGH CLR P1.0 ; Colocar SCLK a LOW CLR P1.2 ; Colocar DIN a LOW CLR P1.1 ; Colocar CS a LOW NOP SETB P1.2 ; Colocar DIN a HIGH (BIT - START) SETB P1.0 NOP CLR P1.0 ; Colocar SCLK a HIGH ; ///// CLOCK ////// ; Colocar SCLK a LOW MOV R3,#01H ; Registo auxiliar MOV R1,#03H ; Contador dos CANAL que se pretende ler LERCANAL: MOV A,R2 ; R2 Contem o valor do canal que se pretende ler ANL A,R3 JZ ENVIAZERO SETB P1.2 ; Envio dos bits do CANAL (SEL2,SEL1,SEL0) ENVIAR: SETB P1.0 NOP CLR P1.0 ; Colocar SCLK a HIGH ; ///// CLOCK ////// ; Colocar SCLK a LOW MOV A,R3 RL A ; Roda para a esquerda o acum. para comparar o bit seguinte do CANAL MOV R3,A DEC R1 ; Decrementa o contador de bits do CANAL MOV A,R1 JZ FIMCANAL ; Ja foram enviados os 3 Bits de escolha do CANAL a ler JMP LERCANAL ; Ainda nao foram enviados todos os bits referentes ao CANAL ENVIAZERO: CLR P1.2 JMP ENVIAR FIMCANAL: SETB P1.2 ; Colocar DIN a HIGH para ENVIAR bits UNI,SGL,PD1 e PD0 MOV R4,#04H CONTINUA: SETB P1.0 ; Colocar SCLK a HIGH NOP CLR P1.0 DEC R4 MOV A,R4 JZ RECEBE_VALOR CANAL JMP CONTINUA ; ///// CLOCK ////// ; Colocar SCLK a LOW ; salta para RECEBE_VALOR para receber o valor que se encontra no RECEBE_VALOR: CLR P1.2 MOV R7,#07H SETB P1.0 NOP CLR P1.0 NOP NOP NOP CONTINUALER: SETB P1.0 NOP CLR P1.0 ; LEITURA DO VALOR PARA O MICRO JB P1.3, ValorUM JMP ValorZERO ValorUM: MOV A,ValorDAC ADD A,#01H RL A MOV ValorDAC,A MOV A,R7 DEC R7 MOV A,R7 JZ FIM_ADC JMP CONTINUALER ValorZERO: MOV A,ValorDAC ADD A,#00H RL A MOV ValorDAC,A DEC R7 MOV A,R7 JZ FIM_ADC JMP CONTINUALER FIM_ADC: JB P1.3, ValorUM_ JMP ValorZERO_ ValorUM_: MOV A,ValorDAC ADD A,#01H MOV ValorDAC,A JMP FIM_ADC_ ValorZERO_: MOV A,ValorDAC ADD A,#00H MOV ValorDAC,A FIM_ADC_: MOV R6,#07H RECEBER_ZEROS: SETB P1.0 ; Colocar SCLK a HIGH NOP ; ///// CLOCK ////// CLR P1.0 ; Colocar SCLK a LOW DEC R6 MOV A,R6 JZ FINAL_ADC JMP RECEBER_ZEROS FINAL_ADC: SETB P1.1 NOP ; Coloca CS a HIGH (Termina um Ciclo do ADC) ret ENVIAR_PORTA_SERIE: clr ti MOV A,ValorDAC MOV SBUF,A espera: jnb ti,espera RET ;****************************************************************************** ;*****************PROCEDIMENTO QUE ENVIA BITS PARA O CPLD**************** ;****************************************************************************** CONTINUAENVIO: MOV A,LIXO ANL A,B JZ ZERO SETB P1.5 JMP ENVIAR_BIT_pal ZERO: CLR P1.5 ; Coloca o bit I0 com o valor lógico 0 ; De seguida vai-se enviar o bit que se encontra em I0 para a CPLD ENVIAR_BIT_pal: clr p1.4 NOP NOP NOP NOP setb P1.4 DEC R5 ; Decrementa o valor de R5, pois foi enviado um bit, ou mais um bit MOV A,R5 ; Move o valor de R5 para o acumulador JZ TERMINOU_ENVIO_ ; Se acumulador for 0 salta para a label TERMINOU_ENVIO, o que ; significa que já foram enviados os 5 bits MOV A,B ; Estas operações efectuam um conjunto de instruções que carregam MOV B,#02H ; o Registo B com um valor que irá permitir detectar qual o nivel lógico div AB ; do bit seguinet que se irá enviar para a CPLD mov B,A JMP CONTINUAENVIO ; Salta para a label CONTINUAENVIO para efectuar as operações que ; permitem detectar o nível lógico do bit seguinte a enviar. TERMINOU_ENVIO_: RET ; retorna ao programa e coloca o program counter com o valor da ; posição de memoria a seguir à qual se encontrava a chamada ao ; procedimento CONTINUAENVIO para continuar o programa ;****************************************************************************** ;*****************PROCEDIMENTO QUE ENVIA BITS PARA A CPLD********************** ;****************************************************************************** ; Para enviar bits para a cpld são necessárias um conjunto de instruções que passam ; pelo configuração dos pinos de controlo deste. ; Instruções estas que se encontram descritas a seguir. ENVIAMOTOR: MOV LIXO,VALOR2 MOV R5,#05d para a CPLD MOV B,#16d Acall continuaenvio ; Registo que funciona como contador do número de bits a enviar ; O Registo B funciona como um registo auxiliar para calculos MOV LIXO,VALOR1 MOV R5,#05d para a CPLD MOV B,#16d Acall continuaenvio MOV LIXO,VALOR0 MOV R5,#05d para a CPLD MOV B,#16d Acall continuaenvio ; Registo que funciona como contador do número de bits a enviar ; O Registo B funciona como um registo auxiliar para calculos ; Registo que funciona como contador do número de bits a enviar ; O Registo B funciona como um registo auxiliar para calculos ret ;****************************************************************************** ;*******PROCEDIMENTO QUE VERIFICA QUAL O CONTROLO A FAZER************* ;****************************************************************************** verifi : mov a, letraenvia mov b, #10000000b anl a,b jz motor mov a, letraenvia mov b, #01111111b anl a,b mov R2,a jmp main_ ; verifica se é para enviar para o adc mov a, letraenvia mov b, #01100000b anl a,b cjne a,#96,motor1 mov a, letraenvia mov b, #00011111b anl a,b mov Valor2,a acall enviamotor jmp final ; verifica se é para enviar informaçao para o motor 0 motor: motor1: cjne a,#64,motor0 mov a, letraenvia mov b, #00011111b anl a,b mov Valor1,a acall enviamotor jmp final ; verifica se é para enviar informaçao para o motor 1 motor0: cjne a,#32,motor1 mov a, letraenvia ; verifica se é para enviar informaçao para o motor 2 mov b, #00011111b anl a,b mov Valor0,a acall enviamotor final: ret ;**************************************************************** ; INICIAR A PORTA SERIE ;**************************************************************** INIC_SERIE: mov tmod,#20h ; 00100000 ; B7 a B4 - pertencem ao timer 1 GATE C/T M1 M0 (0010) ; Gate = 0 (temporizador 1 est enable quando o bit de controlo Trx = 1) ; C/T ; M1 M0 - 10 (Modo de opera‡ao - Temporizador/Contador de 8 bits c/ autoReload. ; TH1 contem o valor de reload) ; B3 a B0 - pertencem ao timer 0 (B3 a B0 = 0) (0000) mov th1,#0fah ; 0fd(253) - para BD - 19200 b/s ; 0fa(250) - BD = 4800 b/s mov tcon,#00h ; Limpa o Registo TCON mov scon,#50h ; 01010000 ; 01010000 = SM0 SM1 SM2 REN TB RB8 TI RI ; 01 = SMO SM1 - Modo Funcionamento 1 ; TB e RB8 = 0, So sao utilizados no modo 2 e 3 ; TI e RI = 0, Sao activados no decorrer do programa ; caso se esteja a enviar ou a receber dados. setb tr1 ;setb ti ; ti=1 para ENVIAR bit pela porta série mov ie,#90h ; EA=0 Disable todas as interrup‡äes e ; ES liga ou desliga as interrup‡oes da porta serie mov pcon,#00h ; Pcon = 0, pois nao ‚ nessec rio duplicar a Baud Rate ; Limpa o registo PCON ret ;********************************************************************************** ;*****SUB_PROCEDIMENTO MAIN (PROCEDIMENTO SECUNDÁRIO)******************** ;********************************************************************************** MAIN_: MOV ValorDAC,#00H ACALL RECEBER_ADC ACALL ENVIAR_PORTA_SERIE RET ;********************************************************************************** ;************PROCEDIMENTO MAIN (PROCEDIMENTO PRINCIPAL)******************** ;********************************************************************************** MAIN: setb p1.4 ACALL INIC_SERIE MOV VALOR0,#00H MOV VALOR1,#00H MOV VALOR2,#00H ma: jmp ma END ; Label de Fim de programa ANEXOS 1 – Listagem do Código de Programação Listagem Da Programação Do Software de Controlo xiii Dim recebeu As Boolean Dim buffer() As Byte Dim inicio As Boolean Dim espera As Boolean Dim fimciclo As Boolean Dim KP As Integer Dim KD As Integer Dim KI As Integer Dim Veloc3 As Integer Dim ValorSensor As Double Dim Valorref As Double Dim CP As Double Dim CD As Double Dim CI As Double Private Sub Command1_Click() Dim s As String Dim i As Integer Dim k As Integer Dim j As Integer Dim h As Integer Dim auxvel As Integer Dim MAXSENSORES As Integer Dim MAXAMOSENSORES As Integer Dim MAXAMOSTRAI As Integer Dim AUXSENSORES(2) As Double Dim ValorSensoractual As Double Dim ValorSensorAnterior As Double Dim DifSensor As Double Dim SomaI As Double Dim erro As Double Dim amostra(8) As Double Dim CPID As Double Dim auxvel3 As Byte MAXSENSORES = 0 MAXAMOSENSORES = 15 MAXAMOSTRAI = 4 ValorSensorAnterior = Valorref ' criar um ficheiro com o nome da hora minutos e secundos s = "C:\dados\" & Hour(Now) & Minute(Now) & Second(Now) & ".txt" Open (s) For Output Shared As #1 fimciclo = False Do If fimciclo Then Exit Do End If ' ciclo para receber os valores do sensor For i = 0 To MAXSENSORES AUXSENSORES(i) = 0 For k = 0 To MAXAMOSENSORES MSComm1.Output = Chr(128) Do If recebeu Then recebeu = False AUXSENSORES(i) = (buffer(0) * 0.01606) + AUXSENSORES(i) Exit Do End If DoEvents Loop Next k ' faz a media do valores dos sensores ValorSensor = Round(AUXSENSORES(i) / MAXAMOSENSORES, 2) ' mostra o valor do sensor Text8.Text = ValorSensor Next i ' guarda o valor do sensor no ficheiro Write #1, ValorSensor, Minute(Now), Second(Now) 'calcula a diferença entre o valor de referencia e o valor do sensor que da o erro erro = Valorref - ValorSensor ' calcula a contribuição proporcional do sistema CP = Round(erro * KP, 2) ' calcula a contribuição do controlador D ValorSensoractual = ValorSensor DifSensor = ValorSensorAnterior - ValorSensoractual ValorSensorAnterior = ValorSensoractual CD = DifSensor * KD ' calcula a contribuição do controlador I If j > MAXAMOSTRAI Then j=0 End If amostra(j) = erro j=j+1 For h = 0 To MAXAMOSTRAI SomaI = amostra(h) + SomaI Next h CI = SomaI * KI ' mostra as diferentes contribuições ao controlador Text5.Text = CP Text6.Text = CD Text7.Text = CI CPID = CP + CI - CD SomaI = 0 Text10.Text = Time Text11.Text = CPID If CPID > 8 Then CPID = 8 End If If CPID < -8 Then CPID = -8 End If If CPID = 0 Then Veloc3 = 0 MSComm1.Output = Chr(96) Else ' rotina de envio da velocidade a que os motores devem andar If CPID > 0 Then If Veloc3 = (Round(CPID, 0) + 7) Then Else MSComm1.Output = Chr(127) Timer1.Interval = 1 Timer1.Enabled = True espera = False Do If espera Then Exit Do End If DoEvents Loop auxvel3 = CByte(Round(CPID)) MSComm1.Output = Chr(auxvel3 + 119) Timer1.Interval = 1 Timer1.Enabled = True espera = False Do If espera Then Exit Do End If DoEvents Loop Veloc3 = auxvel3 + 7 End If Else If Veloc3 = (Round(CPID, 0) - 7) Then Else MSComm1.Output = Chr(111) Timer1.Interval = 1 Timer1.Enabled = True espera = False Do If espera Then Exit Do End If DoEvents Loop auxvel3 = CByte(Round(-CPID)) MSComm1.Output = Chr(auxvel3 + 103) Veloc3 = CPID - 7 Timer1.Interval = 1 Timer1.Enabled = True espera = False Do If espera Then Exit Do End If DoEvents Loop End If End If End If Text4.Text = Veloc3 Timer1.Interval = 500 Timer1.Enabled = True espera = False Do If espera Then Exit Do End If DoEvents Loop DoEvents Loop MSComm1.Output = Chr(96) Timer1.Interval = 5 Timer1.Enabled = True espera = False Do If espera Then Exit Do End If DoEvents Loop Text4.Text = 0 Close #1 End Sub Private Sub Command2_Click() ' final do programa End End Sub Private Sub Command3_Click() fimciclo = True End Sub Private Sub Form_Load() MSComm1.PortOpen = True Text1.Text = KP VScroll1.Value = KP Text2.Text = KD VScroll2.Value = KD Text3.Text = KI VScroll3.Value = KI Text4.Text = Veloc3 HScroll1.Value = Veloc3 End Sub Private Sub HScroll1_Change() Veloc3 = HScroll1.Value Text4.Text = Veloc3 End Sub Private Sub MSComm1_OnComm() Dim sMessage As String ' rotina da porta serie Select Case MSComm1.CommEvent ' mensagens dos eventos Case comEvReceive buffer() = MSComm1.Input recebeu = True Case comEvSend Case comEvCTS sMessage = "Detectada alteração em CTS" Case comEvDSR sMessage = "Detectada alteração em DSR" Case comEvCD sMessage = "Detectada alteração em CD" Case comEvRing sMessage = "O fone esta tocando" Case comEvEOF sMessage = "Fim de arquivo encontrado" ' Error messages. Case comBreak sMessage = "Break recebido" Case comCDTO sMessage = "Carrier Detect Timeout" Case comCTSTO sMessage = "CTS Timeout" Case comDCB sMessage = "Error retrieving DCB" Case comDSRTO sMessage = "DSR Timeout" Case comFrame sMessage = "Erro - Framing" Case comOverrun sMessage = "Erro - Overrun " Case comRxOver sMessage = "Receive Buffer Overflow" Case comRxParity sMessage = "Erro de Paridade" Case comTxFull sMessage = "Transmite Buffer Cheio" Case Else sMessage = "Erro ou evento desconhecido" End Select 'SetStatus (sMessage), False End Sub Private Sub Text1_Change() KP = Text1.Text VScroll1.Value = KP End Sub Private Sub Text2_Change() KD = Text2.Text VScroll2.Value = KD End Sub Private Sub Text3_Change() KI = Text3.Text VScroll3.Value = KI End Sub Private Sub Text4_Change() Veloc3 = Text4.Text HScroll1.Value = Veloc3 End Sub Private Sub Text9_Change() Valorref = Text9.Text End Sub Private Sub Timer1_Timer() espera = True End Sub Private Sub VScroll1_Change() KP = VScroll1.Value Text1.Text = KP End Sub Private Sub VScroll2_Change() KD = VScroll2.Value Text2.Text = KD End Sub Private Sub VScroll3_Change() KI = VScroll3.Value Text3.Text = KI End Sub ANEXOS 2 – Esquemáticos e PCBs ANEXOS 2 xx ANEXOS 2 – Esquemáticos e PCBs Esquemático do 1º Trabalho xxi ANEXOS 2 – Esquemáticos e PCBs Esquemático do 2º Trabalho xxiii ANEXOS 2 – Esquemáticos e PCBs PCB do 1º Trabalho xxv ANEXOS 2 – Esquemáticos e PCBs PCB do 2º Trabalho xxvii ANEXOS 2 – Esquemáticos e PCBs Esquemático da lógica implementada na CPLD xxix Circuito Final da CPLD Bloco da comp_shifd Bloco Comparador Bloco Contador ANEXOS 3 - Fichas Técnicas do Hardware desenvolvido ANEXOS 3 xxxiv ANEXOS 3 - Fichas Técnicas do Hardware desenvolvido GP2Y0A02YK xxxv GP2Y0A02YK GP2Y0A02YK Long Distance Measuring Sensor ■ Features ■ Outline Dimensions 37 29.5 4-R1.75 ★ *1 Open collector output PWB 10.45 14.4 8.95 +0.5 18.9−0.3 Connector 10.1 1 3 3.3 1.2 2-1.5 21.6 (Ta=25°C) Symbol Rating Unit V −0.3 to +7 VCC VO −0.3 to VCC +0.3 V −10 to +60 Topr °C Tstg −40 to +70 °C Lens case R3.75 φ3.2 14.4 ■ Absolute Maximum Ratings 19.8±0.1 φ3.2 1. For detection of human body and various types of objects in home appliances, OA equipment, etc Parameter Supply voltage *1 Output terminal voltage Operating temperature Storage temperature ★ Light emitter side ■ Applications Light detector side 13 11.9 R3.75 (Unit : mm) 4-R1.75 4.475 4.5 1. Less influence on the colors of reflected objects and their reflectivity, due to optical triangle measuring method 2. Distance output type (Detection range:20 to 150cm) 3. An external control circuit is not necessary Output can be connected directly to a microcomputer Terminal connection ❈ The dimensions marked ★ are described the dimensions of lens center position. ❈ Unspecified tolerance : ±0.3mm 1 2 3 VO GND VCC ■ Recommended Operating Conditions Parameter Operating Supply voltage Notice Symbol VCC Rating 4.5 to 5.5 Unit V In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that may occur in equipment using any SHARP devices shown in catalogs, data books, etc. Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. Internet Internet address for Electronic Components Group http://sharp-world.com/ecg/ GP2Y0A02YK ■ Electro-optical Characteristics Parameter Symbol ∆L VO ∆VO ICC Distance measuring range Output terminal voltage Difference of output voltage Average dissipation current MIN. Conditions *2 *3 20 L=150cm *2 Output change at L=150cm to 20cm − 0.25 *2 1.8 − Note) L:Distance to reflective object *2 Using reflective object:White paper (Made by Kodak Co. Ltd. gray cards R-27 ⋅ white face, reflective ratio;90%) *3 Distance measuring range of the optical sensor system Fig.1 Internal Block Diagram VCC 5V GND PSD Signal processing circuit Voltage regulator Oscillation circuit LED drive circuit LED VO Output circuit Distance measuring IC Fig.2 Timing Chart VCC (Power supply) 38.3ms±9.6ms Distance measuring operation First measurement VO (Output) Unstable output Second measurement First output MAX. 5.0ms nth measurement Second output nth output (Ta=25°C, VCC=5V) TYP. MAX. Unit 150 cm − V 0.4 0.55 2.05 V 2.3 33 50 mA GP2Y0A02YK Fig.3 Analog Output Voltage vs. Distance to Reflective Object 3 White Reflectivity:90% Gray Reflectivity:18% Analog output voltage (V) 2.5 2 1.5 1 0.5 0 0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 Distance to reflective object L (cm) NOTICE ● The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices. ● Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice. ● Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions: (i) The devices in this publication are designed for use in general electronic equipment designs such as: - - - Personal computers - -- Office automation equipment - -- Telecommunication equipment [terminal] - - - Test and measurement equipment - - - Industrial control - -- Audio visual equipment - -- Consumer electronics (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as: - -- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.) - - - Traffic signals - - - Gas leakage sensor breakers - - - Alarm equipment - -- Various safety devices, etc. (iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as: - - - Space applications - -- Telecommunication equipment [trunk lines] - -- Nuclear power control equipment - -- Medical and other life support equipment (e.g., scuba). ● Contact a SHARP representative in advance when intending to use SHARP devices for any "specific" applications other than those recommended by SHARP or when it is unclear which category mentioned above controls the intended use. ● If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Control Law of Japan, it is necessary to obtain approval to export such SHARP devices. ● This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party. ● Contact and consult with a SHARP representative if there are any questions about the contents of this publication. ANEXOS 3 - Fichas Técnicas do Hardware desenvolvido L78xx xl L7800 SERIES POSITIVE VOLTAGE REGULATORS .. .. . OUTPUT CURRENT UP TO 1.5A OUTPUT VOLTAGES OF 5; 5.2; 6; 8; 8.5; 9; 12; 15; 18; 20; 24V THERMAL OVERLOAD PROTECTION SHORT CIRCUIT PROTECTION OUTPUT TRANSISTOR SOA PROTECTION DESCRIPTION The L7800 series of three-terminal positive regulator is available in TO-220, ISOWATT220 and TO-3 packages and with several fixed output voltages making it useful in a wide range of applications. These regulators can provide local on-card regulation, eliminating the distribution problems associated with single point regulation. Each type employs internal current limiting, thermal shut-down and safe area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents. TO-3 TO-220 ISOWATT220 BLOCK DIAGRAM January 1993 1/24 L7800 SERIES ABSOLUTE MAXIMUM RATINGS Symbol Parameter Vi DC Input Voltage (for V o = 5 to 18V) (for V o = 20, 24V) Io Value Unit 35 40 V V Output Current Internally limited Pt o t Power Dissipation Internally limited To p Operating Junction Temperature (for L7800 ) (for L7800C ) – 55 to + 150 0 to + 150 °C °C T stg Storage Temperature – 65 to + 150 °C THERMAL DATA Symbol Parameter Rthj-case Thermal Resistance Junction-case Rthj-amb Thermal Resistance Junction-ambient Max Max TO-220 ISOWATT220 TO-3 3 50 4 60 4 35 Unit o C/W C/W o CONNECTION DIAGRAM AND ORDERING NUMBERS (top view) TO-220 & ISOWATT220 Type L7805 L7805C L7852C L7806 L7806C L7808 L7808C L7885C L7809C L7812 L7812C L7815 L7815C L7818 L7818C L7820 L7820C L7824 L7824C 2/24 TO-220 TO-3 ISOWATT220 L7805CV L7852CV L7805CP L7852CP L7806CV L7806CP L7808CV L7885CV L7809CV L7808CP L7885CP L7809CP L7812CV L7812CP L7815CV L7815CP L7818CV L7818CP L7820CV L7820CP L7824CV L7824CP TO-3 Output Voltage L7805T L7805CT L7852CT L7806T L7806CT L7808T L7808CT L7885CT L7809CT L7812T L7812CT L7815T L7815CT L7818T L7818CT L7820T L7820CT L7824T L7824CT 5V 5V 5.2V 6V 6V 8V 8V 8.5V 9V 12V 12V 15V 15V 18V 18V 20V 20V 24V 24V L7800 SERIES APPLICATION CIRCUIT SCHEMATIC DIAGRAM 3/24 L7800 SERIES TEST CIRCUITS Figure 1 : DC Parameters. Figure 3 : Ripple Rejection. 4/24 Figure 2 : Load Regulation. L7800 SERIES ELECTRICAL CHARACTERISTICS FOR L7805 (refer to the test circuits, T j = -55 to 150 o C, V i = 10V, Io = 500 mA, Ci = 0.33 µF, C o = 0.1 µF unless otherwise specified) Symbol Parameter Test Conditions Vo Output Voltage Tj = 25 oC Vo Output Voltage Io = 5 mA to 1 A Vi = 8 to 20 V ∆Vo* Line Regulation Vi = 7 to 25 V Vi = 8 to 12 V ∆Vo* Load Regulation Io = 5 to 1500 mA Io = 250 to 750 mA Id Quiescent Current Tj = 25 oC P o ≤ 15 W Min. Typ. Max. Unit 4.8 5 5.2 V 4.65 5 5.35 V 3 1 50 25 mV mV 100 25 mV mV 6 mA Tj = 25 oC Tj = 25 oC Tj = 25 oC Tj = 25 oC ∆Id Quiescent Current Change Io = 5 to 1000 mA 0.5 mA ∆Id Quiescent Current Change Vi = 8 to 25 V 0.8 mA ∆V o ∆T Output Voltage Drift Io = 5 mA eN Output Noise Voltage B = 10Hz to 100KHz Tj = 25 oC Supply Voltage Rejection Vi = 8 to 18 V SVR Vd Dropout Voltage Io = 1 A Ro Output Resistance f = 1 KHz Isc Short Circuit Current Vi = 35 V Iscp Short Circuit Peak Current mV/oC 0.6 f = 120 Hz 40 68 o Tj = 25 C dB 2 2.5 17 Tj = 25 oC o Tj = 25 C 1.3 µV/VO V mΩ 0.75 1.2 A 2.2 3.3 A ELECTRICAL CHARACTERISTICS FOR L7806 (refer to the test circuits, T j = -55 to 150 o C, V i = 15V, Io = 500 mA, Ci = 0.33 µF, C o = 0.1 µF unless otherwise specified) Symbol Parameter Test Conditions Min. Typ. Max. Unit 5.75 6 6.25 V 5.65 6 6.35 V 60 30 mV mV 100 30 mV mV 6 mA 0.5 mA Vo Output Voltage Tj = 25 oC Vo Output Voltage Io = 5 mA to 1 A Vi = 9 to 21 V ∆Vo* Line Regulation Vi = 8 to 25 V Vi = 9 to 13 V ∆Vo* Load Regulation Io = 5 to 1500 mA Io = 250 to 750 mA Id Quiescent Current Tj = 25 oC ∆Id Quiescent Current Change Io = 5 to 1000 mA ∆Id Quiescent Current Change Vi = 9 to 25 V 0.8 mA ∆V o ∆T Output Voltage Drift Io = 5 mA eN Output Noise Voltage B = 10Hz to 100KHz Tj = 25 oC Supply Voltage Rejection Vi = 9 to 19 V SVR Vd Dropout Voltage Io = 1 A Ro Output Resistance f = 1 KHz Isc Short Circuit Current Vi = 35 V Iscp Short Circuit Peak Current o Tj = 25 C P o ≤ 15 W Tj = 25 oC Tj = 25 oC Tj = 25 oC Tj = 25 oC mV/oC 0.7 f = 120 Hz 40 65 o Tj = 25 C dB 2 2.5 19 Tj = 25 oC 1.3 µV/VO V mΩ 0.75 1.2 A 2.2 3.3 A * Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used. 5/24 L7800 SERIES ELECTRICAL CHARACTERISTICS FOR L7808 (refer to the test circuits, T j = -55 to 150 o C, V i = 14V, Io = 500 mA, Ci = 0.33 µF, C o = 0.1 µF unless otherwise specified) Symbol Min. Typ. Max. Unit Vo Output Voltage Parameter Tj = 25 oC Test Conditions 7.7 8 8.3 V Vo Output Voltage Io = 5 mA to 1 A P o ≤ 15 W Vi = 11.5 to 23 V 7.6 8 8.4 V ∆Vo* Line Regulation Vi = 10.5 to 25 V Tj = 25 oC Vi = 11 to 17 V Tj = 25 oC 80 40 mV mV ∆Vo* Load Regulation Io = 5 to 1500 mA Io = 250 to 750 mA 100 40 mV mV Id Quiescent Current Tj = 25 oC 6 mA Tj = 25 oC Tj = 25 oC ∆Id Quiescent Current Change Io = 5 to 1000 mA 0.5 mA ∆Id Quiescent Current Change Vi = 11.5 to 25 V 0.8 mA ∆V o ∆T Output Voltage Drift Io = 5 mA eN Output Noise Voltage B = 10Hz to 100KHz Tj = 25 oC Supply Voltage Rejection Vi = 11.5 to 21.5 V SVR Vd Dropout Voltage Io = 1 A Ro Output Resistance f = 1 KHz Isc Short Circuit Current Vi = 35 V Iscp Short Circuit Peak Current mV/oC 1 f = 120 Hz 40 62 o Tj = 25 C dB 2 2.5 16 Tj = 25 oC o Tj = 25 C 1.3 µV/VO V mΩ 0.75 1.2 A 2.2 3.3 A ELECTRICAL CHARACTERISTICS FOR L7812 (refer to the test circuits, T j = -55 to 150 o C, V i = 19V, Io = 500 mA, Ci = 0.33 µF, C o = 0.1 µF unless otherwise specified) Symbol Min. Typ. Max. Unit Vo Output Voltage Tj = 25 oC 11.5 12 12.5 V Vo Output Voltage Io = 5 mA to 1 A P o ≤ 15 W Vi = 15.5 to 27 V 11.4 12 12.6 V ∆Vo* Line Regulation Vi = 14.5 to 30 V Tj = 25 oC Vi = 16 to 22 V Tj = 25 oC 120 60 mV mV ∆Vo* Load Regulation Io = 5 to 1500 mA Io = 250 to 750 mA 100 60 mV mV Id Quiescent Current Tj = 25 oC 6 mA ∆Id Quiescent Current Change Io = 5 to 1000 mA 0.5 mA ∆Id Quiescent Current Change Vi = 15 to 30 V 0.8 mA ∆V o ∆T Output Voltage Drift Io = 5 mA eN Output Noise Voltage B = 10Hz to 100KHz Tj = 25 oC Supply Voltage Rejection Vi = 15 to 25 V SVR Parameter Test Conditions Vd Dropout Voltage Io = 1 A Ro Output Resistance f = 1 KHz Isc Short Circuit Current Vi = 35 V Iscp Short Circuit Peak Current o Tj = 25 C Tj = 25 oC Tj = 25 oC mV/oC 1.5 f = 120 Hz 40 61 o Tj = 25 C dB 2 2.5 18 Tj = 25 oC 1.3 µV/VO V mΩ 0.75 1.2 A 2.2 3.3 A * Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used. 6/24 L7800 SERIES ELECTRICAL CHARACTERISTICS FOR L7815 (refer to the test circuits, T j = -55 to 150 o C, V i = 23V, Io = 500 mA, Ci = 0.33 µF, C o = 0.1 µF unless otherwise specified) Symbol Min. Typ. Max. Unit Vo Output Voltage Parameter Tj = 25 oC Test Conditions 14.4 15 15.6 V Vo Output Voltage Io = 5 mA to 1 A P o ≤ 15 W Vi = 18.5 to 30 V 14.25 15 15.75 V ∆Vo* Line Regulation Vi = 17.5 to 30 V Tj = 25 oC Vi = 20 to 26 V Tj = 25 oC 150 75 mV mV ∆Vo* Load Regulation Io = 5 to 1500 mA Io = 250 to 750 mA 150 75 mV mV Id Quiescent Current Tj = 25 oC 6 mA Tj = 25 oC Tj = 25 oC ∆Id Quiescent Current Change Io = 5 to 1000 mA 0.5 mA ∆Id Quiescent Current Change Vi = 18.5 to 30 V 0.8 mA ∆V o ∆T Output Voltage Drift Io = 5 mA eN Output Noise Voltage B = 10Hz to 100KHz Tj = 25 oC Supply Voltage Rejection Vi = 18.5 to 28.5 V SVR Vd Dropout Voltage Io = 1 A Ro Output Resistance f = 1 KHz Isc Short Circuit Current Vi = 35 V Iscp Short Circuit Peak Current mV/oC 1.8 f = 120 Hz 40 60 o Tj = 25 C dB 2 2.5 19 Tj = 25 oC o Tj = 25 C 1.3 µV/VO V mΩ 0.75 1.2 A 2.2 3.3 A ELECTRICAL CHARACTERISTICS FOR L7818 (refer to the test circuits, T j = -55 to 150 o C, V i = 26V, Io = 500 mA, Ci = 0.33 µF, C o = 0.1 µF unless otherwise specified) Symbol Parameter Test Conditions Min. Typ. Max. Unit 17.3 18 18.7 V 17.1 18 18.9 V 180 90 mV mV 180 90 mV mV 6 mA 0.5 mA Vo Output Voltage Tj = 25 oC Vo Output Voltage Io = 5 mA to 1 A Vi = 22 to 33 V ∆Vo* Line Regulation Vi = 21 to 33 V Vi = 24 to 30 V ∆Vo* Load Regulation Io = 5 to 1500 mA Io = 250 to 750 mA Id Quiescent Current Tj = 25 oC ∆Id Quiescent Current Change Io = 5 to 1000 mA ∆Id Quiescent Current Change Vi = 22 to 33 V 0.8 mA ∆V o ∆T Output Voltage Drift Io = 5 mA eN Output Noise Voltage B = 10Hz to 100KHz Tj = 25 oC Supply Voltage Rejection Vi = 22 to 32 V SVR Vd Dropout Voltage Io = 1 A Ro Output Resistance f = 1 KHz Isc Short Circuit Current Vi = 35 V Iscp Short Circuit Peak Current o Tj = 25 C P o ≤ 15 W Tj = 25 oC Tj = 25 oC Tj = 25 oC Tj = 25 oC mV/oC 2.3 f = 120 Hz 40 59 o Tj = 25 C dB 2 2.5 22 Tj = 25 oC 1.3 µV/VO V mΩ 0.75 1.2 A 2.2 3.3 A * Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used. 7/24 L7800 SERIES ELECTRICAL CHARACTERISTICS FOR L7820 (refer to the test circuits, T j = -55 to 150 o C, V i = 28V, Io = 500 mA, Ci = 0.33 µF, C o = 0.1 µF unless otherwise specified) Symbol Parameter Test Conditions Vo Output Voltage Tj = 25 oC Vo Output Voltage Io = 5 mA to 1 A Vi = 24 to 35 V ∆Vo* Line Regulation Vi = 22.5 to 35 V Tj = 25 oC Vi = 26 to 32 V Tj = 25 oC ∆Vo* Load Regulation Io = 5 to 1500 mA Io = 250 to 750 mA Id Quiescent Current Tj = 25 oC P o ≤ 15 W Min. Typ. Max. Unit 19.2 20 20.8 V 19 20 21 V 200 100 mV mV 200 100 mV mV 6 mA Tj = 25 oC Tj = 25 oC ∆Id Quiescent Current Change Io = 5 to 1000 mA 0.5 mA ∆Id Quiescent Current Change Vi = 24 to 35 V 0.8 mA ∆V o ∆T Output Voltage Drift Io = 5 mA eN Output Noise Voltage B = 10Hz to 100KHz Tj = 25 oC Supply Voltage Rejection Vi = 24 to 35 V SVR Vd Dropout Voltage Io = 1 A Ro Output Resistance f = 1 KHz Isc Short Circuit Current Vi = 35 V Iscp Short Circuit Peak Current mV/oC 2.5 f = 120 Hz 40 58 o Tj = 25 C dB 2 2.5 24 Tj = 25 oC o Tj = 25 C 1.3 µV/VO V mΩ 0.75 1.2 A 2.2 3.3 A ELECTRICAL CHARACTERISTICS FOR L7824 (refer to the test circuits, T j = -55 to 150 o C, V i = 33V, Io = 500 mA, Ci = 0.33 µF, C o = 0.1 µF unless otherwise specified) Symbol Parameter Test Conditions Min. Typ. Max. Unit 23 24 25 V 22.8 24 25.2 V 240 120 mV mV 240 120 mV mV 6 mA 0.5 mA Vo Output Voltage Tj = 25 oC Vo Output Voltage Io = 5 mA to 1 A Vi = 28 to 38 V ∆Vo* Line Regulation Vi = 27 to 38 V Vi = 30 to 36 V ∆Vo* Load Regulation Io = 5 to 1500 mA Io = 250 to 750 mA Id Quiescent Current Tj = 25 oC ∆Id Quiescent Current Change Io = 5 to 1000 mA ∆Id Quiescent Current Change Vi = 28 to 38 V 0.8 mA ∆V o ∆T Output Voltage Drift Io = 5 mA eN Output Noise Voltage B = 10Hz to 100KHz Tj = 25 oC Supply Voltage Rejection Vi = 28 to 38 V SVR Vd Dropout Voltage Io = 1 A Ro Output Resistance f = 1 KHz Isc Short Circuit Current Vi = 35 V Iscp Short Circuit Peak Current o Tj = 25 C P o ≤ 15 W Tj = 25 oC Tj = 25 oC Tj = 25 oC Tj = 25 oC mV/oC 3 f = 120 Hz 40 56 o Tj = 25 C dB 2 2.5 28 Tj = 25 oC 1.3 µV/VO V mΩ 0.75 1.2 A 2.2 3.3 A * Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used. 8/24 L7800 SERIES ELECTRICAL CHARACTERISTICS FOR L7805C (refer to the test circuits, Tj = 0 to 125 oC, V i = 10V, Io = 500 mA, Ci = 0.33 µF, C o = 0.1 µF unless otherwise specified) Symbol Parameter Test Conditions Vo Output Voltage Tj = 25 oC Vo Output Voltage Io = 5 mA to 1 A Vi = 7 to 20 V ∆Vo* Line Regulation Vi = 7 to 25 V Vi = 8 to 12 V ∆Vo* Load Regulation Io = 5 to 1500 mA Io = 250 to 750 mA Id Quiescent Current Tj = 25 oC P o ≤ 15 W Min. Typ. Max. Unit 4.8 5 5.2 V 4.75 5 5.25 V 3 1 100 50 mV mV 100 50 mV mV 8 mA Tj = 25 oC Tj = 25 oC Tj = 25 oC Tj = 25 oC ∆Id Quiescent Current Change Io = 5 to 1000 mA 0.5 mA ∆Id Quiescent Current Change Vi = 7 to 25 V 0.8 mA ∆V o ∆T Output Voltage Drift Io = 5 mA eN Output Noise Voltage B = 10Hz to 100KHz Tj = 25 oC Supply Voltage Rejection Vi = 8 to 18 V SVR Vd Dropout Voltage Io = 1 A Ro Output Resistance f = 1 KHz Isc Short Circuit Current Vi = 35 V Iscp Short Circuit Peak Current f = 120 Hz -1.1 mV/oC 40 µV 62 o Tj = 25 C Tj = 25 oC o Tj = 25 C dB 2 V 17 mΩ 750 mA 2.2 A ELECTRICAL CHARACTERISTICS FOR L7852C (refer to the test circuits, Tj = 0 to 125 oC, V i = 10V, Io = 500 mA, Ci = 0.33 µF, C o = 0.1 µF unless otherwise specified) Symbol Parameter Test Conditions Min. Typ. Max. Unit 5.0 5.2 5.4 V 4.95 5.2 5.45 V 3 1 105 52 mV mV 105 52 mV mV 8 mA 0.5 mA Vo Output Voltage Tj = 25 oC Vo Output Voltage Io = 5 mA to 1 A Vi = 8 to 20 V ∆Vo* Line Regulation Vi = 7 to 25 V Vi = 8 to 12 V ∆Vo* Load Regulation Io = 5 to 1500 mA Io = 250 to 750 mA Id Quiescent Current Tj = 25 oC ∆Id Quiescent Current Change Io = 5 to 1000 mA ∆Id Quiescent Current Change Vi = 7 to 25 V 1.3 mA ∆V o ∆T Output Voltage Drift Io = 5 mA eN Output Noise Voltage B = 10Hz to 100KHz Tj = 25 oC Supply Voltage Rejection Vi = 8 to 18 V SVR Vd Dropout Voltage Io = 1 A Ro Output Resistance f = 1 KHz Isc Short Circuit Current Vi = 35 V Iscp Short Circuit Peak Current o Tj = 25 C P o ≤ 15 W Tj = 25 oC Tj = 25 oC Tj = 25 oC Tj = 25 oC f = 120 Hz o Tj = 25 C Tj = 25 oC -1.0 mV/oC 42 µV 61 dB 2 V 17 mΩ 750 mA 2.2 A * Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used. 9/24 L7800 SERIES ELECTRICAL CHARACTERISTICS FOR L7806C (refer to the test circuits, Tj = 0 to 125 oC, V i = 11V, Io = 500 mA, Ci = 0.33 µF, C o = 0.1 µF unless otherwise specified) Symbol Parameter Test Conditions Vo Output Voltage Tj = 25 oC Vo Output Voltage Io = 5 mA to 1 A Vi = 8 to 21 V ∆Vo* Line Regulation Vi = 8 to 25 V Vi = 9 to 13 V ∆Vo* Load Regulation Io = 5 to 1500 mA Io = 250 to 750 mA Id Quiescent Current Tj = 25 oC P o ≤ 15 W Min. Typ. Max. Unit 5.75 6 6.25 V 5.7 6 6.3 V 120 60 mV mV 120 60 mV mV 8 mA Tj = 25 oC Tj = 25 oC Tj = 25 oC Tj = 25 oC ∆Id Quiescent Current Change Io = 5 to 1000 mA 0.5 mA ∆Id Quiescent Current Change Vi = 8 to 25 V 1.3 mA ∆V o ∆T Output Voltage Drift Io = 5 mA eN Output Noise Voltage B = 10Hz to 100KHz Tj = 25 oC Supply Voltage Rejection Vi = 9 to 19 V SVR Vd Dropout Voltage Io = 1 A Ro Output Resistance f = 1 KHz Isc Short Circuit Current Vi = 35 V Iscp Short Circuit Peak Current f = 120 Hz -0.8 mV/oC 45 µV 59 o Tj = 25 C Tj = 25 oC o Tj = 25 C dB 2 V 19 mΩ 550 mA 2.2 A ELECTRICAL CHARACTERISTICS FOR L7808C (refer to the test circuits, Tj = 0 to 125 oC, V i = 14V, Io = 500 mA, Ci = 0.33 µF, C o = 0.1 µF unless otherwise specified) Symbol Min. Typ. Max. Unit Vo Output Voltage Tj = 25 oC 7.7 8 8.3 V Vo Output Voltage Io = 5 mA to 1 A P o ≤ 15 W Vi = 10.5 to 25 V 7.6 8 8.4 V ∆Vo* Line Regulation Vi = 10.5 to 25 V Tj = 25 oC Vi = 11 to 17 V Tj = 25 oC 160 80 mV mV ∆Vo* Load Regulation Io = 5 to 1500 mA Io = 250 to 750 mA 160 80 mV mV Id Quiescent Current Tj = 25 oC 8 mA ∆Id Quiescent Current Change Io = 5 to 1000 mA 0.5 mA ∆Id Quiescent Current Change Vi = 10.5 to 25 V 1 mA ∆V o ∆T Output Voltage Drift Io = 5 mA eN Output Noise Voltage B = 10Hz to 100KHz Tj = 25 oC Supply Voltage Rejection Vi = 11.5 to 21.5 V SVR Parameter Test Conditions Vd Dropout Voltage Io = 1 A Ro Output Resistance f = 1 KHz Isc Short Circuit Current Vi = 35 V Iscp Short Circuit Peak Current o Tj = 25 C Tj = 25 oC Tj = 25 oC f = 120 Hz o Tj = 25 C Tj = 25 oC -0.8 mV/oC 52 µV 56 dB 2 V 16 mΩ 450 mA 2.2 A * Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used. 10/24 L7800 SERIES ELECTRICAL CHARACTERISTICS FOR L7885C (refer to the test circuits, Tj = 0 to 125 oC, V i = 14.5V, I o = 500 mA, C i = 0.33 µF, C o = 0.1 µF unless otherwise specified) Symbol Parameter Test Conditions Min. Typ. Max. Unit 8.2 8.5 8.8 V 8.1 8.5 8.9 V Vi = 11 to 27 V Tj = 25 oC Vi = 11.5 to 17.5 V Tj = 25 oC 160 80 mV mV Tj = 25 oC Tj = 25 oC 160 80 mV mV 8 mA Vo Output Voltage Tj = 25 oC Vo Output Voltage Io = 5 mA to 1 A Vi = 11 to 26 V ∆Vo* Line Regulation ∆Vo* Load Regulation Io = 5 to 1500 mA Io = 250 to 750 mA Id Quiescent Current Tj = 25 oC P o ≤ 15 W ∆Id Quiescent Current Change Io = 5 to 1000 mA ∆Id Quiescent Current Change Vi = 11 to 27 V ∆V o ∆T Output Voltage Drift Io = 5 mA eN Output Noise Voltage B = 10Hz to 100KHz Tj = 25 oC Supply Voltage Rejection Vi = 12 to 22 V SVR Vd Dropout Voltage Io = 1 A Ro Output Resistance f = 1 KHz Isc Short Circuit Current Vi = 35 V Iscp Short Circuit Peak Current f = 120 Hz 0.5 mA 1 mA -0.8 mV/oC 55 µV 56 o Tj = 25 C Tj = 25 oC o Tj = 25 C dB 2 V 16 mΩ 450 mA 2.2 A ELECTRICAL CHARACTERISTICS FOR L7809C (refer to the test circuits, Tj = 0 to 125 oC, V i = 15V, Io = 500 mA, Ci = 0.33 µF, C o = 0.1 µF unless otherwise specified) Symbol Min. Typ. Max. Unit Vo Output Voltage Tj = 25 oC 8.65 9 9.35 V Vo Output Voltage Io = 5 mA to 1 A P o ≤ 15 W Vi = 11.5 to 26 V 8.55 9 9.45 V ∆Vo* Line Regulation Vi = 11.5 to 26 V Tj = 25 oC Vi = 12 to 18 V Tj = 25 oC 180 90 mV mV ∆Vo* Load Regulation Io = 5 to 1500 mA Io = 250 to 750 mA 180 90 mV mV Id Quiescent Current Tj = 25 oC 8 mA ∆Id Quiescent Current Change Io = 5 to 1000 mA 0.5 mA ∆Id Quiescent Current Change Vi = 11.5 to 26 V 1 mA ∆V o ∆T Output Voltage Drift Io = 5 mA eN Output Noise Voltage B = 10Hz to 100KHz Tj = 25 oC Supply Voltage Rejection Vi = 12 to 23 V SVR Parameter Test Conditions Vd Dropout Voltage Io = 1 A Ro Output Resistance f = 1 KHz Isc Short Circuit Current Vi = 35 V Iscp Short Circuit Peak Current o Tj = 25 C Tj = 25 oC Tj = 25 oC f = 120 Hz o Tj = 25 C Tj = 25 oC -1.0 mV/oC 70 µV 55 dB 2 V 17 mΩ 400 mA 2.2 A * Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used. 11/24 L7800 SERIES ELECTRICAL CHARACTERISTICS FOR L7812C (refer to the test circuits, Tj = 0 to 125 oC, V i = 19V, Io = 500 mA, Ci = 0.33 µF, C o = 0.1 µF unless otherwise specified) Symbol Min. Typ. Max. Unit Vo Output Voltage Parameter Tj = 25 oC Test Conditions 11.5 12 12.5 V Vo Output Voltage Io = 5 mA to 1 A P o ≤ 15 W Vi = 14.5 to 27 V 11.4 12 12.6 V ∆Vo* Line Regulation Vi = 14.5 to 30 V Tj = 25 oC Vi = 16 to 22 V Tj = 25 oC 240 120 mV mV ∆Vo* Load Regulation Io = 5 to 1500 mA Io = 250 to 750 mA 240 120 mV mV Id Quiescent Current Tj = 25 oC 8 mA Tj = 25 oC Tj = 25 oC ∆Id Quiescent Current Change Io = 5 to 1000 mA 0.5 mA ∆Id Quiescent Current Change Vi = 14.5 to 30 V 1 mA ∆V o ∆T Output Voltage Drift Io = 5 mA -1 mV/oC eN Output Noise Voltage B = 10Hz to 100KHz Tj = 25 oC 75 µV Supply Voltage Rejection Vi = 15 to 25 V SVR Vd Dropout Voltage Io = 1 A Ro Output Resistance f = 1 KHz Isc Short Circuit Current Vi = 35 V Iscp Short Circuit Peak Current f = 120 Hz 55 o Tj = 25 C Tj = 25 oC o Tj = 25 C dB 2 V 18 mΩ 350 mA 2.2 A ELECTRICAL CHARACTERISTICS FOR L7815C (refer to the test circuits, Tj = 0 to 125 oC, V i = 23V, Io = 500 mA, Ci = 0.33 µF, C o = 0.1 µF unless otherwise specified) Symbol Min. Typ. Max. Unit Vo Output Voltage Tj = 25 oC 14.4 15 15.6 V Vo Output Voltage Io = 5 mA to 1 A P o ≤ 15 W Vi = 17.5 to 30 V 14.25 15 15.75 V ∆Vo* Line Regulation Vi = 17.5 to 30 V Tj = 25 oC Vi = 20 to 26 V Tj = 25 oC 300 150 mV mV ∆Vo* Load Regulation Io = 5 to 1500 mA Io = 250 to 750 mA 300 150 mV mV Id Quiescent Current Tj = 25 oC 8 mA ∆Id Quiescent Current Change Io = 5 to 1000 mA 0.5 mA ∆Id Quiescent Current Change Vi = 17.5 to 30 V 1 mA ∆V o ∆T Output Voltage Drift Io = 5 mA -1 mV/oC eN Output Noise Voltage B = 10Hz to 100KHz Tj = 25 oC 90 µV Supply Voltage Rejection Vi = 18.5 to 28.5 V SVR Parameter Test Conditions Vd Dropout Voltage Io = 1 A Ro Output Resistance f = 1 KHz Isc Short Circuit Current Vi = 35 V Iscp Short Circuit Peak Current o Tj = 25 C Tj = 25 oC Tj = 25 oC f = 120 Hz o Tj = 25 C Tj = 25 oC 54 dB 2 V 19 mΩ 230 mA 2.1 A * Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used. 12/24 L7800 SERIES ELECTRICAL CHARACTERISTICS FOR L7818C (refer to the test circuits, Tj = 0 to 125 oC, V i = 26V, Io = 500 mA, Ci = 0.33 µF, C o = 0.1 µF unless otherwise specified) Symbol Parameter Test Conditions Vo Output Voltage Tj = 25 oC Vo Output Voltage Io = 5 mA to 1 A Vi = 21 to 33 V ∆Vo* Line Regulation Vi = 21 to 33 V Vi = 24 to 30 V ∆Vo* Load Regulation Io = 5 to 1500 mA Io = 250 to 750 mA Id Quiescent Current Tj = 25 oC P o ≤ 15 W Quiescent Current Change Io = 5 to 1000 mA Quiescent Current Change Vi = 21 to 33 V ∆V o ∆T Output Voltage Drift Io = 5 mA eN Output Noise Voltage B = 10Hz to 100KHz Tj = 25 oC Supply Voltage Rejection Vi = 22 to 32 V Dropout Voltage Io = 1 A Ro Output Resistance f = 1 KHz Isc Short Circuit Current Vi = 35 V Iscp Short Circuit Peak Current Max. Unit 18 18.7 V 17.1 18 18.9 V 360 180 mV mV 360 180 mV mV 8 mA Tj = 25 oC Tj = 25 oC ∆Id Vd Typ. 17.3 Tj = 25 oC Tj = 25 oC ∆Id SVR Min. f = 120 Hz 0.5 mA 1 mA -1 mV/oC 110 µV 53 o Tj = 25 C Tj = 25 oC o Tj = 25 C dB 2 V 22 mΩ 200 mA 2.1 A ELECTRICAL CHARACTERISTICS FOR L7820C (refer to the test circuits, Tj = 0 to 125 oC, V i = 28V, Io = 500 mA, Ci = 0.33 µF, C o = 0.1 µF unless otherwise specified) Symbol Parameter Test Conditions Vo Output Voltage Tj = 25 oC Vo Output Voltage Io = 5 mA to 1 A Vi = 23 to 35 V ∆Vo* Line Regulation Vi = 22.5 to 35 V Tj = 25 oC Vi = 26 to 32 V Tj = 25 oC ∆Vo* Load Regulation Io = 5 to 1500 mA Io = 250 to 750 mA Id Quiescent Current Tj = 25 oC ∆Id Quiescent Current Change Io = 5 to 1000 mA ∆Id Quiescent Current Change Vi = 23 to 35 V ∆V o ∆T Output Voltage Drift Io = 5 mA eN Output Noise Voltage B = 10Hz to 100KHz Tj = 25 oC Supply Voltage Rejection Vi = 24 to 35 V SVR Vd Dropout Voltage Io = 1 A Ro Output Resistance f = 1 KHz Isc Short Circuit Current Vi = 35 V Iscp Short Circuit Peak Current o Tj = 25 C P o ≤ 15 W Min. Typ. Max. Unit 19.2 20 20.8 V 19 20 21 V 400 200 mV mV 400 200 mV mV Tj = 25 oC Tj = 25 oC f = 120 Hz o Tj = 25 C Tj = 25 oC 8 mA 0.5 mA 1 mA -1 mV/oC 150 µV 52 dB 2 V 24 mΩ 180 mA 2.1 A * Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used. 13/24 L7800 SERIES ELECTRICAL CHARACTERISTICS FOR L7824C (refer to the test circuits, Tj = 0 to 125 oC, V i = 33V, Io = 500 mA, Ci = 0.33 µF, C o = 0.1 µF unless otherwise specified) Symbol Parameter Test Conditions Vo Output Voltage Tj = 25 oC Vo Output Voltage Io = 5 mA to 1 A Vi = 27 to 38 V ∆Vo* Line Regulation Vi = 27 to 38 V Vi = 30 to 36 V ∆Vo* Load Regulation Io = 5 to 1500 mA Io = 250 to 750 mA Id Quiescent Current Tj = 25 oC P o ≤ 15 W Min. Typ. Max. Unit 23 24 25 V 22.8 24 25.2 V 480 240 mV mV 480 240 mV mV 8 mA Tj = 25 oC Tj = 25 oC Tj = 25 oC Tj = 25 oC ∆Id Quiescent Current Change Io = 5 to 1000 mA ∆Id Quiescent Current Change Vi = 27 to 38 V ∆V o ∆T Output Voltage Drift Io = 5 mA -1.5 mV/oC eN Output Noise Voltage B = 10Hz to 100KHz Tj = 25 oC 170 µV Supply Voltage Rejection Vi = 28 to 38 V SVR Vd Dropout Voltage Io = 1 A Ro Output Resistance f = 1 KHz Isc Short Circuit Current Vi = 35 V Iscp Short Circuit Peak Current o Tj = 25 C f = 120 Hz o Tj = 25 C Tj = 25 oC 50 0.5 mA 1 mA dB 2 V 28 mΩ 150 mA 2.1 A * Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulce testing with low duty cycle is used. 14/24 L7800 SERIES Figure 4 : Dropout Voltage vs. Junction Temperature. Figure 5 : Peak Output Current vs. Input/output Differential Voltage. Figure 6 : Supply Voltage Rejection vs. Frequency. Figure 7 : Output Voltage vs. Junction Temperature. Figure 8 : Output Impedance vs. Frequency. Figure 9 : Quiescent Current vs. Junction Temperature. 15/24 L7800 SERIES Figure 10 : Load Transient Response. Figure 11 : Line Transient Response. Figure 12 : Quiescent Current vs. Input Voltage. Figure 13 : Fixed Output Regulator. Figure 14 : Current Regulator. IO = Notes : 1. 2. 3. 16/24 To specify an output voltage, substitute voltage value for ”XX”. Although no output capacitor is needed for stabili ty, it does improve transient response. Required if regulator is located an appreciable dis-tance from power supply filter. VXX R1 + Id L7800 SERIES Figure 15 : Circuit for Increasing Output Voltage. Figure 16 : Adjustable Output Regulator (7 to 30V). IR1 ≥ 5 Id VO = VXX (1 + R2 R1 ) + Id R2 Figure 17 : 0.5 to 10V Regulator. Figure 18 : High Current Voltage Regulator. R1 = IREQ – VO = VXX R4 R1 VBEQ1 IQ1 βQ1 IO = IREG + Q1 [IREG – VBEQ1 R1 ] 17/24 L7800 SERIES Figure 19 : High Output Current with Short Circuit Protection. RSC = Figure 20 : Tracking Voltage Regulator. VBEQ2 ISC Figure 21 : Split Power Supply (± 15V – 1A). Figure 22 : Negative Output Voltage Circuit. * Against potential latch-up problems. Figure 23 : Switching Regulator. Figure 24 : High Input Voltage Circuit. VIN = Vi – (VZ + VBE) 18/24 L7800 SERIES Figure 25 : High Input Voltage Circuit. Figure 26 : High Output Voltage Regulator. Figure 27 : High Input and Output Voltage. Figure 28 : Reducing Power Dissipation with Dropping Resistor. VO = VXX + VZ1 R= Vi(min) – VXX – VDROP(max) IO(max) + Id(max) Figure 29 : Remote Shutdown. 19/24 L7800 SERIES Figure 30 : Power AM Modulator (unity voltage gain, Io ≤ 1A). Figure 31 : Adjustable Output Voltage with Temperature Compensation. VO = VXX (1 + Note : The circuit performs well up to 100KHz. R2 ) + VBE R1 Note : Q2 is connected as a diode in order to compensate the variation of the Q 1 VBE with the temperature. C allows a slow rise-time of the VO Figure 32 : Light Controllers (Vo min = Vxx + VBE). VO falls when the light goes up VO rises when the light goes up Figure 33 : Protection against Input Short-circuit with High Capacitance Loads. Applications with high capacitance loads and an output voltage greater than 6 volts need an external diode (see fig. 33) to protect the device against input short circuit. In this case the input voltage falls rapidly while the output voltage decreases showly. The capacitance discharges by means of the Base-Emitter junction of the series pass transistor in the regulator. If the energy is sufficiently high, the tran-sistor 20/24 L7800 SERIES TO-3 MECHANICAL DATA mm DIM. MIN. inch TYP. MAX. MIN. TYP. MAX. A 11.00 13.10 0.433 0.516 B 0.97 1.15 0.038 0.045 C 1.50 1.65 0.059 0.065 D 8.32 8.92 0.327 0.351 E 19.00 20.00 0.748 0.787 G 10.70 11.10 0.421 0.437 N 16.50 17.20 0.649 0.677 P 25.00 26.00 0.984 1.023 R 4.00 4.09 0.157 0.161 U 38.50 39.30 1.515 1.547 V 30.00 30.30 1.187 1.193 A P C O N B V E G U D R P003F 21/24 L7800 SERIES TO-220 MECHANICAL DATA mm DIM. MIN. inch MAX. MIN. A 4.40 TYP. 4.60 0.173 0.181 C 1.23 1.32 0.048 0.051 D 2.40 2.72 0.094 D1 TYP. MAX. 0.107 1.27 0.050 E 0.49 0.70 0.019 0.027 F 0.61 0.88 0.024 0.034 F1 1.14 1.70 0.044 0.067 F2 1.14 1.70 0.044 0.067 G 4.95 5.15 0.194 0.203 G1 2.4 2.7 0.094 0.106 H2 10.0 10.40 0.393 L2 0.409 16.4 0.645 13.0 14.0 0.511 0.551 L5 2.65 2.95 0.104 0.116 L6 15.2 15.9 0.598 0.625 L7 6.2 6.6 0.244 0.260 L9 3.5 4.2 0.137 0.165 DIA. 3.75 3.85 0.147 0.151 D1 C D A E L4 H2 G G1 F1 L2 F2 F Dia. L5 L9 L7 L6 L4 P011C 22/24 L7800 SERIES ISOWATT220 MECHANICAL DATA mm DIM. MIN. inch TYP. MAX. MIN. TYP. MAX. A 4.4 4.6 0.173 0.181 B 2.5 2.7 0.098 0.106 D 2.5 2.75 0.098 0.108 E 0.4 0.7 0.015 0.027 F 0.75 1 0.030 0.039 F1 1.15 1.7 0.045 0.067 F2 1.15 1.7 0.045 0.067 G 4.95 5.2 0.195 0.204 G1 2.4 2.7 0.094 0.106 H 10 10.4 0.393 0.409 L2 16 0.630 28.6 30.6 1.126 1.204 L4 9.8 10.6 0.385 0.417 L6 15.9 16.4 0.626 0.645 L7 9 9.3 0.354 3.66 Ø 3 3.2 0.118 0.126 B D A E L3 L3 L6 F F1 L7 F2 H G G1 Ø 1 2 3 L2 L4 P011G 23/24 L7800 SERIES Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsability for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use ascritical components in life support devices or systems without express written approval of SGS-THOMSON Microelectonics. 1994 SGS-THOMSON Microelectronics - All Rights Reserved SGS-THOMSON Microelectronics GROUP OF COMPANIES Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands Singapore - Spain - Sweden - Switzerland - Taiwan - Thailand - United Kingdom - U.S.A 24/24 ANEXOS 3 - Fichas Técnicas do Hardware desenvolvido 1N4001 lxv 1N4001 thru 1N4007 Vishay Semiconductors formerly General Semiconductor General Purpose Plastic Rectifier DO-204AL (DO-41) Reverse Voltage 50 to 1000V Forward Current 1.0A Features 1.0 (25.4) MIN. • Plastic package has Underwriters Laboratories Flammability Classification 94V-0 • Construction utilizes void-free molded plastic technique • Low reverse leakage • High forward surge capability • High temperature soldering guaranteed: 350°C/10 seconds, 0.375" (9.5mm) lead length, 5 lbs. (2.3kg) tension 0.107 (2.7) 0.080 (2.0) DIA. 0.205 (5.2) 0.160 (4.1) Mechanical Data Case: JEDEC DO-204AL, molded plastic body Terminals: Plated axial leads, solderable per MIL-STD-750, Method 2026 Polarity: Color band denotes cathode end Mounting Position: Any Weight: 0.012 oz., 0.3 g 1.0 (25.4) MIN. 0.034 (0.86) 0.028 (0.71) DIA. NOTE: Lead diameter is 0.026 (0.66) 0.023 (0.58) for suffix "E" part numbers Dimensions in inches and (millimeters) Maximum Ratings & Thermal Characteristics Ratings at 25°C ambient temperature unless otherwise specified. Parameter Symb. 1N 4001 1N 4002 1N 4003 1N 4004 1N 4005 1N 4006 1N 4007 Unit Maximum repetitive peak reverse voltage VRRM 50 100 200 400 600 800 1000 V * Maximum RMS voltage VRMS 35 70 140 280 420 560 700 V * Maximum DC blocking voltage VDC 50 100 200 400 600 800 1000 V * Maximum average forward rectified current 0.375" (9.5mm) lead length at TA = 75°C IF(AV) 1.0 A * Peak forward surge current 8.3ms single half sine-wave superimposed on rated load (JEDEC Method) TA = 75°C IFSM 30 A * Maximum full load reverse current, full cycle average 0.375" (9.5mm) lead length TL = 75°C IR(AV) 30 µA Typical thermal resistance (1) RθJA RθJL 50 25 °C/W TA +150 V TJ, TSTG –50 to +175 °C * Maximum DC blocking voltage temperature * Operating junction and storage temperature range Electrical Characteristics Ratings at 25°C ambient temperature unless otherwise specified. Maximum instantaneous forward voltage at 1.0A * Maximum DC reverse current at rated DC blocking voltage TA = 25°C TA = 125°C Typical junction capacitance at 4.0V, 1MHz VF 1.1 V IR 5.0 50 µA CJ 15 pF Note: (1) Thermal resistance from junction to ambient at 0.375” (9.5mm) lead length, P.C.B. mounted Document Number 88503 13-Jan-03 *JEDEC registered values www.vishay.com 1 1N4001 thru 1N4007 Vishay Semiconductors formerly General Semiconductor Ratings and Characteristic Curves (TA = 25°C unless otherwise noted) Fig. 2 – Maximum Non-Repetitive Peak Forward Surge Current Fig. 1 – Forward Current Derating Curve 30 60HZ Resistive or Inductive Load Peak Forward Surge Current (A) Average Forward Rectified Current (A) 1.0 0.8 0.2 x 0.2" (5.0 x 5.0mm) Copper Pads 0.6 0.4 0.2 0.375" (9.5mm) Lead Length 0 TA = 75°C 8.3ms Single Half Sine-Wave (JEDEC Method) 25 20 15 10 5.0 0 25 50 75 100 125 150 1 175 10 Ambient Temperature (°C) Fig. 3 – Typical Instantaneous Forward Characteristics Fig. 4 – Typical Reverse Characteristics 1,000 10 Instantaneous Reverse Current (µA) Instantaneous Forward Current (A) 20 TJ = 25°C Pulse Width = 300µs 1% Duty Cycle 1 0.1 0.01 0.6 TJ = 150°C 100 10 TJ = 100°C 1 TJ = 25°C 0.1 0.01 0.8 1.0 1.2 1.4 1.6 1.8 0 60 80 100 100 100 Transient Thermal Impedance (°C/W) TJ = 25°C f = 1.0MHZ Vsig = 50mVp-p 10 1 10 Reverse Voltage (V) www.vishay.com 2 40 Fig. 6 – Typical Transient Thermal Impedance Fig. 5 – Typical Junction Capacitance 1 0.1 20 Percentage of Peak Reverse Voltage (%) Instantaneous Forward Voltage (V) Junction Capacitance (pF) 100 Number of Cycles at 60HZ 100 10 1 0.1 0.01 0.1 1 10 100 t -- Pulse Duration (sec) Document Number 88503 13-Jan-03 ANEXOS 3 - Fichas Técnicas do Hardware desenvolvido GL494 lxviii GL494 GL494 PWM CONTROL CIRCUIT Pin Configuration Description The GL494 incorporates on a single monolithic chip all the functions required in the construction of a pulse-widthmodulation control circuit. Designed primarily for power supply control, the GL494 contains an on-chip 5-volt regulator, two error amplifiers, adjustable oscillator, deadtime control comparator, pulse-steering flip-flop, and output-control circuitry. The uncommitted output transistors pro-vide either common-emitter or emitterfollower output capability. Push-pull or single-ended output operation may be selected through the outputcontrol function. The ar-chitecture of the GL494 prohibits the possibility of either output being pulsed twice during push-pull operation. NONINV INPUT 1 16 NON INV INPUT INV. INPUT 2 15 INV. INPUT FEEDBACK 3 14 REF. OUT 4 13 OUTPUT CONTROL Cr 5 12 Vcc Rr 6 11 C2 GND 7 10 E2 C1 8 9 E1 DEAD TIME CONTROL Features — Complete PWM Power Control Circuitry — Uncommitted Outputs for 200mA Sink or Source — Output Control Selects Single-Ended or Push-Pull Operation — Internal Circuitry Prohibits Double Pulse at Either Output — Internal Regulator Provides a Stable 5V Reference Supply — Variable Dead-Time Provides Control Over Total Range Function Table Output Control Output Function Grounded Single-ended or Parallel Output At Vref Normal Push-Pull Operation Block Diagram RT CT OUTPUT CONTROL OSCILLATOR (See Function Table) DEAD TIME CONTROL PULSE STEERING FLIP FLOP Q 0.1V T (4) ERROR AMPLIFIERS NONINVERTING(1) + INPUT INVERTING INPUT (2) INVERTING INPUT FEEDBACK Q PWM COMPARATOR (15) E1(9) C1(8) − ERROR AMP1 NONINVERTING(16) INPUT (13) + − VCC (12) REFERENCE REGULATOR ERROR AMP2 REF OUT (14) GND (7) (3) 1 E1(10) C2(11) GL494 Absolute Maximum Ratings Supply Voltage, VCC ……………………………………………………………………….. 41 Amplifier Input Voltage ……………………………………………………………….. VCC +0.3 Collector Output Voltage ……………………………………………………………………… 41 Continuous Total dissipation at (or below) 25 °C ………………………………………. 1000 Operating Free-Air Temperature Range ……………………………………………… -20 to 85 Storage Temperature Range ……………………………………………………….….. -65 to 150 Collector Output Current ………………………………………………………………….. 250 V V V mW °C °C mA Recommended Operation Conditions PARAMETER MIN MAX UNIT Supply Voltage, VCC 7 40 V Amplifier Input Voltage, V1 -0.3 VCC -2 V Collector Output Voltage, Vo 40 V Collector Output Current (Each Transistor) 200 mA Current Into Feed back Terminal 0.3 mA Timing Capacitor, C T 0.47 10,000 nF Timing Resistor, R T 1.8 500 KΩ Oscillator Frequency 1 300 KHz °C Operating Free-Air Temperature -20 85 Electrical Characteristics (Temperature −20 ~ 85°C , VCC =15V, f=10KHz) Reference Section PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT 4.75 5 5.25 V Output voltage ( Vref ) IO = 1mA Input regulation VCC = 7 V to 40V, TA = 25°C 2 25 mV Output regulation IO = 1 to 10mA, TA = 25°C 1 15 mV Output Voltage change with temperature TA = −20°C to 85°C 0.2 1 % Short-circuit Output current(2) Vref = 0 35 mA Oscillator Section PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT Frequency C T = 0.01µF , R T = 12 kΩ 10 KHz Standard deviation of frequency (3) All values of VCC , C T , R T , TA Constant 10 % Frequency change with Voltage VCC = 7 V to 40V, TA = 25°C 0.1 % Frequency change with temperature C T = 0.01µF , R T = 12 kΩ TA = −20°C to 85°C 2 2 % GL494 Dead Time Control Section PARAMETER TEST CONDITIONS Input bias current (pin 4) VI=0 to 5.25V Maximum duty cycle, Each output VI ( pin 4) =0V Input threshold voltage (pin 4) MIN TYP(1) MAX UNIT -2 -10 µA 45 Zero duty cycle % 3 Maximum duty cycle 3.3 0 V V Error Amp Sections PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT Input offset voltage VO( PIN3) = 2.5V 2 10 mV Input offset current VO( PIN3) = 2.5V 25 250 nA Input bias current VO( PIN3) = 2.5V 0.2 1 µA Common-mode input voltage range VCC = 7V to 40V Open-loop voltage Amplification ∆VO = 3V, VO = 0.5 to3. 5V LOW -0.3 HIGH VCC − 2 70 Unity-gain bandwidth V 95 dB 800 KHz Common-mode rejection ratio VCC = 40V , TA = 25°C 65 80 dB Output sink current (pin 3) VID = −15mV to –5V, VO( pin 3) = 0.7V 0.3 0.7 mA Output source current (pin 3) VID = 15mV to 5V, VO( pin 3) = 3.5V -2 mA PWM Comparaor Section PARAMETER TEST CONDITIONS MIN TYP(1) MAX UNIT 4 4.5 V Input threshold voltage (pin 3) Zero duty cycle Input sink current (pin 3) VO( pin 3) = 0.7V 0.3 0.7 TEST CONDITIONS MIN TYP(1) MAX UNIT Common-emitter configuration, See Test Circuit 3 100 200 ns 25 100 ns Emitter-follower configuration, See Test Circuit 4 100 200 ns 40 100 ns mA Switching Characteristics PARAMETER Output Voltage rise time Output Voltage fall time Output Voltage rise time Output Voltage fall time 3 GL494 Output Section PARAMETER TEST CONDITIONS Collector off-state current VCE = 40V, VCC = 40V Emitter off-state current VCC = VC = 40V, VE = 0 MIN TYP(1) MAX UNIT 2 100 mA -100 mA Collector-emitter Common-emitter Saturation voltage Emitter-follower VE = 0, I C = 200mA 1.1 1.3 VC = 15V, I E = −200mA 1.5 2.5 Output control input current VI = Vref V 3.5 mA TYP(1) MAX UNIT VCC = 15V 6 10 mA VCC = 40V 9 15 mA Total Device PARAMETER Standby supply current Average supply current TEST CONDITIONS All other inputs & Outputs open V( pin 4) = 2V See Test circuit 1 MIN 7.5 Notes: (1) All typical values except for temperature coefficients are at TA = 25 °C (2) Duration of the short circuit should not exceed one second. (3) Standard deviation is a measure of the statistical distribution about the mean as derived from the formula N σ= ∑ (X n − X ) 2 n =1 N −1 4 mA GL494 Parameter Measurement Information 1.Dead time and Feedback Control Vcc=15V TEST INPUTS 0 Vcc VOLTAGE AT C2 OUTPUT 1 DEAD TIME (4) (8) C1 (9) E1 12kΩ FEEDBACK (3) Re (6) Cr (5) (11) C2 0.01µF (+) (16) ERROR (12) E2 (-) (15) AMP (+) (1) ERROR (-) (2) AMP (14) REF OUTPUT 50kΩ CONTROL GND (7) OUT Vcc VOLTAGE AT C1 150Ω 150Ω 2W 2W 0 OUTPUT 2 VOLTAGE AT CT THRESHOLD VOLTAGE DEAD-TIME CONTROL INTPUT (13) FEEDBACK 0V THRESHOLD VOLTAGE 0.7V MAX 0% DUTY CYCLE TEST CIRCUIT MAX VOLTAGE WAVEFORMS 2. Error Amplifier Characteristics + ERROR AMPLIFIER UNDER TEST FEEDBACK TERMINAL V1 – + VREF – OTHER ERROR AMPLIFIER 3. Common-Emitter Configuration 15V (EACH OUTPUT CIRCUIT) 68Ω 2W 90% 90% OUTPUT CL=15pF (INCLUDES PROBE AND JIG CAPACITANCE) 10% tr TEST CIRCUIT 10% tf OUTPUT VOLTAGE WAVEFORM 5 0% GL494 4. Emitter-Follower Configuration (EACH OUTPUT EIRCUIT) 15V 90% 90% 10% 10% OUTPUT 68Ω 2W tr tf CL=15pF (INCLUDES PROBE AND JIG CAPACITANCE) TEST CIRCUIT OUTPUT VOLTAGE WAVEFORM Typical Performance Curves FIGURE 1 – OSCILLATOR FREQUENCY versus TIMING RESISTANCE 100k 0.001 µF 10k AVOL, OPEN-LOOP VOATAGE GAIN (db) 300k Vcc=15V CT=0.01 µF 1k 0.1 µF 100 0.1 µF 30 1k 2k 5k 10k 20k 50k FIGURE 2 – OPEN LOOP VOLTAGE GAIN AND PHASE versus FREQUENCY 20 100 100k 200k 500k 1M 90 0 70 AVOL 60 ACH OUTPUT %DT. PERCENT DEADTIME, EACH OUTPUT 10 9 7 CT=0.01 µF 6 -40 -80 40 -100 30 -120 20 -140 10 -160 0 1.0 10 100 1k 10k 100k -80 1M f, FREQUENCY (Hz) FIGURE 3 – PERCENT DEAD TIME versus OSCILLATOR FREQUENCY Vcc=15V Voc=Vref V(PIN4)=0V -20 -60 θ 50 RT, TIMING RESISTANCE (Ω) 8 Vcc=15V Vo=3V RL=2kΩ 80 FIGURE 4 – PERCENT DUTY CYCLE versus DEAD-TIME CONTROL VOLTAGE 50 Vcc=15V Voc=Vref 1) CT=0.01 RT=10k 2) CT=0.001 RT=30K 40 30 1 5 20 4 2 3 0.01 µF 2 10 1 0 0 100 1k 10k 100k 0 fo, OSCILLATOR FREQUENCY (Hz) 1.0 2.0 DEAD TIME CONTROL VOLTAGE (V) 6 3.0 3.5 GL494 1.9 FIGURE 5 – EMITTER-FOLLOWER CONFIGURATION OUTPUT-SATURATION VOLTAGE versus EMITTER CURRENT 1.3 1.2 Vcc=15V 1.7 VCE(SAT), SATURATION VOLTAGE (V) VCE(SAT), SATURATION VOLTAGE (V) 1.8 1.6 1.5 1.4 1.3 1.2 1.1 0 50 100 150 200 250 IE, EMITTER CURRENT (mA) FUGURE 7 – STANDBY-SUPPLY CURRENT versus SUPPLY VOLTAGE 8.0 Icc, SUPPLY CURRENT (mA) FIGURE 6 – COMMON-EMITTER CONFIGURATION OUTPUT-SATURATION VOLTAGE versus COLLECTOR CURRENT 7.0 6.0 5.0 4.0 3.0 2.0 1.0 0 0 5.0 10 15 20 25 30 35 40 Vcc, SUPPLY VOLTAGE (V) 7 Vcc=15V 1.1 1.0 0.9 0.8 0.7 0.6 0.5 0 50 100 150 200 Ic, COLLECTOR CURRENT (mA) 250 ANEXOS 3 - Fichas Técnicas do Hardware desenvolvido L293 lxxvi L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008B – SEPTEMBER 1986 – REVISED JUNE 2002 D D D D D D D D D D Featuring Unitrode L293 and L293D Products Now From Texas Instruments Wide Supply-Voltage Range: 4.5 V to 36 V Separate Input-Logic Supply Internal ESD Protection Thermal Shutdown High-Noise-Immunity Inputs Functional Replacements for SGS L293 and SGS L293D Output Current 1 A Per Channel (600 mA for L293D) Peak Output Current 2 A Per Channel (1.2 A for L293D) Output Clamp Diodes for Inductive Transient Suppression (L293D) N, NE PACKAGE (TOP VIEW) 1,2EN 1A 1Y HEAT SINK AND GROUND 16 2 15 3 14 4 13 5 12 2Y 2A 6 11 7 10 VCC2 8 9 VCC1 4A 4Y HEAT SINK AND GROUND 3Y 3A 3,4EN DWP PACKAGE (TOP VIEW) 1,2EN 1A 1Y NC NC NC description The L293 and L293D are quadruple high-current half-H drivers. The L293 is designed to provide bidirectional drive currents of up to 1 A at voltages from 4.5 V to 36 V. The L293D is designed to provide bidirectional drive currents of up to 600-mA at voltages from 4.5 V to 36 V. Both devices are designed to drive inductive loads such as relays, solenoids, dc and bipolar stepping motors, as well as other high-current/high-voltage loads in positive-supply applications. 1 HEAT SINK AND GROUND 1 28 2 27 3 26 4 25 5 24 6 23 7 22 8 21 9 20 NC NC 2Y 2A 10 19 11 18 12 17 13 16 VCC2 14 15 VCC1 4A 4Y NC NC NC HEAT SINK AND GROUND NC NC 3Y 3A 3,4EN All inputs are TTL compatible. Each output is a complete totem-pole drive circuit, with a Darlington transistor sink and a pseudo-Darlington source. Drivers are enabled in pairs, with drivers 1 and 2 enabled by 1,2EN and drivers 3 and 4 enabled by 3,4EN. When an enable input is high, the associated drivers are enabled and their outputs are active and in phase with their inputs. When the enable input is low, those drivers are disabled and their outputs are off and in the high-impedance state. With the proper data inputs, each pair of drivers forms a full-H (or bridge) reversible drive suitable for solenoid or motor applications. On the L293, external high-speed output clamp diodes should be used for inductive transient suppression. A VCC1 terminal, separate from VCC2, is provided for the logic inputs to minimize device power dissipation. The L293and L293D are characterized for operation from 0°C to 70°C. Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Copyright 2002, Texas Instruments Incorporated PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 1 L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008B – SEPTEMBER 1986 – REVISED JUNE 2002 block diagram VCC1 1 0 1 0 1 16 2 15 1 M 14 4 13 5 12 6 11 3 7 10 9 8 VC NOTE: Output diodes are internal in L293D. TEXAS INSTRUMENTS AVAILABLE OPTIONS PACKAGE PLASTIC DIP (NE) TA L293NE L293DNE 0°C to 70°C AVAILABLE OPTIONS PACKAGED DEVICES TA 0°C to 70°C SMALL OUTLINE (DWP) PLASTIC DIP (N) L293DWP L293DDWP L293N L293DN The DWP package is available taped and reeled. Add the suffix TR to device type (e.g., L293DWPTR). 2 POST OFFICE BOX 655303 M 4 3 2 1 0 1 0 • DALLAS, TEXAS 75265 1 0 1 0 M L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008B – SEPTEMBER 1986 – REVISED JUNE 2002 FUNCTION TABLE (each driver) INPUTS† OUTPUT A EN Y H H H L H L X L Z H = high level, L = low level, X = irrelevant, Z = high impedance (off) † In the thermal shutdown mode, the output is in the high-impedance state, regardless of the input levels. logic diagram 1A 1,2EN 2A 3A 3,4EN 4A 2 1 7 10 9 15 ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ ÁÁ 3 6 11 14 1Y 2Y 3Y 4Y schematics of inputs and outputs (L293) EQUIVALENT OF EACH INPUT TYPICAL OF ALL OUTPUTS VCC2 VCC1 Current Source Input Output GND GND POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 3 L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008B – SEPTEMBER 1986 – REVISED JUNE 2002 schematics of inputs and outputs (L293D) EQUIVALENT OF EACH INPUT TYPICAL OF ALL OUTPUTS VCC2 VCC1 Current Source Output Input GND GND absolute maximum ratings over operating free-air temperature range (unless otherwise noted)† Supply voltage, VCC1 (see Note 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 V Output supply voltage, VCC2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 V Input voltage, VI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 V Output voltage range, VO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –3 V to VCC2 + 3 V Peak output current, IO (nonrepetitive, t ≤ 5 ms): L293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±2 A Peak output current, IO (nonrepetitive, t ≤ 100 µs): L293D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 1.2 A Continuous output current, IO: L293 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1 A Continuous output current, IO: L293D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ± 600 mA Continuous total dissipation at (or below) 25°C free-air temperature (see Notes 2 and 3) . . . . . . . 2075 mW Continuous total dissipation at 80°C case temperature (see Note 3) . . . . . . . . . . . . . . . . . . . . . . . . . 5000 mW Maximum junction temperature, TJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150°C Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260°C Storage temperature range, Tstg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . –65°C to 150°C † Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. NOTES: 1. All voltage values are with respect to the network ground terminal. 2. For operation above 25°C free-air temperature, derate linearly at the rate of 16.6 mW/°C. 3. For operation above 25°C case temperature, derate linearly at the rate of 71.4 mW/°C. Due to variations in individual device electrical characteristics and thermal resistance, the built-in thermal overload protection may be activated at power levels slightly above or below the rated dissipation. 4 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008B – SEPTEMBER 1986 – REVISED JUNE 2002 recommended operating conditions Supply voltage VCC1 VCC2 VIH High level input voltage High-level VCC1 ≤ 7 V VCC1 ≥ 7 V VIL Low-level output voltage MIN MAX 4.5 7 VCC1 2.3 36 2.3 –0.3† UNIT V VCC1 7 V 1.5 V V TA Operating free-air temperature 0 70 °C † The algebraic convention, in which the least positive (most negative) designated minimum, is used in this data sheet for logic voltage levels. electrical characteristics, VCC1 = 5 V, VCC2 = 24 V, TA = 25°C PARAMETER TEST CONDITIONS VOH High-level output voltage L293: IOH = –1 A L293D: IOH = – 0.6 A VOL Low-level output voltage L293: IOL = 1 A L293D: IOL = 0.6 A VOKH VOKL High-level output clamp voltage L293D: IOK = – 0.6 A Low-level output clamp voltage L293D: IOK = 0.6 A IIH High level input current High-level IIL Low level input current Low-level ICC1 Logic supply current A EN A EN MIN TYP VCC2–1.8 VCC2–1.4 1.2 Output supply current IO = 0 V V V 100 0.2 10 –3 –10 –2 –100 All outputs at high level 13 22 All outputs at low level 35 60 All outputs at high impedance ICC2 1.8 0.2 VI = 0 UNIT V VCC2 + 1.3 1.3 VI = 7 V IO = 0 MAX 8 24 All outputs at high level 14 24 All outputs at low level 2 6 All outputs at high impedance 2 4 µA µA mA mA switching characteristics, VCC1 = 5 V, VCC2 = 24 V, TA = 25°C PARAMETER TEST CONDITIONS tPLH tPHL Propagation delay time, low-to-high-level output from A input tTLH tTHL Transition time, low-to-high-level output Propagation delay time, high-to-low-level output from A input CL = 30 pF, pF L293NE, L293DNE MIN See Figure 1 Transition time, high-to-low-level output TYP MAX UNIT 800 ns 400 ns 300 ns 300 ns switching characteristics, VCC1 = 5 V, VCC2 = 24 V, TA = 25°C PARAMETER TEST CONDITIONS L293DWP, L293N L293DDWP, L293DN MIN TYP UNIT MAX tPLH tPHL Propagation delay time, low-to-high-level output from A input 750 ns Propagation delay time, high-to-low-level output from A input 200 ns tTLH tTHL Transition time, low-to-high-level output 100 ns 350 ns CL = 30 pF, pF See Figure 1 Transition time, high-to-low-level output POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 5 L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008B – SEPTEMBER 1986 – REVISED JUNE 2002 PARAMETER MEASUREMENT INFORMATION tf tr Input 5 V 24 V Input 50% 50% 10% Pulse Generator (see Note B) VCC1 VCC2 10% 0 tw A tPLH tPHL Y 3V EN Output CL = 30 pF (see Note A) 90% 90% 50% 50% 10% tTHL TEST CIRCUIT VOLTAGE WAVEFORMS NOTES: A. CL includes probe and jig capacitance. B. The pulse generator has the following characteristics: tr ≤ 10 ns, tf ≤ 10 ns, tw = 10 µs, PRR = 5 kHz, ZO = 50 Ω. Figure 1. Test Circuit and Voltage Waveforms POST OFFICE BOX 655303 VOH Output 10% 6 3V 90% 90% • DALLAS, TEXAS 75265 VOL tTLH L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008B – SEPTEMBER 1986 – REVISED JUNE 2002 APPLICATION INFORMATION 5V 24 V VCC2 VCC1 16 10 kΩ 3 1,2EN 1 Control A 1A 1Y 2 3 Motor 2A 2Y 7 6 3,4EN 9 Control B 3A 3Y 10 11 4A 4Y 15 14 Thermal Shutdown 4, 5, 12, 13 GND Figure 2. Two-Phase Motor Driver (L293) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 7 L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008B – SEPTEMBER 1986 – REVISED JUNE 2002 APPLICATION INFORMATION 5V 24 V VCC1 10 kΩ VCC2 3 16 1,2EN 1 Control A 1Y 1A 2 3 Motor 2A 2Y 7 6 3,4EN 9 Control B 3A 10 3Y 4A 15 4Y 11 14 Thermal Shutdown 4, 5, 12, 13 GND Figure 3. Two-Phase Motor Driver (L293D) 8 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008B – SEPTEMBER 1986 – REVISED JUNE 2002 APPLICATION INFORMATION VCC2 SES5001 M1 SES5001 M2 3A 10 11 4A 15 EN 3A H H Fast motor stop H Run H L Run L Fast motor stop X Free-running motor stop X Free-running motor stop 14 16 8 VCC1 L 1/2 L293 9 EN M1 4A M2 L = low, H = high, X = don’t care 4, 5, 12, 13 GND Figure 4. DC Motor Controls (connections to ground and to supply voltage) VCC2 2 × SES5001 M 2A 1A 7 6 3 1A 2A H L H Turn right H H L Turn left EN 2 × SES5001 2 16 8 1/2 L293 1 VCC1 FUNCTION H L L Fast motor stop H H H Fast motor stop L X X Fast motor stop EN L = low, H = high, X = don’t care 4, 5, 12, 13 GND Figure 5. Bidirectional DC Motor Control POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 9 L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008B – SEPTEMBER 1986 – REVISED JUNE 2002 APPLICATION INFORMATION IL1/IL2 = 300 mA C1 0.22 µF 16 L293 1 2 D5 L1 VCC2 IL1 15 + D1 + D8 3 14 4 13 5 12 6 11 + D6 VCC1 D4 L2 IL2 + 7 10 8 9 D7 D3 D2 D1–D8 = SES5001 Figure 6. Bipolar Stepping-Motor Control mounting instructions The Rthj-amp of the L293 can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board or to an external heatsink. Figure 9 shows the maximum package power PTOT and the θJA as a function of the side of two equal square copper areas having a thickness of 35 µm (see Figure 7). In addition, an external heat sink can be used (see Figure 8). During soldering, the pin temperature must not exceed 260°C, and the soldering time must not be longer than 12 seconds. The external heatsink or printed circuit copper area must be connected to electrical ground. 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008B – SEPTEMBER 1986 – REVISED JUNE 2002 APPLICATION INFORMATION Copper Area 35-µm Thickness Printed Circuit Board Figure 7. Example of Printed Circuit Board Copper Area (used as heat sink) 17.0 mm 11.9 mm 38.0 mm Figure 8. External Heat Sink Mounting Example (θJA = 25°C/W) POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 11 L293, L293D QUADRUPLE HALF-H DRIVERS SLRS008B – SEPTEMBER 1986 – REVISED JUNE 2002 APPLICATION INFORMATION MAXIMUM POWER AND JUNCTION vs THERMAL RESISTANCE MAXIMUM POWER DISSIPATION vs AMBIENT TEMPERATURE 4 80 2 60 40 PTOT (TA = 70°C) 1 20 0 0 0 10 30 20 Side 40 50 P TOT – Power Dissipation – W θJA 3 θ JA – Thermal Resistance – °C/W P TOT – Power Dissipation – W 5 With Infinite Heat Sink 4 3 Heat Sink With θJA = 25°C/W 2 Free Air 1 0 –50 50 100 TA – Ambient Temperature – °C – mm Figure 9 12 0 Figure 10 POST OFFICE BOX 655303 • DALLAS, TEXAS 75265 150 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third–party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Mailing Address: Texas Instruments Post Office Box 655303 Dallas, Texas 75265 Copyright 2002, Texas Instruments Incorporated ANEXOS 3 - Fichas Técnicas do Hardware desenvolvido MAX1112 cxxxvii 19-1231; Rev 1; 10/98 KIT ATION EVALU E L B A AVAIL +5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs ____________________________Features The MAX1112/MAX1113 are low-power, 8-bit, 8-channel analog-to-digital converters (ADCs) that feature an internal track/hold, voltage reference, clock, and serial interface. They operate from a single +4.5V to +5.5V supply and consume only 135µA while sampling at rates up to 50ksps. The MAX1112’s 8 analog inputs and the MAX1113’s 4 analog inputs are software-configurable, allowing unipolar/bipolar and singleended/differential operation. ♦ +4.5V to +5.5V Single Supply Successive-approximation conversions are performed using either the internal clock or an external serial-interface clock. The full-scale analog input range is determined by the 4.096V internal reference, or by an externally applied reference ranging from 1V to V DD. The 4-wire serial interface is compatible with the SPI™, QSPI™, and MICROWIRE™ serial-interface standards. A serial-strobe output provides the end-of-conversion signal for interrupt-driven processors. ♦ Internal Track/Hold; 50kHz Sampling Rate The MAX1112/MAX1113 have a software-programmable, 2µA automatic power-down mode to minimize power consumption. Using power-down, the supply current is reduced to 13µA at 1ksps, and only 82µA at 10ksps. Power-down can also be controlled using the SHDN input pin. Accessing the serial interface automatically powers up the device. The MAX1112 is available in 20-pin SSOP and DIP packages. The MAX1113 is available in small 16-pin QSOP and DIP packages. ♦ Low Power: 135µA at 50ksps 13µA at 1ksps ♦ 8-Channel Single-Ended or 4-Channel Differential Inputs (MAX1112) ♦ 4-Channel Single-Ended or 2-Channel Differential Inputs (MAX1113) ♦ Internal 4.096V Reference ♦ SPI/QSPI/MICROWIRE-Compatible Serial Interface ♦ Software-Configurable Unipolar or Bipolar Inputs ♦ Total Unadjusted Error: ±1LSB (max) ±0.3LSB (typ) Ordering Information PART TEMP. RANGE PIN-PACKAGE MAX1112CPP 0°C to +70°C 20 Plastic DIP MAX1112CAP 0°C to +70°C 20 SSOP MAX1112C/D 0°C to +70°C Dice* *Dice are specified at TA = +25°C, DC parameters only. Ordering Information continued at end of data sheet. Functional Diagram ________________________Applications Portable Data Logging Hand-Held Measurement Devices CS SCLK DIN Medical Instruments SHDN System Diagnostics CH0 CH1 CH2 CH3 CH4* CH5* CH6* CH7* Solar-Powered Remote Systems 4–20mA-Powered Remote Data-Acquisition Systems INPUT SHIFT REGISTER INT CLOCK CONTROL LOGIC OUTPUT SHIFT REGISTER ANALOG INPUT MUX REFOUT SSTRB T/H COM Pin Configurations appear at end of data sheet. DOUT +4.096V REFERENCE CLOCK IN 8-BIT SAR ADC OUT REF VDD DGND MAX1112 MAX1113 AGND REFIN SPI and QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corp. *MAX1112 ONLY ________________________________________________________________ Maxim Integrated Products 1 For free samples & the latest literature: http://www.maxim-ic.com, or phone 1-800-998-8800. For small orders, phone 1-800-835-8769. MAX1112/MAX1113 General Description MAX1112/MAX1113 +5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs ABSOLUTE MAXIMUM RATINGS VDD to AGND ..............................................................-0.3V to 6V AGND to DGND .......................................................-0.3V to 0.3V CH0–CH7, COM, REFIN, REFOUT to AGND ...................................-0.3V to (VDD + 0.3V) Digital Inputs to DGND ...............................................-0.3V to 6V Digital Outputs to DGND ............................-0.3V to (VDD + 0.3V) Continuous Power Dissipation (TA = +70°C) 16 Plastic DIP (derate 10.53mW/°C above +70°C) ......842mW 16 QSOP (derate 8.30mW/°C above +70°C) ................667mW 16 CERDIP (derate 10.00mW/°C above +70°C) ..........800mW 20 Plastic DIP (derate 11.11mW/°C above +70°C) ......889mW 20 SSOP (derate 8.00mW/°C above +70°C) ................640mW 20 CERDIP (derate 11.11mW/°C above +70°C) ..........889mW Operating Temperature Ranges MAX1112C_P/MAX1113C_E................................0°C to +70°C MAX1112E_P/MAX1113E_E .............................-40°C to +85°C MAX1112MJP/MAX1113MJE..........................-55°C to +125°C Storage Temperature Range .............................-65°C to +150°C Lead Temperature (soldering, 10sec) .............................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS (VDD = +4.5V to +5.5V; unipolar input mode; COM = 0V; fSCLK = 500kHz, external clock (50% duty cycle); 10 clocks/conversion cycle (50ksps); 1µF capacitor at REFOUT; TA = TMIN to TMAX; unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DC ACCURACY Resolution 8 Relative Accuracy (Note 1) INL Differential Nonlinearity DNL Bits ±0.1 No missing codes over temperature Offset Error ±0.3 Gain Error (Note 2) Internal or external reference Gain Temperature Coefficient External reference, 4.096V ±0.8 MAX111_C/E ±0.3 Total Unadjusted Error TUE Channel-to-Channel Offset Matching ±0.5 LSB ±1 LSB ±1 LSB ±1 LSB ppm/°C ±1 LSB ±0.1 LSB SINAD 49 dB Total Harmonic Distortion (up to the 5th harmonic) THD -70 dB Spurious-Free Dynamic Range SFDR 68 dB DYNAMIC SPECIFICATIONS (10.034kHz sine-wave input, 4.096Vp-p, 50ksps, 500kHz external clock) Signal-to-Noise and Distortion Ratio Channel-to-Channel Crosstalk VCH_ = 4.096Vp-p, 25kHz (Note 3) -75 dB Small-Signal Bandwidth -3dB rolloff 1.5 MHz 800 kHz Full-Power Bandwidth 2 _______________________________________________________________________________________ +5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs (VDD = +4.5V to +5.5V; unipolar input mode; COM = 0V; fSCLK = 500kHz, external clock (50% duty cycle); 10 clocks/conversion cycle (50ksps); 1µF capacitor at REFOUT; TA = TMIN to TMAX; unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN External clock, 500kHz, 10 clocks/conversion 20 External clock, 2MHz 1 TYP MAX 25 55 UNITS CONVERSION RATE Conversion Time (Note 4) tCONV Track/Hold Acquisition Time tACQ Internal clock µs µs Aperture Delay 10 ns Aperture Jitter <50 ps Internal Clock Frequency 400 kHz (Note 5) External Clock-Frequency Range 50 Used for data transfer only 500 kHz 2 MHz ANALOG INPUT Unipolar input, COM = 0V Input Voltage Range, SingleEnded and Differential (Note 6) Bipolar input, COM = VREFIN / 2 Multiplexer Leakage Current On/off leakage current, VCH_ = 0V or VDD 0 VREFIN COM ± VREFIN / 2 ±0.01 Input Capacitance ±1 18 V µA pF INTERNAL REFERENCE REFOUT Voltage 3.936 REFOUT Short-Circuit Current REFOUT Temperature Coefficient Load Regulation (Note 7) 0mA to 0.5mA output load Capacitive Bypass at REFOUT 4.096 4.256 V 6 mA ±50 ppm/°C 4.5 mV 1 µF EXTERNAL REFERENCE AT REFIN VDD + 50mV 1 Input Voltage Range Input Current (Note 8) V 1 20 µA 5.5 V Operating mode 135 250 Reference disabled 95 Software 2 POWER REQUIREMENTS Supply Voltage VDD Supply Current IDD 4.5 Full-scale input CLOAD = 10pF Power-down Power-Supply Rejection (Note 9) PSR SHDN at DGND VDD = 4.5V to 5.5V; external reference, 4.096V; full-scale input µA µA 3.2 10 ±0.4 ±4 mV _______________________________________________________________________________________ 3 MAX1112/MAX1113 ELECTRICAL CHARACTERISTICS (continued) MAX1112/MAX1113 +5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs ELECTRICAL CHARACTERISTICS (continued) (VDD = +4.5V to +5.5V; unipolar input mode; COM = 0V; fSCLK = 500kHz, external clock (50% duty cycle); 10 clocks/conversion cycle (50ksps); 1µF capacitor at REFOUT; TA = TMIN to TMAX; unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS DIGITAL INPUTS: DIN, SCLK, CS DIN, SCLK, CS Input High Voltage VIH DIN, SCLK, CS Input Low Voltage VIL DIN, SCLK, CS Input Hysteresis 3 VHYST V 0.8 V 0.2 V DIN, SCLK, CS Input Leakage IIN Digital inputs = 0V or VDD ±1 µA DIN, SCLK, CS Input Capacitance CIN (Note 5) 15 pF SHDN INPUT SHDN Input High Voltage VSH VDD - 0.4 SHDN Input Mid-Voltage VSM 1.1 SHDN Voltage, Floating VFLT SHDN Input Low Voltage VSL SHDN = open SHDN Input Current SHDN = 0V or VDD SHDN Maximum Allowed Leakage for Mid-Input SHDN = open V VDD - 1.1 VDD / 2 V V 0.4 V ±4 µA ±100 nA DIGITAL OUTPUTS: DOUT, SSTRB Output Low Voltage VOL Output High Voltage VOH Three-State Leakage Current Three-State Output Capacitance 4 IL COUT ISINK = 5mA 0.4 ISINK = 16mA 0.8 ISOURCE = 0.5mA CS = VDD VDD - 0.5 V V ±0.01 CS = VDD (Note 5) _______________________________________________________________________________________ ±10 µA 15 pF +5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs MAX1112/MAX1113 TIMING CHARACTERISTICS (Figures 8 and 9) (VDD = +4.5V to +5.5V, TA = TMIN to TMAX, unless otherwise noted.) PARAMETER Track/Hold Acquisition Time SYMBOL CONDITIONS MIN TYP MAX UNITS tACQ 1 µs DIN to SCLK Setup tDS 100 ns DIN to SCLK Hold tDH 0 ns SCLK Fall to Output Data Valid tDO Figure 1, CLOAD = 100pF CS Fall to Output Enable tDV Figure 1, CLOAD = 100pF 240 ns CS Rise to Output Disable tTR Figure 2, CLOAD = 100pF 240 ns MAX111_C/E 20 200 MAX111_M 20 240 ns CS to SCLK Rise Setup tCSS 100 ns CS to SCLK Rise Hold tCSH 0 ns SCLK Pulse Width High tCH 200 ns SCLK Pulse Width Low SCLK Fall to SSTRB tCL tSSTRB 200 ns CLOAD = 100pF 240 ns CS Fall to SSTRB Output Enable (Note 5) tSDV Figure 1, external clock mode only, CLOAD = 100pF 240 ns CS Rise to SSTRB Output Disable (Note 5) tSTR Figure 2, external clock mode only, CLOAD = 100pF 240 ns SSTRB Rise to SCLK Rise (Note 5) tSCK Figure 11, internal clock mode only Wakeup Time Note 1: Note 2: Note 3: Note 4: Note 5: Note 6: Note 7: Note 8: Note 9: Note 10: tWAKE 0 ns External reference 20 µs Internal reference (Note 10) 24 ms Relative accuracy is the analog value’s deviation (at any code) from its theoretical value after the full-scale range is calibrated. VREFIN = 4.096V, offset nulled. On-channel grounded; sine wave applied to all off-channels. Conversion time is defined as the number of clock cycles multiplied by the clock period; clock has 50% duty cycle. Guaranteed by design. Not subject to production testing. Common-mode range for the analog inputs is from AGND to VDD. External load should not change during the conversion for specified accuracy. External reference at 4.096V, full-scale input, 500kHz external clock. Measured as | VFS (4.5V) - VFS (5.5V) |. 1µF at REFOUT; internal reference settling to 0.5LSB. _______________________________________________________________________________________ 5 __________________________________________Typical Operating Characteristics (VDD = +5.0V; fSCLK = 500kHz; external clock (50% duty cycle); RL = ∞; TA = +25°C, unless otherwise noted.) SHUTDOWN SUPPLY CURRENT vs. TEMPERATURE 140 VDD = 4.5V 120 MAX1112/13-02 0.3 8 0.2 0.1 6 4 -0.1 2 -0.2 0 100 -60 -20 20 60 100 -0.3 -60 140 -20 20 60 100 TEMPERATURE (°C) TEMPERATURE (°C) OFFSET ERROR vs. TEMPERATURE INTEGRAL NONLINEARITY vs. CODE 0.5 140 0 64 128 192 256 DIGITAL CODE 0.20 MAX1112/13-04 0.6 0 FFT PLOT 20 0.15 fCH_ = 10.034kHz, 4Vp-p fSAMPLE = 50ksps 0 MAX1112/13-06 VDD = 5.5V SHDN = DGND DNL (LSB) 160 10 MAX1112/13-05 0.10 INL (LSB) 0.4 0.3 AMPLITUDE (dB) SUPPLY CURRENT (µA) OUTPUT CODE = FULL SCALE CLOAD = 10pF SHUTDOWN SUPPLY CURRENT (µA) MAX1112/13-01 180 DIFFERENTIAL NONLINEARITY vs. CODE MAX1112/13-03 SUPPLY CURRENT vs. TEMPERATURE OFFSET ERROR (LSB) MAX1112/MAX1113 +5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs 0.05 0 -0.05 0.2 -20 -40 -60 -0.10 0.1 -0.20 0 -60 -20 20 60 TEMPERATURE (°C) 6 -80 -0.15 100 140 -100 0 64 128 DIGITAL CODE 192 256 0 5 10 15 FREQUENCY (kHz) _______________________________________________________________________________________ 20 25 +5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs PIN NAME FUNCTION MAX1112 MAX1113 1–4 1–4 CH0–CH3 Sampling Analog Inputs 5–8 — CH4–CH7 Sampling Analog Inputs 9 5 COM Ground Reference for Analog Inputs. Sets zero-code voltage in single-ended mode. Must be stable to ±0.5LSB. 10 6 SHDN Three-Level Shutdown Input. Normally floats. Pulling SHDN low shuts the MAX1112/ MAX1113 down to 10µA (max) supply current; otherwise, the devices are fully operational. Pulling SHDN high shuts down the internal reference. 11 7 REFIN Reference Voltage Input for Analog-to-Digital Conversion. Connect to REFOUT to use the internal reference. 12 8 REFOUT 13 9 AGND Analog Ground 14 10 DGND Digital Ground 15 11 DOUT Serial-Data Output. Data is clocked out on SCLK’s falling edge. High impedance when CS is high. Serial-Strobe Output. In internal clock mode, SSTRB goes low when the MAX1112/ MAX1113 begin the A/D conversion and goes high when the conversion is complete. In external clock mode, SSTRB pulses high for two clock periods before the MSB is shifted out. High impedance when CS is high (external clock mode only). Internal Reference Generator Output. Bypass with a 1µF capacitor to AGND. 16 12 SSTRB 17 13 DIN Serial-Data Input. Data is clocked in at SCLK’s rising edge. 18 14 CS Active-Low Chip Select. Data is not clocked into DIN unless CS is low. When CS is high, DOUT is high impedance. 19 15 SCLK 20 16 VDD Serial-Clock Input. Clocks data in and out of serial interface. In external clock mode, SCLK also sets the conversion speed (duty cycle must be 45% to 55%). Positive Supply Voltage, +4.5V to +5.5V +5V DOUT DOUT 3k +5V DOUT CLOAD CLOAD DGND DGND a) High-Z to VOH and VOL to VOH b) High-Z to VOL and VOH to VOL Figure 1. Load Circuits for Enable Time 3k 3k DOUT 3k CLOAD DGND a) VOH to High-Z CLOAD DGND b) VOL to High-Z Figure 2. Load Circuits for Disable Time _______________________________________________________________________________________ 7 MAX1112/MAX1113 Pin Description MAX1112/MAX1113 +5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs _______________Detailed Description The MAX1112/MAX1113 analog-to-digital converters (ADCs) use a successive-approximation conversion technique and input track/hold (T/H) circuitry to convert an analog signal to an 8-bit digital output. A flexible serial interface provides easy interface to microprocessors (µPs). Figure 3 shows the Typical Operating Circuit. Pseudo-Differential Input The sampling architecture of the ADC’s analog comparator is illustrated in Figure 4, the equivalent input circuit. In single-ended mode, IN+ is internally switched to the selected input channel, CH_, and IN- is switched to COM. In differential mode, IN+ and IN- are selected from the following pairs: CH0/CH1, CH2/CH3, CH4/CH5, and CH6/CH7. Configure the MAX1112 channels with Table 1 and the MAX1113 channels with Table 2. In differential mode, IN- and IN+ are internally switched to either of the analog inputs. This configuration is pseudo-differential to the effect that only the signal at IN+ is sampled. The return side (IN-) must remain stable within ±0.5LSB (±0.1LSB for best results) with respect to AGND during a conversion. To accomplish this, connect a 0.1µF capacitor from IN- (the selected analog input) to AGND if necessary. During the acquisition interval, the channel selected as the positive input (IN+) charges capacitor CHOLD. The acquisition interval spans two SCLK cycles and ends on the falling SCLK edge after the last bit of the input control word has been entered. At the end of the acquisition interval, the T/H switch opens, retaining charge on CHOLD as a sample of the signal at IN+. The conversion interval begins with the input multiplexer switching CHOLD from the positive input (IN+) to the negative input (IN-). In single-ended mode, IN- is simply COM. This unbalances node ZERO at the input of the comparator. The capacitive DAC adjusts during the remainder of the conversion cycle to restore node ZERO to 0V within the limits of 8-bit resolution. This action is equivalent to transferring a charge of 18pF x (VIN+ - VIN-) from CHOLD to the binary-weighted capacitive DAC, which in turn forms a digital representation of the analog input signal. Track/Hold The T/H enters its tracking mode on the falling clock edge after the sixth bit of the 8-bit control byte has been shifted in. It enters its hold mode on the falling clock edge after the eighth bit of the control byte has been shifted in. If the converter is set up for singleended inputs, IN- is connected to COM, and the converter samples the “+” input; if it is set up for differential inputs, IN- connects to the “-” input, and the difference (IN+ - IN-) is sampled. At the end of the conversion, the positive input connects back to IN+, and C HOLD charges to the input signal. +5V CH0 VDD CH7 AGND DGND COM 0.1µF ANALOG INPUTS CAPACITIVE DAC REFIN VDD 1µF CPU MAX1112 MAX1113 REFOUT REFIN 1µF CS SCLK DIN DOUT I/O SCK (SK) MOSI (SO) MISO (SI) Figure 3. Typical Operating Circuit 8 CH4* CH5* CH6* CH7* ZERO 18pF CH2 CH3 6.5k RIN CSWITCH TRACK T/H SWITCH COM SSTRB SHDN CH0 CH1 COMPARATOR CHOLD INPUT MUX – + VSS HOLD AT THE SAMPLING INSTANT, THE MUX INPUT SWITCHES FROM THE SELECTED IN+ CHANNEL TO THE SELECTED IN- CHANNEL. SINGLE-ENDED MODE: IN+ = CHO–CH7, IN- = COM. DIFFERENTIAL MODE: IN+ AND IN- SELECTED FROM PAIRS OF CH0/CH1, CH2/CH3, CH4*/CH5*, CH6*/CH7*. *MAX1112 ONLY Figure 4. Equivalent Input Circuit _______________________________________________________________________________________ +5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs MAX1112/MAX1113 Table 1a. MAX1112 Channel Selection in Single-Ended Mode (SGL/DIF = 1) SEL2 SEL1 SEL0 CH0 0 0 0 + 1 0 0 0 0 1 1 0 1 0 1 0 1 1 0 0 1 1 1 1 1 CH1 CH2 CH3 CH4 CH5 CH6 CH7 COM – + – + – + – + – + – + – + – Table 1b. MAX1112 Channel Selection in Differential Mode (SGL/DIF = 0) SEL2 SEL1 SEL0 CH0 CH1 0 0 0 + – 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1 – CH2 CH3 + – CH4 CH5 + – CH6 CH7 + – – + + – + – + Table 2a. MAX1113 Channel Selection in Single-Ended Mode (SGL/DIF = 1) SEL2 SEL1 SEL0 CH0 0 0 X + 1 0 X 0 1 X 1 1 X CH1 CH2 CH3 COM – + – + – + – Table 2b. MAX1113 Channel Selection in Differential Mode (SGL/DIF = 0) SEL2 SEL1 SEL0 CH0 CH1 0 0 X + – 0 1 X 1 0 X – + 1 1 X CH2 CH3 + – – + _______________________________________________________________________________________ 9 MAX1112/MAX1113 +5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs The time required for the T/H to acquire an input signal is a function of how quickly its input capacitance is charged. If the input signal’s source impedance is high, the acquisition time lengthens, and more time must be allowed between conversions. The acquisition time, tACQ, is the minimum time needed for the signal to be acquired. It is calculated by: tACQ = 6 x (RS + RIN) x 18pF where RIN = 6.5kΩ, RS = the source impedance of the input signal, and tACQ is never less than 1µs. Note that source impedances below 2.4kΩ do not significantly affect the AC performance of the ADC. Input Bandwidth The ADC’s input tracking circuitry has a 1.5MHz smallsignal bandwidth, so it is possible to digitize highspeed transient events and measure periodic signals with bandwidths exceeding the ADC’s sampling rate by using undersampling techniques. To avoid highfrequency signals being aliased into the frequency band of interest, anti-alias filtering is recommended. Analog Inputs Internal protection diodes, which clamp the analog input to VDD and AGND, allow the channel input pins to swing from (AGND - 0.3V) to (VDD + 0.3V) without dam- age. However, for accurate conversions near full scale, the inputs must not exceed VDD by more than 50mV or be lower than AGND by 50mV. If the analog input exceeds 50mV beyond the supplies, do not forward bias the protection diodes of off channels over 2mA. The MAX1112/MAX1113 can be configured for differential or single-ended inputs with bits 2 and 3 of the control byte (Table 3). In single-ended mode, analog inputs are internally referenced to COM with a full-scale input range from COM to VREFIN + COM. For bipolar operation, set COM to VREFIN / 2. In differential mode, choosing unipolar mode sets the differential input range at 0V to VREFIN. In unipolar mode, the output code is invalid (code zero) when a negative differential input voltage is applied. Bipolar mode sets the differential input range to ±VREFIN / 2. Note that in this mode, the common-mode input range includes both supply rails. Refer to Table 4 for input voltage ranges. Quick Look To quickly evaluate the MAX1112/MAX1113’s analog performance, use the circuit of Figure 5. The MAX1112/MAX1113 require a control byte to be written to DIN before each conversion. Tying DIN to +5V feeds Table 3. Control-Byte Format 10 BIT 7 (MSB) BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0 (LSB) START SEL2 SEL1 SEL0 UNI/BIP SGL/DIF PD1 PD0 BIT NAME 7 (MSB) START 6 5 4 SEL2 SEL1 SEL0 3 UNI/BIP 1 = unipolar, 0 = bipolar. Selects unipolar or bipolar conversion mode (Table 4). 2 SGL/DIF 1 = single ended, 0 = differential. Selects single-ended or differential conversions. In singleended mode, input signal voltages are referred to COM. In differential mode, the voltage difference between two channels is measured. See Tables 1 and 2. 1 PD1 1 = fully operational, 0 = power-down. Selects fully operational or power-down mode. 0 (LSB) PD0 1 = external clock mode, 0 = internal clock mode. Selects external or internal clock mode. DESCRIPTION The first logic “1” bit after CS goes low defines the beginning of the control byte. Select which of the input channels are to be used for the conversion (Tables 1 and 2). ______________________________________________________________________________________ +5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs UNIPOLAR MODE BIPOLAR MODE Full Scale Zero Scale Positive Full Scale Zero Scale Negative Full Scale VREFIN + COM COM +VREFIN / 2 + COM COM -VREFIN / 2 + COM in control bytes of $FF (hex), which trigger singleended, unipolar conversions on CH7 (MAX1112) or CH3 (MAX1113) in external clock mode without powering down between conversions. In external clock mode, the SSTRB output pulses high for two clock periods before the most significant bit (MSB) of the 8-bit conversion result is shifted out of DOUT. Varying the analog input alters the output code. A total of 10 clock cycles is required per conversion. All transitions of the SSTRB and DOUT outputs occur on SCLK’s falling edge. How to Start a Conversion A conversion is started by clocking a control byte into DIN. With CS low, each rising edge on SCLK clocks a bit from DIN into the MAX1112/MAX1113’s internal shift register. After CS falls, the first arriving logic “1” bit at DIN defines the MSB of the control byte. Until this first start bit arrives, any number of logic “0” bits can be clocked into DIN with no effect. Table 3 shows the control-byte format. The MAX1112/MAX1113 are compatible with MICROWIRE, SPI, and QSPI devices. For SPI, select the correct clock polarity and sampling edge in the SPI control registers: set CPOL = 0 and CPHA = 0. MICROWIRE, SPI, and QSPI all transmit a byte and receive a byte at the same time. Using the Typical Operating Circuit (Figure 3), the simplest software interface requires three 8-bit transfers to perform a conversion (one 8-bit transfer to configure the ADC, and two more 8-bit transfers to clock out the VDD OSCILLOSCOPE +5V 0.1µF 1µF DGND MAX1112 MAX1113 0V TO +4.096V ANALOG 0.01µF INPUT CH7 (CH3) SCLK AGND SSTRB CS DOUT* SCLK COM +5V DIN 500kHz OSCILLATOR CH1 CH2 CH3 CH4 SSTRB REFOUT DOUT REFIN SHDN N.C. C1 1µF *FULL-SCALE ANALOG INPUT, CONVERSION RESULT = $FF (HEX) ( ) ARE FOR THE MAX1113. Figure 5. Quick-Look Circuit ______________________________________________________________________________________ 11 MAX1112/MAX1113 Table 4. Full-Scale and Zero-Scale Voltages +5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs MAX1112/MAX1113 8-bit conversion result). Figure 6 shows the MAX1112/ MAX1113 common serial-interface connections. I/O CS SCK Simple Software Interface Make sure the CPU’s serial interface runs in master mode so the CPU generates the serial clock. Choose a clock frequency from 50kHz to 500kHz. SCLK MISO DOUT +5V MAX1112 MAX1113 1) Set up the control byte for external clock mode and call it TB1. TB1 should be of the format 1XXXXX11 binary, where the Xs denote the particular channel and conversion mode selected. 2) Use a general-purpose I/O line on the CPU to pull CS low. 3) Transmit TB1 and, simultaneously, receive a byte and call it RB1. Ignore RB1. SS a) SPI CS CS SCK SCLK MISO DOUT +5V MAX1112 MAX1113 SS 4) Transmit a byte of all zeros ($00 hex) and, simultaneously, receive byte RB2. 5) Transmit a byte of all zeros ($00 hex) and, simultaneously, receive byte RB3. b) QSPI I/O CS 6) Pull CS high. SK SCLK SI DOUT Figure 7 shows the timing for this sequence. Bytes RB2 and RB3 contain the result of the conversion padded with two leading zeros and six trailing zeros. The total conversion time is a function of the serial-clock frequency and the amount of idle time between 8-bit transfers. Make sure that the total conversion time does not exceed 1ms, to avoid excessive T/H droop. MAX1112 MAX1113 c) MICROWIRE Figure 6. Common Serial-Interface Connections to the MAX1112/MAX1113 CS tACQ SCLK 1 4 SEL2 SEL1 SEL0 UNI/ BIP DIN 8 SGL/ PD1 DIF 12 16 20 24 PD0 START SSTRB A/D STATE B7 IDLE RB3 RB2 RB1 DOUT B6 ACQUISITION 4µs B5 B4 B3 B2 B1 B0 FILLED WITH ZEROS CONVERSION (fSCLK = 500kHz) Figure 7. Single-Conversion Timing, External Clock Mode, 24 Clocks 12 ______________________________________________________________________________________ IDLE +5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs conversion steps. SSTRB pulses high for two clock periods after the last bit of the control byte. Successiveapproximation bit decisions are made and appear at DOUT on each of the next eight SCLK falling edges (Figure 7). After the eight data bits are clocked out, subsequent clock pulses clock out zeros from the DOUT pin. SSTRB and DOUT go into a high-impedance state when CS goes high; after the next CS falling edge, SSTRB outputs a logic low. Figure 9 shows the SSTRB timing in external clock mode. The conversion must complete in 1ms, or droop on the sample-and-hold capacitors may degrade conversion results. Use internal clock mode if the serial-clock frequency is less than 50kHz, or if serial-clock interruptions could cause the conversion interval to exceed 1ms. Clock Modes The MAX1112/MAX1113 can use either an external serial clock or the internal clock to perform the successiveapproximation conversion. In both clock modes, the external clock shifts data in and out of the devices. Bit PD0 of the control byte programs the clock mode. Figures 8–11 show the timing characteristics common to both modes. External Clock In external clock mode, the external clock not only shifts data in and out, it also drives the analog-to-digital CS ••• tCSS tCL tCH SCLK tCSH ••• tDS tDH ••• DIN tDO tDV tDO tTR ••• DOUT Figure 8. Detailed Serial-Interface Timing CS ••• ••• tSTR tSDV SSTRB ••• ••• tSSTRB SCLK tSSTRB •••• •••• PD0 CLOCKED IN Figure 9. External Clock Mode SSTRB Detailed Timing ______________________________________________________________________________________ 13 MAX1112/MAX1113 Digital Output In unipolar input mode, the output is straight binary (Figure 15). For bipolar inputs, the output is two’s-complement (Figure 16). Data is clocked out at SCLK’s falling edge in MSB-first format. MAX1112/MAX1113 +5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs CS SCLK DIN 1 4 5 SEL2 SEL1 SEL0 UNI/ BIP 2 3 7 8 SGL/ DIF PD1 PD0 6 9 10 11 12 15 16 17 18 START SSTRB tCONV DOUT A/D STATE B7 B6 B1 B0 FILLED WITH ZEROS CONVERSION 25µs TYP IDLE IDLE tACQ 4µs (fSCLK = 500kHz) Figure 10. Internal Clock Mode Timing CS tCONV tCSS tSCK tCSH SSTRB tSSTRB SCLK PD0 CLOCK IN NOTE: FOR BEST NOISE PERFORMANCE, KEEP SCLK LOW DURING CONVERSION. Figure 11. Internal Clock Mode SSTRB Detailed Timing Internal Clock Internal clock mode frees the µP from the burden of running the SAR conversion clock. This allows the conversion results to be read back at the processor’s convenience, at any clock rate up to 2MHz. SSTRB goes low at the start of the conversion and then goes high when the conversion is complete. SSTRB is low for 25µs (typically), during which time SCLK should remain low for best noise performance. An internal register stores data when the conversion is in progress. SCLK clocks the data out of this register at any time after the conversion is complete. After SSTRB goes high, the second falling clock edge produces the MSB of the conversion at DOUT, followed by the 14 remaining bits in MSB-first format (Figure 10). CS does not need to be held low once a conversion is started. Pulling CS high prevents data from being clocked into the MAX1112/MAX1113 and three-states DOUT, but it does not adversely affect an internal clock-mode conversion already in progress. When internal clock mode is selected, SSTRB does not go into a high-impedance state when CS goes high. Figure 11 shows the SSTRB timing in internal clock mode. In this mode, data can be shifted in and out of the MAX1112/MAX1113 at clock rates up to 2MHz, provided that the minimum acquisition time, tACQ, is kept above 1µs. ______________________________________________________________________________________ +5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs MAX1112/MAX1113 CS 1 8 10 1 8 10 1 8 10 1 SCLK S DIN CONTROL BYTE 0 S B7 DOUT S CONTROL BYTE 1 B0 B7 B0 CONVERSION RESULT 1 CONVERSION RESULT 0 S CONTROL BYTE 2 CONTROL BYTE 3 B7 CONVERSION RESULT 2 SSTRB Figure 12a. Continuous Conversions, External Clock Mode, 10 Clocks/Conversion Timing CS SCLK DIN DOUT S S CONTROL BYTE 0 B7 CONTROL BYTE 1 B0 CONVERSION RESULT 0 B7 CONVERSION RESULT 1 Figure 12b. Continuous Conversions, External Clock Mode, 16 Clocks/Conversion Timing Data Framing The falling edge of CS does not start a conversion. The first logic high clocked into DIN is interpreted as a start bit and defines the first bit of the control byte. A conversion starts on the falling edge of SCLK, after the eighth bit of the control byte (the PD0 bit) is clocked into DIN. The start bit is defined as: The first high bit clocked into DIN with CS low any time the converter is idle, e.g., after VDD is applied. OR The first high bit clocked into DIN after the MSB of a conversion in progress is clocked onto the DOUT pin. If CS is toggled before the current conversion is complete, then the next high bit clocked into DIN is recognized as a start bit; the current conversion is terminated, and a new one is started. The fastest the MAX1112/MAX1113 can run is 10 clocks per conversion. Figure 12a shows the serialinterface timing necessary to perform a conversion every 10 SCLK cycles in external clock mode. Many microcontrollers require that conversions occur in multiples of eight SCLK clocks; 16 clocks per conversion is typically the fastest that a microcontroller can drive the MAX1112/MAX1113. Figure 12b shows the serial-interface timing necessary to perform a conversion every 16 SCLK cycles in external clock mode. ______________________________________________________________________________________ 15 __________Applications Information Power-On Reset When power is first applied, and if SHDN is not pulled low, internal power-on reset circuitry activates the MAX1112/MAX1113 in internal clock mode. SSTRB is high on power-up and, if CS is low, the first logical 1 on DIN is interpreted as a start bit. Until a conversion takes place, DOUT shifts out zeros. No conversions should be performed until the reference voltage has stabilized (see the Wakeup Time specifications in the Timing Characteristics). Hard-Wired Power-Down Pulling SHDN low places the converters in hard-wired power-down. Unlike software power-down, the conversion is not completed; it stops coincidentally with SHDN being brought low. SHDN also controls the state of the internal reference (Table 5). Letting SHDN float enables the internal 4.096V voltage reference. When returning to normal operation with SHDN floating, there is a tRC delay of approximately 1MΩ x CLOAD, where CLOAD is the capacitive loading on the SHDN pin. Pulling SHDN high disables the internal reference, which saves power when using an external reference. Power-Down External Reference When operating at speeds below the maximum sampling rate, the MAX1112/MAX1113’s automatic powerdown mode can save considerable power by placing the converters in a low-current shutdown state between conversions. Figure 13 shows the average supply current as a function of the sampling rate. Select power-down with PD1 of the DIN control byte with SHDN high or floating (Table 3). Pull SHDN low at any time to shut down the converters completely. SHDN overrides PD1 of the control byte. Figures 14a and 14b illustrate the various power-down sequences in both external and internal clock modes. An external reference between 1V and VDD should be connected directly at the REFIN terminal. The DC input impedance at REFIN is extremely high, consisting of leakage current only (typically 10nA). During a conversion, the reference must be able to deliver up to 20µA average load current and have an output impedance of 1kΩ or less at the conversion clock frequency. If the reference has higher output impedance or is noisy, bypass it close to the REFIN pin with a 0.1µF capacitor. If an external reference is used with the MAX1112/ MAX1113, tie SHDN to VDD to disable the internal reference and decrease power consumption. Table 5. Hard-Wired Power-Down and Internal Reference State 16 SHDN STATE DEVICE MODE INTERNAL REFERENCE 1 Enabled Disabled Floating Enabled Enabled 0 Power-Down Disabled 1000 MAX1112/13-fig13 Software Power-Down Software power-down is activated using bit PD1 of the control byte. When software power-down is asserted, the ADCs continue to operate in the last specified clock mode until the conversion is complete. The ADCs then power down into a low quiescent-current state. In internal clock mode, the interface remains active, and conversion results may be clocked out after the MAX1112/ MAX1113 have entered a software power-down. The first logical 1 on DIN is interpreted as a start bit, which powers up the MAX1112/MAX1113. If the DIN byte contains PD1 = 1, then the chip remains powered up. If PD1 = 0, power-down resumes after one conversion. SUPPLY CURRENT (µA) MAX1112/MAX1113 +5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs CLOAD = 60pF CODE = 10101010 100 CLOAD = 30pF CODE = 10101010 CLOAD = 30pF CODE = 11111111 VDD = VREFIN = 5V CLOAD AT DOUT + SSTRB 10 0 10 20 30 40 50 SAMPLING RATE (ksps) Figure 13. Average Supply Current vs. Sampling Rate ______________________________________________________________________________________ +5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs INTERNAL EXTERNAL MAX1112/MAX1113 CLOCK MODE EXTERNAL SHDN SETS POWERDOWN MODE SETS EXTERNAL CLOCK MODE DIN S X X X X X 1 1 S X X X X X 0 1 S X X X X X 1 1 DATA VALID DATA VALID DOUT DATA INVALID POWERDOWN POWERED UP MODE SETS EXTERNAL CLOCK MODE POWERED UP POWERDOWN POWERED UP Figure 14a. Power-Down Modes, External Clock Timing Diagram INTERNAL CLOCK MODE SETS POWER-DOWN MODE SETS INTERNAL CLOCK MODE DIN S X X X X X 1 0 S X X X X X 0 0 MODE DATA VALID DATA VALID DOUT SSTRB S CONVERSION CONVERSION POWERED UP POWER-DOWN POWERED UP Figure 14b. Power-Down Modes, Internal Clock Timing Diagram Internal Reference Transfer Function To use the MAX1112/MAX1113 with the internal reference, connect REFIN to REFOUT. The full-scale range of the MAX1112/MAX1113 with the internal reference is typically 4.096V with unipolar inputs, and ±2.048V with bipolar inputs. The internal reference should be bypassed to AGND with a 1µF capacitor placed as close to the REFIN pin as possible. Table 4 shows the full-scale voltage ranges for unipolar and bipolar modes. Figure 15 depicts the nominal, unipolar I/O transfer function, and Figure 16 shows the bipolar I/O transfer function when using a 4.096V reference. Code transitions occur at integer LSB values. Output coding is binary, with 1LSB = 16mV (4.096V/256) for unipolar operation and 1LSB = 16mV [(4.096V/2 - -4.096V/2)/256] for bipolar operation. ______________________________________________________________________________________ 17 MAX1112/MAX1113 +5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs OUTPUT CODE FULL-SCALE TRANSITION 11111111 SUPPLIES 11111110 +5V 11111101 FS = VREFIN + COM V 1LSB = REFIN 256 GND R* = 10Ω 00000011 VDD 00000010 AGND DGND +5V DGND 00000001 00000000 0 1 2 (COM) 3 MAX1112 MAX1113 FS INPUT VOLTAGE (LSB) FS - 1LSB Figure 15. Unipolar Transfer Function DIGITAL CIRCUITRY * OPTIONAL Figure 17. Power-Supply Grounding Connections Layout, Grounding, and Bypassing OUTPUT CODE 01111111 01111110 00000010 00000001 00000000 VREFIN + COM 2 VREFIN COM = 2 -VREFIN -FS = + COM 2 V 1LSB = REFIN 256 +FS = 11111111 11111110 11111101 10000001 10000000 -FS COM INPUT VOLTAGE (LSB) 1 +FS - 2 LSB For best performance, use printed circuit boards. Wirewrap boards are not recommended. Board layout should ensure that digital and analog signal lines are separated from each other. Do not run analog and digital (especially clock) lines parallel to one another, or digital lines underneath the ADC package. Figure 17 shows the recommended system ground connections. A single-point analog ground (star ground point) should be established at AGND, separate from the logic ground. Connect all other analog grounds and DGND to the star ground. No other digital system ground should be connected to this ground. The ground return to the power supply for the star ground should be low impedance and as short as possible for noise-free operation. High-frequency noise in the VDD power supply may affect the comparator in the ADC. Bypass the supply to the star ground with 0.1µF and 1µF capacitors close to the V DD pin of the MAX1112/MAX1113. Minimize capacitor lead lengths for best supply-noise rejection. If the +5V power supply is very noisy, a 10Ω resistor can be connected to form a lowpass filter. Figure 16. Bipolar Transfer Function 18 ______________________________________________________________________________________ +5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs TOP VIEW CH0 1 20 VDD CH1 2 19 SCLK CH0 1 16 VDD CH2 3 18 CS CH1 2 15 SCLK 17 DIN CH2 3 16 SSTRB CH3 4 CH5 6 15 DOUT COM 5 12 SSTRB CH6 7 CH3 4 MAX1112 CH4 5 14 CS MAX1113 13 DIN 14 DGND SHDN 6 11 DOUT CH7 8 13 AGND REFIN 7 10 DGND COM 9 12 REFOUT SHDN 10 11 REFIN 9 REFOUT 8 AGND DIP/QSOP DIP/SSOP Ordering Information (continued) PART TEMP. RANGE PIN-PACKAGE MAX1112EPP -40°C to +85°C 20 Plastic DIP MAX1112EAP MAX1112MJP MAX1113CPE -40°C to +85°C -55°C to +125°C 0°C to +70°C 20 SSOP 20 CERDIP** 16 Plastic DIP MAX1113CEE 0°C to +70°C MAX1113EPE MAX1113EEE MAX1113MJE -40°C to +85°C -40°C to +85°C -55°C to +125°C ___________________Chip Information TRANSISTOR COUNT: 1996 SUBSTRATE CONNECTED TO DGND 16 QSOP 16 Plastic DIP 16 QSOP 16 CERDIP** **Contact factory for availability. ______________________________________________________________________________________ 19 MAX1112/MAX1113 Pin Configurations QSOP.EPS ________________________________________________________Package Information SSOP.EPS MAX1112/MAX1113 +5V, Low-Power, Multi-Channel, Serial 8-Bit ADCs Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 20 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600 © 1998 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products. ANEXOS 3 - Fichas Técnicas do Hardware desenvolvido MAX233 cxxxvii 19-4323; Rev 10; 8/01 +5V-Powered, Multichannel RS-232 Drivers/Receivers The MAX220–MAX249 family of line drivers/receivers is intended for all EIA/TIA-232E and V.28/V.24 communications interfaces, particularly applications where ±12V is not available. These parts are especially useful in battery-powered systems, since their low-power shutdown mode reduces power dissipation to less than 5µW. The MAX225, MAX233, MAX235, and MAX245/MAX246/MAX247 use no external components and are recommended for applications where printed circuit board space is critical. ____________________________Features Superior to Bipolar ♦ Operate from Single +5V Power Supply (+5V and +12V—MAX231/MAX239) ♦ Low-Power Receive Mode in Shutdown (MAX223/MAX242) ♦ Meet All EIA/TIA-232E and V.28 Specifications ♦ Multiple Drivers and Receivers ♦ 3-State Driver and Receiver Outputs ♦ Open-Line Detection (MAX243) Ordering Information ________________________Applications PART MAX220CPE MAX220CSE MAX220CWE MAX220C/D MAX220EPE MAX220ESE MAX220EWE MAX220EJE MAX220MJE Portable Computers Low-Power Modems Interface Translation Battery-Powered RS-232 Systems Multidrop RS-232 Networks TEMP. RANGE 0°C to +70°C 0°C to +70°C 0°C to +70°C 0°C to +70°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -40°C to +85°C -55°C to +125°C PIN-PACKAGE 16 Plastic DIP 16 Narrow SO 16 Wide SO Dice* 16 Plastic DIP 16 Narrow SO 16 Wide SO 16 CERDIP 16 CERDIP Ordering Information continued at end of data sheet. *Contact factory for dice specifications. Selection Table Part Number MAX220 MAX222 MAX223 (MAX213) MAX225 MAX230 (MAX200) MAX231 (MAX201) MAX232 (MAX202) MAX232A MAX233 (MAX203) MAX233A MAX234 (MAX204) MAX235 (MAX205) MAX236 (MAX206) MAX237 (MAX207) MAX238 (MAX208) MAX239 (MAX209) MAX240 MAX241 (MAX211) MAX242 MAX243 MAX244 MAX245 MAX246 MAX247 MAX248 MAX249 Power Supply (V) +5 +5 +5 +5 +5 +5 and +7.5 to +13.2 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 and +7.5 to +13.2 +5 +5 +5 +5 +5 +5 +5 +5 +5 +5 No. of RS-232 Drivers/Rx 2/2 2/2 4/5 5/5 5/0 2/2 Nominal No. of Cap. Value Ext. Caps (µF) 4 0.1 4 0.1 4 1.0 (0.1) 0 — 4 1.0 (0.1) 2 1.0 (0.1) SHDN & ThreeState No Yes Yes Yes Yes No Rx Active in SHDN — — ✔ ✔ — — Data Rate (kbps) 120 200 120 120 120 120 2/2 2/2 2/2 2/2 4/0 5/5 4/3 5/3 4/4 3/5 4 4 0 0 4 0 4 4 4 2 1.0 (0.1) 0.1 — — 1.0 (0.1) — 1.0 (0.1) 1.0 (0.1) 1.0 (0.1) 1.0 (0.1) No No No No No Yes Yes No No No — — — — — — — — — — 120 (64) 200 120 200 120 120 120 120 120 120 5/5 4/5 2/2 2/2 8/10 8/10 8/10 8/9 8/8 6/10 4 4 4 4 4 0 0 0 4 4 1.0 1.0 (0.1) 0.1 0.1 1.0 — — — 1.0 1.0 Yes Yes Yes No No Yes Yes Yes Yes Yes — — ✔ — — ✔ ✔ ✔ ✔ ✔ 120 120 200 200 120 120 120 120 120 120 Features Ultra-low-power, industry-standard pinout Low-power shutdown MAX241 and receivers active in shutdown Available in SO 5 drivers with shutdown Standard +5/+12V or battery supplies; same functions as MAX232 Industry standard Higher slew rate, small caps No external caps No external caps, high slew rate Replaces 1488 No external caps Shutdown, three state Complements IBM PC serial port Replaces 1488 and 1489 Standard +5/+12V or battery supplies; single-package solution for IBM PC serial port DIP or flatpack package Complete IBM PC serial port Separate shutdown and enable Open-line detection simplifies cabling High slew rate High slew rate, int. caps, two shutdown modes High slew rate, int. caps, three shutdown modes High slew rate, int. caps, nine operating modes High slew rate, selective half-chip enables Available in quad flatpack package ________________________________________________________________ Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at 1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com. 1 MAX220–MAX249 General Description MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers ABSOLUTE MAXIMUM RATINGS—MAX220/222/232A/233A/242/243 20-Pin Plastic DIP (derate 8.00mW/°C above +70°C) ..440mW 16-Pin Narrow SO (derate 8.70mW/°C above +70°C) ...696mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW 18-Pin Wide SO (derate 9.52mW/°C above +70°C)......762mW 20-Pin Wide SO (derate 10.00mW/°C above +70°C)....800mW 20-Pin SSOP (derate 8.00mW/°C above +70°C) ..........640mW 16-Pin CERDIP (derate 10.00mW/°C above +70°C).....800mW 18-Pin CERDIP (derate 10.53mW/°C above +70°C).....842mW Operating Temperature Ranges MAX2_ _AC_ _, MAX2_ _C_ _ .............................0°C to +70°C MAX2_ _AE_ _, MAX2_ _E_ _ ..........................-40°C to +85°C MAX2_ _AM_ _, MAX2_ _M_ _ .......................-55°C to +125°C Storage Temperature Range .............................-65°C to +160°C Lead Temperature (soldering, 10sec) .............................+300°C Supply Voltage (VCC) ...............................................-0.3V to +6V Input Voltages TIN..............................................................-0.3V to (VCC - 0.3V) RIN (Except MAX220) ........................................................±30V RIN (MAX220).....................................................................±25V TOUT (Except MAX220) (Note 1) .......................................±15V TOUT (MAX220)...............................................................±13.2V Output Voltages TOUT ...................................................................................±15V ROUT .........................................................-0.3V to (VCC + 0.3V) Driver/Receiver Output Short Circuited to GND.........Continuous Continuous Power Dissipation (TA = +70°C) 16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW 18-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW Note 1: Input voltage measured with TOUT in high-impedance state, SHDN or VCC = 0V. Note 2: For the MAX220, V+ and V- can have a maximum magnitude of 7V, but their absolute difference cannot exceed 13V. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243 (VCC = +5V ±10%, C1–C4 = 0.1µF‚ MAX220, C1 = 0.047µF, C2–C4 = 0.33µF, TA = TMIN to TMAX‚ unless otherwise noted.) PARAMETER CONDITIONS MIN TYP MAX UNITS 0.8 V RS-232 TRANSMITTERS Output Voltage Swing All transmitter outputs loaded with 3kΩ to GND ±5 Input Logic Threshold Low Input Logic Threshold High Logic Pull-Up/lnput Current Output Leakage Current ±8 1.4 All devices except MAX220 MAX220: VCC = 5.0V 2 V 1.4 V 2.4 All except MAX220, normal operation 5 40 SHDN = 0V, MAX222/242, shutdown, MAX220 ±0.01 ±1 VCC = 5.5V, SHDN = 0V, VOUT = ±15V, MAX222/242 ±0.01 ±10 VCC = SHDN = 0V, VOUT = ±15V ±0.01 ±10 200 116 Data Rate µA µA kb/s Transmitter Output Resistance VCC = V+ = V- = 0V, VOUT = ±2V 300 10M Ω Output Short-Circuit Current VOUT = 0V ±7 ±22 mA RS-232 RECEIVERS RS-232 Input Voltage Operating Range ±30 RS-232 Input Threshold Low VCC = 5V RS-232 Input Threshold High VCC = 5V RS-232 Input Hysteresis All except MAX243 R2IN 0.8 MAX243 R2IN (Note 2) -3 1.8 2.4 MAX243 R2IN (Note 2) -0.5 -0.1 0.5 1 All except MAX243, VCC = 5V, no hysteresis in shdn. 0.2 MAX243 1 3 V V 5 7 kΩ 0.2 0.4 V TTL/CMOS Output Voltage Low IOUT = 3.2mA TTL/CMOS Output Voltage High IOUT = -1.0mA 3.5 VCC - 0.2 Sourcing VOUT = GND -2 -10 Shrinking VOUT = VCC 10 30 TTL/CMOS Output Short-Circuit Current V All except MAX243 R2IN RS-232 Input Resistance 2 1.3 V _______________________________________________________________________________________ V mA +5V-Powered, Multichannel RS-232 Drivers/Receivers (VCC = +5V ±10%, C1–C4 = 0.1µF‚ MAX220, C1 = 0.047µF, C2–C4 = 0.33µF, TA = TMIN to TMAX‚ unless otherwise noted.) PARAMETER CONDITIONS TTL/CMOS Output Leakage Current SHDN = VCC or EN = VCC (SHDN = 0V for MAX222), 0V ≤ VOUT ≤ VCC EN Input Threshold Low MAX242 EN Input Threshold High MAX242 2.0 Operating Supply Voltage 3kΩ load both inputs MAX220 UNITS ±0.05 ±10 µA 1.4 0.8 V 1.4 V 5.5 0.5 2 4 10 MAX220 12 MAX222/232A/233A/242/243 15 TA = +25°C 0.1 10 TA = 0°C to +70°C 2 50 TA = -40°C to +85°C 2 50 TA = -55°C to +125°C 35 100 MAX222/242 SHDN Input Leakage Current MAX222/242 SHDN Threshold Low MAX222/242 SHDN Threshold High MAX222/242 CL = 50pF to 2500pF, MAX222/232A/233A/242/243 RL = 3kΩ to 7kΩ, VCC = 5V, TA = +25°C, measured from +3V MAX220 to -3V or -3V to +3V MAX222/232A/233A/242/243 tPHLT MAX220 Transmitter Propagation Delay TLL to RS-232 (normal operation), Figure 1 MAX MAX222/232A/233A/242/243 Shutdown Supply Current Transition Slew Rate TYP 4.5 No load VCC Supply Current (SHDN = VCC), Figures 5, 6, 11, 19 MIN 1.4 V mA µA ±1 µA 0.8 V 2.0 1.4 V 6 12 30 1.5 3 30 1.3 3.5 V/µs 4 10 1.5 3.5 5 10 MAX222/232A/233A/242/243 0.5 1 MAX220 0.6 3 MAX222/232A/233A/242/243 0.6 1 MAX220 0.8 3 tPHLS MAX242 0.5 10 tPLHS MAX242 2.5 10 Receiver-Output Enable Time, Figure 3 tER MAX242 125 500 ns Receiver-Output Disable Time, Figure 3 tDR MAX242 160 500 ns Transmitter-Output Enable Time (SHDN goes high), Figure 4 tET MAX222/242, 0.1µF caps (includes charge-pump start-up) 250 µs Transmitter-Output Disable Time (SHDN goes low), Figure 4 tDT MAX222/242, 0.1µF caps 600 ns Transmitter + to - Propagation Delay Difference (normal operation) tPHLT - tPLHT MAX222/232A/233A/242/243 300 MAX220 2000 Receiver + to - Propagation Delay Difference (normal operation) tPHLR - tPLHR MAX222/232A/233A/242/243 100 MAX220 225 Receiver Propagation Delay RS-232 to TLL (normal operation), Figure 2 Receiver Propagation Delay RS-232 to TLL (shutdown), Figure 2 tPLHT tPHLR tPLHR MAX222/232A/233A/242/243 MAX220 µs µs µs ns ns Note 3: MAX243 R2OUT is guaranteed to be low when R2IN is ≥ 0V or is floating. _______________________________________________________________________________________ 3 MAX220–MAX249 ELECTRICAL CHARACTERISTICS—MAX220/222/232A/233A/242/243 (continued) __________________________________________Typical Operating Characteristics MAX220/MAX222/MAX232A/MAX233A/MAX242/MAX243 VCC = ±5V NO LOAD ON TRANSMITTER OUTPUTS (EXCEPT MAX220, MAX233A) 2 0 0.1µF V- LOADED, NO LOAD ON V+ -2 1µF 0.1µF -4 10 ALL CAPS 1µF 9 VCC = +5.25V 8 ALL CAPS 0.1µF 7 +10V 1µF CAPS V+ V+, V- VOLTAGE (V) 4 OUTPUT LOAD CURRENT FLOWS FROM V+ TO V- MAX220-02 6 EITHER V+ OR V- LOADED OUTPUT CURRENT (mA) 1µF 8 11 MAX220-01 10 MAX222/MAX242 ON-TIME EXITING SHUTDOWN VCC = +4.75V +5V +5V V+ 0.1µF CAPS SHDN 0V 0V 1µF CAPS 6 -6 V+ LOADED, NO LOAD ON V- -10 0 5 10 15 LOAD CURRENT (mA) 4 0.1µF CAPS 5 -8 20 25 V4 V- -10V 0 10 20 30 40 50 60 500µs/div DATA RATE (kbits/sec) _______________________________________________________________________________________ MAX220-03 AVAILABLE OUTPUT CURRENT vs. DATA RATE OUTPUT VOLTAGE vs. LOAD CURRENT OUTPUT VOLTAGE (V) MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers +5V-Powered, Multichannel RS-232 Drivers/Receivers 20-Pin Wide SO (derate 10 00mW/°C above +70°C).......800mW 24-Pin Wide SO (derate 11.76mW/°C above +70°C).......941mW 28-Pin Wide SO (derate 12.50mW/°C above +70°C) .............1W 44-Pin Plastic FP (derate 11.11mW/°C above +70°C) .....889mW 14-Pin CERDIP (derate 9.09mW/°C above +70°C) ..........727mW 16-Pin CERDIP (derate 10.00mW/°C above +70°C) ........800mW 20-Pin CERDIP (derate 11.11mW/°C above +70°C) ........889mW 24-Pin Narrow CERDIP (derate 12.50mW/°C above +70°C) ..............1W 24-Pin Sidebraze (derate 20.0mW/°C above +70°C)..........1.6W 28-Pin SSOP (derate 9.52mW/°C above +70°C).............762mW Operating Temperature Ranges MAX2 _ _ C _ _......................................................0°C to +70°C MAX2 _ _ E _ _ ...................................................-40°C to +85°C MAX2 _ _ M _ _ ...............................................-55°C to +125°C Storage Temperature Range .............................-65°C to +160°C Lead Temperature (soldering, 10sec) .............................+300°C Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS—MAX223/MAX230–MAX241 (MAX223/230/232/234/236/237/238/240/241, VCC = +5V ±10; MAX233/MAX235, VCC = 5V ±5%‚ C1–C4 = 1.0µF; MAX231/MAX239, VCC = 5V ±10%; V+ = 7.5V to 13.2V; TA = TMIN to TMAX; unless otherwise noted.) PARAMETER Output Voltage Swing CONDITIONS All transmitter outputs loaded with 3kΩ to ground MIN TYP ±5.0 ±7.3 MAX232/233 VCC Power-Supply Current No load, TA = +25°C V+ Power-Supply Current MAX223/230/234–238/240/241 10 7 15 0.4 1 MAX231 1.8 5 MAX239 5 15 MAX223 15 50 MAX230/235/236/240/241 1 10 TA = +25°C Input Logic Threshold Low TIN; EN, SHDN (MAX233); EN, SHDN (MAX230/235–241) 0.8 TIN 2.0 Input Logic Threshold High EN, SHDN (MAX223); EN, SHDN (MAX230/235/236/240/241) 2.4 Logic Pull-Up Current TIN = 0V mA mA µA V V 1.5 -30 UNITS V 5 MAX231/239 Shutdown Supply Current Receiver Input Voltage Operating Range MAX 200 µA 30 V _______________________________________________________________________________________ 5 MAX220–MAX249 ABSOLUTE MAXIMUM RATINGS—MAX223/MAX230–MAX241 VCC ...........................................................................-0.3V to +6V V+ ................................................................(VCC - 0.3V) to +14V V- ............................................................................+0.3V to -14V Input Voltages TIN ............................................................-0.3V to (VCC + 0.3V) RIN......................................................................................±30V Output Voltages TOUT ...................................................(V+ + 0.3V) to (V- - 0.3V) ROUT .........................................................-0.3V to (VCC + 0.3V) Short-Circuit Duration, TOUT ......................................Continuous Continuous Power Dissipation (TA = +70°C) 14-Pin Plastic DIP (derate 10.00mW/°C above +70°C)....800mW 16-Pin Plastic DIP (derate 10.53mW/°C above +70°C)....842mW 20-Pin Plastic DIP (derate 11.11mW/°C above +70°C)....889mW 24-Pin Narrow Plastic DIP (derate 13.33mW/°C above +70°C) ..........1.07W 24-Pin Plastic DIP (derate 9.09mW/°C above +70°C)......500mW 16-Pin Wide SO (derate 9.52mW/°C above +70°C).........762mW MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers ELECTRICAL CHARACTERISTICS—MAX223/MAX230–MAX241 (continued) (MAX223/230/232/234/236/237/238/240/241, VCC = +5V ±10; MAX233/MAX235, VCC = 5V ±5%‚ C1–C4 = 1.0µF; MAX231/MAX239, VCC = 5V ±10%; V+ = 7.5V to 13.2V; TA = TMIN to TMAX; unless otherwise noted.) PARAMETER RS-232 Input Threshold Low RS-232 Input Threshold High CONDITIONS TA = +25°C, VCC = 5V TA = +25°C, VCC = 5V Normal operation SHDN = 5V (MAX223) SHDN = 0V (MAX235/236/240/241) MIN TYP 0.8 1.2 0.6 Normal operation SHDN = 5V (MAX223) SHDN = 0V (MAX235/236/240/241) 1.5 1.7 1.5 2.4 0.2 0.5 1.0 V 3 5 7 kΩ 0.4 V RS-232 Input Resistance TA = +25°C, VCC = 5V TTL/CMOS Output Voltage Low IOUT = 1.6mA (MAX231/232/233, IOUT = 3.2mA) TTL/CMOS Output Voltage High IOUT = -1mA TTL/CMOS Output Leakage Current 0V ≤ ROUT ≤ VCC; EN = 0V (MAX223); EN = VCC (MAX235–241 ) Receiver Output Enable Time Normal operation MAX223 600 MAX235/236/239/240/241 400 Receiver Output Disable Time Normal operation MAX223 900 MAX235/236/239/240/241 250 Propagation Delay Normal operation RS-232 IN to TTL/CMOS OUT, SHDN = 0V CL = 150pF (MAX223) Transmitter Output Short-Circuit Current 6 2.4 V Shutdown (MAX223) SHDN = 0V, EN = 5V (R4IN‚ R5IN) VCC = 5V, no hysteresis in shutdown Transmitter Output Resistance UNITS V Shutdown (MAX223) SHDN = 0V, EN = 5V (R4IN, R5IN) RS-232 Input Hysteresis Transition Region Slew Rate MAX 3.5 0.05 V ±10 ns 0.5 10 4 40 tPLHS 6 40 5.1 30 3 µA ns tPHLS MAX223/MAX230/MAX234–241, TA = +25°C, VCC = 5V, RL = 3kΩ to 7kΩ‚ CL = 50pF to 2500pF, measured from +3V to -3V or -3V to +3V µs V/µs MAX231/MAX232/MAX233, TA = +25°C, VCC = 5V, RL = 3kΩ to 7kΩ, CL = 50pF to 2500pF, measured from +3V to -3V or -3V to +3V VCC = V+ = V- = 0V, VOUT = ±2V VCC - 0.4 4 30 Ω 300 ±10 _______________________________________________________________________________________ mA mA +5V-Powered, Multichannel RS-232 Drivers/Receivers TRANSMITTER OUTPUT VOLTAGE (VOH) vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES 2 TRANSMITTERS LOADED 7.2 7.0 6.5 4.5 6.6 TA = +25°C VCC = +5V 3 TRANSMITTERS LOADED RL = 3kΩ C1–C4 = 1µF 6.4 6.2 6.0 0 500 1000 1500 8.0 7.0 3 TRANSMITTERS LOADED 4 TRANSMITTERS LOADED 6.0 5.0 4.0 0 2500 2000 500 1000 1500 2000 2500 LOAD CAPACITANCE (pF) TRANSMITTER OUTPUT VOLTAGE (VOL) vs. VCC TRANSMITTER OUTPUT VOLTAGE (VOL) vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES TRANSMITTER OUTPUT VOLTAGE (V+, V-) vs. LOAD CURRENT TA = +25°C VCC = +5V 3 TRANSMITTERS LOADED RL = 3kΩ C1–C4 = 1µF -6.2 -6.4 VOL (V) -6.6 -7.5 1 TRANSMITTER LOADED 2 TRANSMITTERS LOADED 10 8 6 -7.0 TA = +25°C VCC = +5V C1–C4 = 1µF V- LOADED, V+ AND VNO LOAD EQUALLY ON V+ LOADED 4 160kbits/sec 80kbits/sec 20Kkbits/sec -6.8 MAX220-09 -6.0 MAX220-08 TA = +25°C C1–C4 = 1µF TRANSMITTER LOADS = 3kΩ || 2500pF 2 V+, V- (V) -7.0 0 -2 V+ LOADED, NO LOAD ON V- -4 -7.2 3 TRANSMITTERS LOADED -6 -7.4 -8 5.0 VCC (V) 5.5 ALL TRANSMITTERS UNLOADED -10 -7.6 -9.0 4.5 2 TRANSMITTERS LOADED 9.0 LOAD CAPACITANCE (pF) 4 TRANSMITTERS LOADED -8.5 SLEW RATE (V/µs) 160kbits/sec 80kbits/sec 20kbits/sec VCC (V) -6.5 -8.0 TA = +25°C VCC = +5V LOADED, RL = 3kΩ C1–C4 = 1µF 10.0 6.8 5.5 5.0 -6.0 VOL (V) VOH (V) 3 TRANSMITTERS LOADED TA = +25°C C1–C4 = 1µF TRANSMITTER 4 TRANSMITTERS LOADS = 3kΩ || 2500pF LOADED 7.5 1 TRANSMITTER LOADED 11.0 7.0 1 TRANSMITTER LOADED MAX220-07 VOH (V) 8.0 12.0 MAX220-05 7.4 MAX220-04 8.5 TRANSMITTER SLEW RATE vs. LOAD CAPACITANCE MAX220-06 TRANSMITTER OUTPUT VOLTAGE (VOH) vs. VCC 0 500 1000 1500 0 2500 2000 5 10 15 20 25 30 35 40 45 50 CURRENT (mA) LOAD CAPACITANCE (pF) V+, V- WHEN EXITING SHUTDOWN (1µF CAPACITORS) MAX220-13 V+ O V- SHDN* 500ms/div *SHUTDOWN POLARITY IS REVERSED FOR NON MAX241 PARTS _______________________________________________________________________________________ 7 MAX220–MAX249 __________________________________________Typical Operating Characteristics MAX223/MAX230–MAX241 MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers ABSOLUTE MAXIMUM RATINGS—MAX225/MAX244–MAX249 Supply Voltage (VCC) ...............................................-0.3V to +6V Input Voltages TIN‚ ENA, ENB, ENR, ENT, ENRA, ENRB, ENTA, ENTB..................................-0.3V to (VCC + 0.3V) RIN .....................................................................................±25V TOUT (Note 3).....................................................................±15V ROUT ........................................................-0.3V to (VCC + 0.3V) Short Circuit (one output at a time) TOUT to GND ............................................................Continuous ROUT to GND............................................................Continuous Continuous Power Dissipation (TA = +70°C) 28-Pin Wide SO (derate 12.50mW/°C above +70°C) .............1W 40-Pin Plastic DIP (derate 11.11mW/°C above +70°C) ...611mW 44-Pin PLCC (derate 13.33mW/°C above +70°C) ...........1.07W Operating Temperature Ranges MAX225C_ _, MAX24_C_ _ ..................................0°C to +70°C MAX225E_ _, MAX24_E_ _ ...............................-40°C to +85°C Storage Temperature Range .............................-65°C to +160°C Lead Temperature (soldering,10sec) ..............................+300°C Note 4: Input voltage measured with transmitter output in a high-impedance state, shutdown, or VCC = 0V. Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. ELECTRICAL CHARACTERISTICS—MAX225/MAX244–MAX249 (MAX225, VCC = 5.0V ±5%; MAX244–MAX249, VCC = +5.0V ±10%, external capacitors C1–C4 = 1µF; TA = TMIN to TMAX; unless otherwise noted.) PARAMETER CONDITIONS MIN TYP MAX UNITS 1.4 0.8 V RS-232 TRANSMITTERS Input Logic Threshold Low Input Logic Threshold High 2 Normal operation Logic Pull-Up/lnput Current Tables 1a–1d Data Rate Tables 1a–1d, normal operation Output Voltage Swing All transmitter outputs loaded with 3kΩ to GND Output Leakage Current (shutdown) Tables 1a–1d Shutdown ±5 1.4 V 10 50 ±0.01 ±1 120 64 ±7.5 µA kbits/sec V ENA, ENB, ENT, ENTA, ENTB = VCC, VOUT = ±15V ±0.01 ±25 VCC = 0V, VOUT = ±15V ±0.01 ±25 µA Transmitter Output Resistance VCC = V+ = V- = 0V, VOUT = ±2V (Note 4) 300 10M Ω Output Short-Circuit Current VOUT = 0V ±7 ±30 mA RS-232 Input Threshold Low VCC = 5V 0.8 1.3 RS-232 Input Threshold High VCC = 5V RS-232 Input Hysteresis VCC = 5V RS-232 RECEIVERS RS-232 Input Voltage Operating Range ±25 RS-232 Input Resistance 8 1.8 2.4 0.5 1.0 V 3 5 7 kΩ 0.2 0.4 V IOUT = 3.2mA TTL/CMOS Output Voltage High IOUT = -1.0mA 3.5 VCC - 0.2 Sourcing VOUT = GND -2 -10 Shrinking VOUT = VCC 10 30 TTL/CMOS Output Leakage Current Normal operation, outputs disabled, Tables 1a–1d, 0V ≤ VOUT ≤ VCC, ENR_ = VCC V 0.2 TTL/CMOS Output Voltage Low TTL/CMOS Output Short-Circuit Current V ±0.05 _______________________________________________________________________________________ V V mA ±0.10 µA +5V-Powered, Multichannel RS-232 Drivers/Receivers (MAX225, VCC = 5.0V ±5%; MAX244–MAX249, VCC = +5.0V ±10%, external capacitors C1–C4 = 1µF; TA = TMIN to TMAX; unless otherwise noted.) PARAMETER CONDITIONS MIN TYP MAX UNITS POWER SUPPLY AND CONTROL LOGIC Operating Supply Voltage No load VCC Supply Current (normal operation) Shutdown Supply Current 3kΩ loads on all outputs MAX225 4.75 5.25 MAX244–MAX249 4.5 5.5 MAX225 10 20 MAX244–MAX249 11 30 MAX225 40 MAX244–MAX249 57 TA = +25°C 8 TA = TMIN to TMAX 50 Leakage current Control Input 25 ±1 Threshold low 1.4 Threshold high 0.8 2.4 1.4 5 10 30 V mA µA µA V AC CHARACTERISTICS Transition Slew Rate CL = 50pF to 2500pF, RL = 3kΩ to 7kΩ, VCC = 5V, TA = +25°C, measured from +3V to -3V or -3V to +3V V/µs Transmitter Propagation Delay TLL to RS-232 (normal operation), Figure 1 tPHLT 1.3 3.5 tPLHT 1.5 3.5 Receiver Propagation Delay TLL to RS-232 (normal operation), Figure 2 tPHLR 0.6 1.5 tPLHR 0.6 1.5 Receiver Propagation Delay TLL to RS-232 (low-power mode), Figure 2 tPHLS 0.6 10 tPLHS 3.0 10 Transmitter + to - Propagation Delay Difference (normal operation) tPHLT - tPLHT 350 ns Receiver + to - Propagation Delay Difference (normal operation) tPHLR - tPLHR 350 ns µs µs µs Receiver-Output Enable Time, Figure 3 tER 100 500 ns Receiver-Output Disable Time, Figure 3 tDR 100 500 ns Transmitter Enable Time Transmitter Disable Time, Figure 4 tET tDT MAX246–MAX249 (excludes charge-pump start-up) 5 µs MAX225/MAX245–MAX249 (includes charge-pump start-up) 10 ms 100 ns Note 5: The 300Ω minimum specification complies with EIA/TIA-232E, but the actual resistance when in shutdown mode or VCC = 0V is 10MΩ as is implied by the leakage specification. _______________________________________________________________________________________ 9 MAX220–MAX249 ELECTRICAL CHARACTERISTICS—MAX225/MAX244–MAX249 (continued) __________________________________________Typical Operating Characteristics MAX225/MAX244–MAX249 8 V+ AND V- LOADED EXTERNAL POWER SUPPLY 1µF CAPACITORS 12 10 40kb/s DATA RATE 8 TRANSMITTERS LOADED WITH 3kΩ 8 6 4 VCC = 5V EXTERNAL CHARGE PUMP 1µF CAPACITORS 8 TRANSMITTERS DRIVING 5kΩ AND 2000pF AT 20kbits/sec 2 0 -2 EITHER V+ OR V- LOADED 2 3 LOAD CAPACITANCE (nF) 4 5 40kb/sec 7.0 60kb/sec 6.0 V+ AND V- LOADED 100kb/sec 200kb/sec 5.5 -8 1 20kb/sec 7.5 V- LOADED V+ LOADED -10 0 8.0 6.5 -4 -6 2 VCC = 5V WITH ALL TRANSMITTERS DRIVEN LOADED WITH 5kΩ 10kb/sec 8.5 V+, V (V) OUTPUT VOLTAGE (V) 6 14 9.0 MAX220-11 VCC = 5V 4 10 10 MAX220-10 18 16 TRANSMITTER OUTPUT VOLTAGE (V+, V-) vs. LOAD CAPACITANCE AT DIFFERENT DATA RATES OUTPUT VOLTAGE vs. LOAD CURRENT FOR V+ AND V- MAX220-12 TRANSMITTER SLEW RATE vs. LOAD CAPACITANCE TRANSMITTER SLEW RATE (V/µs) MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers ALL CAPACITIORS 1µF 5.0 0 5 10 15 20 25 LOAD CURRENT (mA) 30 35 0 1 2 3 LOAD CAPACITANCE (nF) ______________________________________________________________________________________ 4 5 +5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220–MAX249 +3V 0V* +3V 50% 50% 50% 50% INPUT INPUT 0V VCC OUTPUT V+ 0V V- OUTPUT tPLHT GND tPLHR tPLHS tPHLR tPHLS tPHLT *EXCEPT FOR R2 ON THE MAX243 WHERE -3V IS USED. Figure 1. Transmitter Propagation-Delay Timing Figure 2. Receiver Propagation-Delay Timing EN RX OUT RX IN 1k RX VCC - 2V SHDN +3V 0V a) TEST CIRCUIT 150pF EN INPUT OUTPUT DISABLE TIME (tDT) +3V V+ 0V +5V EN OUTPUT ENABLE TIME (tER) 0V -5V +3.5V V- RECEIVER OUTPUTS +0.8V a) TIMING DIAGRAM b) ENABLE TIMING +3V EN INPUT EN 1 OR 0 0V TX 3k OUTPUT DISABLE TIME (tDR) VOH VOH - 0.5V RECEIVER OUTPUTS VOL 50pF VCC - 2V VOL + 0.5V b) TEST CIRCUIT c) DISABLE TIMING Figure 3. Receiver-Output Enable and Disable Timing Figure 4. Transmitter-Output Disable Timing ______________________________________________________________________________________ 11 MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers Table 1a. MAX245 Control Pin Configurations ENT ENR 0 0 Normal Operation All Active All Active 0 1 Normal Operation All Active All 3-State 1 0 Shutdown All 3-State All Low-Power Receive Mode 1 1 Shutdown All 3-State All 3-State OPERATION STATUS TRANSMITTERS RECEIVERS Table 1b. MAX245 Control Pin Configurations TRANSMITTERS RECEIVERS OPERATION STATUS TA1–TA4 TB1–TB4 0 Normal Operation All Active All Active All Active All Active 0 1 Normal Operation All Active All Active RA1–RA4 3-State, RA5 Active RB1–RB4 3-State, RB5 Active 1 0 Shutdown All 3-State All 3-State All Low-Power Receive Mode All Low-Power Receive Mode 1 1 Shutdown All 3-State All 3-State RA1–RA4 3-State, RA5 Low-Power Receive Mode RB1–RB4 3-State, RB5 Low-Power Receive Mode ENT ENR 0 RA1–RA5 RB1–RB5 Table 1c. MAX246 Control Pin Configurations 12 OPERATION STATUS TRANSMITTERS RECEIVERS ENA ENB TA1–TA4 TB1–TB4 0 0 Normal Operation All Active All Active All Active All Active 0 1 Normal Operation All Active All 3-State All Active RB1–RB4 3-State, RB5 Active 1 0 Shutdown All 3-State All Active RA1–RA4 3-State, RA5 Active All Active 1 1 Shutdown All 3-State All 3-State RA1–RA4 3-State, RA5 Low-Power Receive Mode RB1–RB4 3-State, RA5 Low-Power Receive Mode RA1–RA5 ______________________________________________________________________________________ RB1–RB5 +5V-Powered, Multichannel RS-232 Drivers/Receivers TRANSMITTERS ENTA ENTB ENRA ENRB OPERATION STATUS RECEIVERS MAX247 TA1–TA4 TB1–TB4 RA1–RA4 RB1–RB5 MAX248 TA1–TA4 TB1–TB4 RA1–RA4 RB1–RB4 TA1–TA3 TB1–TB3 0 0 0 0 Normal Operation MAX249 All Active All Active All Active RA1–RA5 All Active RB1–RB5 0 0 0 1 Normal Operation All Active All Active All Active All 3-State, except RB5 stays active on MAX247 0 0 1 0 Normal Operation All Active All Active All 3-State All Active 0 0 1 1 Normal Operation All Active All Active All 3-State All 3-State, except RB5 stays active on MAX247 0 1 0 0 Normal Operation All Active All 3-State All Active All Active 0 1 0 1 Normal Operation All Active All 3-State All Active All 3-State, except RB5 stays active on MAX247 0 1 1 0 Normal Operation All Active All 3-State All 3-State All Active 0 1 1 1 Normal Operation All Active All 3-State All 3-State All 3-State, except RB5 stays active on MAX247 1 0 0 0 Normal Operation All 3-State All Active All Active All Active 1 0 0 1 Normal Operation All 3-State All Active All Active All 3-State, except RB5 stays active on MAX247 1 0 1 0 Normal Operation All 3-State All Active All 3-State All Active 1 0 1 1 Normal Operation All 3-State All Active All 3-State All 3-State, except RB5 stays active on MAX247 1 1 0 0 Shutdown All 3-State All 3-State Low-Power Receive Mode Low-Power Receive Mode 1 1 0 1 Shutdown All 3-State All 3-State Low-Power Receive Mode All 3-State, except RB5 stays active on MAX247 1 1 1 0 Shutdown All 3-State All 3-State All 3-State Low-Power Receive Mode 1 1 1 1 Shutdown All 3-State All 3-State All 3-State All 3-State, except RB5 stays active on MAX247 ______________________________________________________________________________________ 13 MAX220–MAX249 Table 1d. MAX247/MAX248/MAX249 Control Pin Configurations MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers _______________Detailed Description The MAX220–MAX249 contain four sections: dual charge-pump DC-DC voltage converters, RS-232 drivers, RS-232 receivers, and receiver and transmitter enable control inputs. Dual Charge-Pump Voltage Converter The MAX220–MAX249 have two internal charge-pumps that convert +5V to ±10V (unloaded) for RS-232 driver operation. The first converter uses capacitor C1 to double the +5V input to +10V on C3 at the V+ output. The second converter uses capacitor C2 to invert +10V to -10V on C4 at the V- output. A small amount of power may be drawn from the +10V (V+) and -10V (V-) outputs to power external circuitry (see the Typical Operating Characteristics section), except on the MAX225 and MAX245–MAX247, where these pins are not available. V+ and V- are not regulated, so the output voltage drops with increasing load current. Do not load V+ and V- to a point that violates the minimum ±5V EIA/TIA-232E driver output voltage when sourcing current from V+ and V- to external circuitry. When using the shutdown feature in the MAX222, MAX225, MAX230, MAX235, MAX236, MAX240, MAX241, and MAX245–MAX249, avoid using V+ and Vto power external circuitry. When these parts are shut down, V- falls to 0V, and V+ falls to +5V. For applications where a +10V external supply is applied to the V+ pin (instead of using the internal charge pump to generate +10V), the C1 capacitor must not be installed and the SHDN pin must be tied to VCC. This is because V+ is internally connected to VCC in shutdown mode. RS-232 Drivers The typical driver output voltage swing is ±8V when loaded with a nominal 5kΩ RS-232 receiver and VCC = +5V. Output swing is guaranteed to meet the EIA/TIA232E and V.28 specification, which calls for ±5V minimum driver output levels under worst-case conditions. These include a minimum 3kΩ load, VCC = +4.5V, and maximum operating temperature. Unloaded driver output voltage ranges from (V+ -1.3V) to (V- +0.5V). Input thresholds are both TTL and CMOS compatible. The inputs of unused drivers can be left unconnected since 400kΩ input pull-up resistors to VCC are built in (except for the MAX220). The pull-up resistors force the outputs of unused drivers low because all drivers invert. The internal input pull-up resistors typically source 12µA, except in shutdown mode where the pull-ups are disabled. Driver outputs turn off and enter a high-impedance state—where leakage current is typically microamperes (maximum 25µA)—when in shutdown 14 mode, in three-state mode, or when device power is removed. Outputs can be driven to ±15V. The powersupply current typically drops to 8µA in shutdown mode. The MAX220 does not have pull-up resistors to force the outputs of the unused drivers low. Connect unused inputs to GND or VCC. The MAX239 has a receiver three-state control line, and the MAX223, MAX225, MAX235, MAX236, MAX240, and MAX241 have both a receiver three-state control line and a low-power shutdown control. Table 2 shows the effects of the shutdown control and receiver threestate control on the receiver outputs. The receiver TTL/CMOS outputs are in a high-impedance, three-state mode whenever the three-state enable line is high (for the MAX225/MAX235/MAX236/MAX239– MAX241), and are also high-impedance whenever the shutdown control line is high. When in low-power shutdown mode, the driver outputs are turned off and their leakage current is less than 1µA with the driver output pulled to ground. The driver output leakage remains less than 1µA, even if the transmitter output is backdriven between 0V and (VCC + 6V). Below -0.5V, the transmitter is diode clamped to ground with 1kΩ series impedance. The transmitter is also zener clamped to approximately V CC + 6V, with a series impedance of 1kΩ. The driver output slew rate is limited to less than 30V/µs as required by the EIA/TIA-232E and V.28 specifications. Typical slew rates are 24V/µs unloaded and 10V/µs loaded with 3Ω and 2500pF. RS-232 Receivers EIA/TIA-232E and V.28 specifications define a voltage level greater than 3V as a logic 0, so all receivers invert. Input thresholds are set at 0.8V and 2.4V, so receivers respond to TTL level inputs as well as EIA/TIA-232E and V.28 levels. The receiver inputs withstand an input overvoltage up to ±25V and provide input terminating resistors with Table 2. Three-State Control of Receivers PART SHDN SHDN EN(R) RECEIVERS X Low High EN __ High Impedance Active High Impedance MAX223 __ Low High High MAX225 __ __ __ Low High High Impedance Active MAX235 MAX236 MAX240 Low Low High __ __ Low High X High Impedance Active High Impedance ______________________________________________________________________________________ +5V-Powered, Multichannel RS-232 Drivers/Receivers The receiver input hysteresis is typically 0.5V with a guaranteed minimum of 0.2V. This produces clear output transitions with slow-moving input signals, even with moderate amounts of noise and ringing. The receiver propagation delay is typically 600ns and is independent of input swing direction. Low-Power Receive Mode The low-power receive-mode feature of the MAX223, MAX242, and MAX245–MAX249 puts the IC into shutdown mode but still allows it to receive information. This is important for applications where systems are periodically awakened to look for activity. Using low-power receive mode, the system can still receive a signal that will activate it on command and prepare it for communication at faster data rates. This operation conserves system power. Negative Threshold—MAX243 The MAX243 is pin compatible with the MAX232A, differing only in that RS-232 cable fault protection is removed on one of the two receiver inputs. This means that control lines such as CTS and RTS can either be driven or left floating without interrupting communication. Different cables are not needed to interface with different pieces of equipment. The input threshold of the receiver without cable fault protection is -0.8V rather than +1.4V. Its output goes positive only if the input is connected to a control line that is actively driven negative. If not driven, it defaults to the 0 or “OK to send” state. Normally‚ the MAX243’s other receiver (+1.4V threshold) is used for the data line (TD or RD)‚ while the negative threshold receiver is connected to the control line (DTR‚ DTS‚ CTS‚ RTS, etc.). Other members of the RS-232 family implement the optional cable fault protection as specified by EIA/TIA232E specifications. This means a receiver output goes high whenever its input is driven negative‚ left floating‚ or shorted to ground. The high output tells the serial communications IC to stop sending data. To avoid this‚ the control lines must either be driven or connected with jumpers to an appropriate positive voltage level. Shutdown—MAX222–MAX242 On the MAX222‚ MAX235‚ MAX236‚ MAX240‚ and MAX241‚ all receivers are disabled during shutdown. On the MAX223 and MAX242‚ two receivers continue to operate in a reduced power mode when the chip is in shutdown. Under these conditions‚ the propagation delay increases to about 2.5µs for a high-to-low input transition. When in shutdown, the receiver acts as a CMOS inverter with no hysteresis. The MAX223 and MAX242 also have a receiver output enable input (EN for the MAX242 and EN for the MAX223) that allows receiver output control independent of SHDN (SHDN for MAX241). With all other devices‚ SHDN (SHDN for MAX241) also disables the receiver outputs. The MAX225 provides five transmitters and five receivers‚ while the MAX245 provides ten receivers and eight transmitters. Both devices have separate receiver and transmitter-enable controls. The charge pumps turn off and the devices shut down when a logic high is applied to the ENT input. In this state, the supply current drops to less than 25µA and the receivers continue to operate in a low-power receive mode. Driver outputs enter a high-impedance state (three-state mode). On the MAX225‚ all five receivers are controlled by the ENR input. On the MAX245‚ eight of the receiver outputs are controlled by the ENR input‚ while the remaining two receivers (RA5 and RB5) are always active. RA1–RA4 and RB1–RB4 are put in a three-state mode when ENR is a logic high. Receiver and Transmitter Enable Control Inputs The MAX225 and MAX245–MAX249 feature transmitter and receiver enable controls. The receivers have three modes of operation: full-speed receive (normal active)‚ three-state (disabled)‚ and lowpower receive (enabled receivers continue to function at lower data rates). The receiver enable inputs control the full-speed receive and three-state modes. The transmitters have two modes of operation: full-speed transmit (normal active) and three-state (disabled). The transmitter enable inputs also control the shutdown mode. The device enters shutdown mode when all transmitters are disabled. Enabled receivers function in the low-power receive mode when in shutdown. ______________________________________________________________________________________ 15 MAX220–MAX249 nominal 5kΩ values. The receivers implement Type 1 interpretation of the fault conditions of V.28 and EIA/TIA-232E. MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers Tables 1a–1d define the control states. The MAX244 has no control pins and is not included in these tables. The MAX246 has ten receivers and eight drivers with two control pins, each controlling one side of the device. A logic high at the A-side control input (ENA) causes the four A-side receivers and drivers to go into a three-state mode. Similarly, the B-side control input (ENB) causes the four B-side drivers and receivers to go into a three-state mode. As in the MAX245, one Aside and one B-side receiver (RA5 and RB5) remain active at all times. The entire device is put into shutdown mode when both the A and B sides are disabled (ENA = ENB = +5V). The MAX247 provides nine receivers and eight drivers with four control pins. The ENRA and ENRB receiver enable inputs each control four receiver outputs. The ENTA and ENTB transmitter enable inputs each control four drivers. The ninth receiver (RB5) is always active. The device enters shutdown mode with a logic high on both ENTA and ENTB. The MAX248 provides eight receivers and eight drivers with four control pins. The ENRA and ENRB receiver enable inputs each control four receiver outputs. The ENTA and ENTB transmitter enable inputs control four drivers each. This part does not have an always-active receiver. The device enters shutdown mode and transmitters go into a three-state mode with a logic high on both ENTA and ENTB. 16 The MAX249 provides ten receivers and six drivers with four control pins. The ENRA and ENRB receiver enable inputs each control five receiver outputs. The ENTA and ENTB transmitter enable inputs control three drivers each. There is no always-active receiver. The device enters shutdown mode and transmitters go into a three-state mode with a logic high on both ENTA and ENTB. In shutdown mode, active receivers operate in a low-power receive mode at data rates up to 20kbits/sec. __________Applications Information Figures 5 through 25 show pin configurations and typical operating circuits. In applications that are sensitive to power-supply noise, VCC should be decoupled to ground with a capacitor of the same value as C1 and C2 connected as close as possible to the device. ______________________________________________________________________________________ +5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220–MAX249 +5V INPUT C3 TOP VIEW C5 C1+ 1 1 16 VCC C1 V+ 2 15 GND C1- 3 14 T1OUT C2+ 4 C2- 5 MAX220 MAX232 MAX232A V- 6 C2 12 R1OUT 9 11 T1IN -10V C4 T1OUT 14 RS-232 OUTPUTS 400k T2OUT 7 10 T2IN R2OUT 12 R1OUT CAPACITANCE (µF) C1 C2 C3 C4 4.7 4.7 10 10 1.0 1.0 1.0 1.0 0.1 0.1 0.1 0.1 6 +5V TTL/CMOS INPUTS DIP/SO DEVICE MAX220 MAX232 MAX232A V- +5V 400k 10 T2IN R2IN 8 V+ 2 +10V 3 C14 C2+ +10V TO -10V 5 C2- VOLTAGE INVERTER 13 R1IN 11 T1IN T2OUT 7 16 VCC +5V TO +10V VOLTAGE DOUBLER C1+ R1IN 13 TTL/CMOS OUTPUTS C5 4.7 1.0 0.1 RS-232 INPUTS 5k R2IN 8 9 R2OUT 5k GND 15 Figure 5. MAX220/MAX232/MAX232A Pin Configuration and Typical Operating Circuit +5V INPUT C3 ALL CAPACITORS = 0.1µF TOP VIEW C5 17 VCC 3 +10V C1+ +5V TO +10V V+ 4 C1- VOLTAGE DOUBLER 5 C2+ 7 -10V +10V TO -10V V6 C2C4 VOLTAGE INVERTER 2 (N.C.) EN 1 (N.C.) EN 1 C1+ 2 19 VCC 17 VCC V+ 3 18 GND V+ 3 16 GND C1- 4 17 T1OUT C1- 4 15 T1OUT C2+ 5 14 R1IN C2- 6 C1+ 2 C2+ 5 C2- 6 18 SHDN MAX222 MAX242 13 R1OUT MAX222 MAX242 15 R1IN V- 7 14 R1OUT 12 T1IN T2OUT 8 13 N.C. T2OUT 8 11 T2IN R2IN 9 12 T1IN R2OUT 10 11 T2IN 10 R2OUT DIP/SO C2 +5V 16 N.C. V- 7 R2IN 9 C1 20 SHDN TTL/CMOS INPUTS 400k 12 T1IN +5V (EXCEPT MAX220) 400k 11 T2IN (EXCEPT MAX220) T1OUT 15 T2OUT 8 13 R1OUT R1IN 14 TTL/CMOS OUTPUTS SSOP RS-232 INPUTS 5k R2IN 9 10 R2OUT 1 (N.C.) EN ( ) ARE FOR MAX222 ONLY. PIN NUMBERS IN TYPICAL OPERATING CIRCUIT ARE FOR DIP/SO PACKAGES ONLY. RS-232 OUTPUTS 5k SHDN GND 18 16 Figure 6. MAX222/MAX242 Pin Configurations and Typical Operating Circuit ______________________________________________________________________________________ 17 MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers +5V TOP VIEW 0.1 +5V 28 VCC 27 VCC 400k T1IN 3 ENR 1 28 VCC ENR 2 27 VCC T1IN 3 26 ENT T2IN 4 R1OUT 5 4 23 T5IN R3OUT 7 22 R4OUT R3IN 8 21 R5OUT R2IN 9 20 R5IN R1IN 10 18 T3OUT T2OUT 12 17 T4OUT GND 13 16 T5OUT GND 14 15 T5OUT T3IN 25 12 T3OUT +5V 18 400k T4IN 24 +5V T4OUT 17 400k 19 R4IN T1OUT 11 T2OUT +5V 400k 24 T4IN R2OUT 6 11 400k T2IN 25 T3IN MAX225 T1OUT +5V T5OUT T5IN 23 ENT 26 T5OUT R1OUT 5 R1IN 16 15 10 5k SO R2OUT 6 R2IN 9 5k R3OUT 7 MAX225 FUNCTIONAL DESCRIPTION 5 RECEIVERS 5 TRANSMITTERS 2 CONTROL PINS 1 RECEIVER ENABLE (ENR) 1 TRANSMITTER ENABLE (ENT) R3IN 8 R4IN 19 5k R4OUT 22 5k R5OUT 21 R5IN 5k PINS (ENR, GND, VCC, T5OUT) ARE INTERNALLY CONNECTED. CONNECT EITHER OR BOTH EXTERNALLY. T5OUT IS A SINGLE DRIVER. 1 2 ENR ENR GND 13 GND 14 Figure 7. MAX225 Pin Configuration and Typical Operating Circuit 18 ______________________________________________________________________________________ 20 +5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220–MAX249 +5V INPUT TOP VIEW 1.0µF 12 11 VCC +5V TO +10V VOLTAGE DOUBLER C1+ 1.0µF 14 C115 C2+ 1.0µF 16 C2- +10V TO -10V VOLTAGE INVERTER T1OUT 2 27 R3IN T2OUT 3 26 R3OUT R2IN 4 25 SHDN (SHDN) R2OUT 5 T2IN 6 24 EN (EN) MAX223 MAX241 T1IN 7 400k 6 T2IN 21 T4IN R1IN 9 20 T3IN GND 10 19 R5OUT* VCC 11 18 R5IN* C1+ 12 17 V- V+ 13 16 C2- C1- 14 15 C2+ Wide SO/ SSOP RS-232 OUTPUTS 400k 20 T3IN T3OUT 1 T3 23 R4IN* R1OUT 8 T2OUT 3 T2 +5V 22 R4OUT* T1OUT 2 T1 +5V TTL/CMOS INPUTS 17 400k 7 T1IN 28 T4OUT V- 13 1.0µF +5V T3OUT 1 1.0µF V+ +5V 21 T4IN 8 R1OUT 400k T4 T4OUT 28 R1 R1IN 9 5k 5 R2OUT R2IN 4 R2 5k LOGIC OUTPUTS 26 R3OUT R3 R3IN 27 R4IN 23 R5IN 18 5k 22 R4OUT R4 RS-232 INPUTS 5k 19 R5OUT R5 *R4 AND R5 IN MAX223 REMAIN ACTIVE IN SHUTDOWN NOTE: PIN LABELS IN ( ) ARE FOR MAX241 5k 24 EN (EN) GND SHDN 25 (SHDN) 10 Figure 8. MAX223/MAX241 Pin Configuration and Typical Operating Circuit ______________________________________________________________________________________ 19 MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers +5V INPUT TOP VIEW 1.0µF 1.0µF T3OUT 20 T4OUT 1 T1OUT 2 19 T5IN T2OUT 3 18 N.C. T2IN 4 1.0µF 17 SHDN MAX230 T1IN 5 16 T5OUT GND 6 15 T4IN VCC 7 14 T3IN C1+ 8 13 V- V+ 9 12 C2- C1- 10 11 C2+ TTL/CMOS INPUTS DIP/SO 7 VCC V+ 9 +5V TO +10V VOLTAGE DOUBLER 8 C1+ 10 C1- 11 +10V TO -10V C2+ 12 VC2- VOLTAGE INVERTER +5V 400k T1OUT 5 T1IN T1 +5V 400k T2OUT 4 T2IN T2 +5V 400k T3OUT 14 T3IN T3 +5V 400k T4OUT 15 T4IN T4 +5V 400k T5OUT 19 T5IN T5 N.C. x 18 13 1.0µF 2 3 RS-232 OUTPUTS 1 20 16 17 GND 1.0µF SHDN 6 Figure 9. MAX230 Pin Configuration and Typical Operating Circuit +5V INPUT TOP VIEW +7.5V TO +12V 1.0µF 13 (15) 1 2 1.0µF C+ 1 CV- 2 3 T2OUT 4 MAX231 R2IN 5 14 V+ C+ 1 16 V+ 13 VCC C- 2 15 VCC 12 GND V- 3 14 GND 11 T1OUT T2OUT 4 10 R1IN R2IN 5 R2OUT 6 9 R1OUT T2IN 7 8 T1IN MAX231 13 T1OUT 10 T1IN N.C. 8 9 N.C. DIP SO C1- V+ V- 8 T1IN C2 1.0µF (13) +5V TTL/CMOS INPUTS RS-232 OUTPUTS 400k (11) 7 T2IN 9 R1OUT T2OUT 4 T2 R1IN 10 R1 TTL/CMOS OUTPUTS 5k 6 R2OUT R2IN 5 R2 (12) RS-232 INPUTS GND 12 (14) Figure 10. MAX231 Pin Configurations and Typical Operating Circuit 20 (16) 3 T1OUT 11 T1 5k PIN NUMBERS IN ( ) ARE FOR SO PACKAGE 14 400k (10) 11 R1OUT T2IN 7 C1+ +5V 12 R1IN R2OUT 6 VCC +12V TO -12V VOLTAGE CONVERTER ______________________________________________________________________________________ +5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220–MAX249 +5V INPUT 1.0µF TOP VIEW 7 VCC +5V 400k T2IN 20 R2OUT 1 T1IN 2 19 R2IN R1OUT 3 GND 6 17 V- MAX233 MAX233A 14 V+ (C1-) (V+) C1+ 8 12 V- (C2+) (V-) CS- 10 RS-232 OUTPUTS 400k 1 T2IN 3 R1OUT T2OUT 18 R1IN 4 11 C2+ (C2-) DIP/SO 5k TTL/CMOS OUTPUTS 20 R2OUT 13 C1- (C1+) GND 9 +5V 16 C215 C2+ VCC 7 T1OUT 5 T1IN TTL/CMOS INPUTS 18 T2OUT R1IN 4 T1OUT 5 2 8 (13) DO NOT MAKE CONNECTIONS TO 13 (14) THESE PINS 12 (10) INTERNAL -10 17 POWER SUPPLY INTERNAL +10V POWER SUPPLY RS-232 OUTPUTS R2IN 19 5k C1+ C1- C2+ V- C2- V14 (8) V+ 11 (12) C2+ 15 16 10 (11) C2GND GND 6 9 ( ) ARE FOR SO PACKAGE ONLY. Figure 11. MAX233/MAX233A Pin Configuration and Typical Operating Circuit +5V INPUT 1.0µF TOP VIEW 7 1.0µF 9 10 T1OUT 1 16 T3OUT T2OUT 2 15 T4OUT T2IN 3 T1IN 4 1.0µF C1C2+ 11 C2- 6 VCC +5V TO +10V VOLTAGE DOUBLER +10V TO -10V VOLTAGE INVERTER VCC 6 13 T3IN 10 C2+ 9 V+ 8 C1- V- 12 1.0µF T1 T1OUT 1 +5V 400k 3 T2IN 11 C2- C1+ 7 V+ 400k 4 T1IN 12 V- GND 5 1.0µF 8 +5V 14 T4IN MAX234 C1+ T2 T2OUT 3 +5V TTL/CMOS INPUTS RS-232 OUTPUTS 400k 13 T3IN T3 T3OUT 16 +5V DIP/SO 400k 14 T4IN T4 T4OUT 15 GND 5 Figure 12. MAX234 Pin Configuration and Typical Operating Circuit ______________________________________________________________________________________ 21 MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers +5V INPUT TOP VIEW 1.0µF 12 VCC +5V 400k 8 T1IN T1 T1OUT 3 T2 T2OUT 4 +5V 400k 7 T2IN +5V 400k TTL/CMOS INPUTS T4OUT 1 24 R3IN T3OUT 2 23 R3OUT T1OUT 3 22 T5IN T2OUT 4 21 SHDN R2IN 5 MAX235 R2OUT 6 15 T3IN T3OUT 2 T3 RS-232 OUTPUTS +5V 400k 16 T4IN +5V 20 EN 22 T5IN T4OUT 1 T4 400k T5OUT 19 T5 19 T5OUT T2IN 7 18 R4IN T1IN 8 17 R4OUT R1OUT 9 16 T4IN R1IN 10 15 T3IN GND 11 14 R5OUT VCC 12 13 R5IN DIP 9 R1OUT R1IN 10 T1 5k 6 R2OUT R2IN 5 R2 5k TTL/CMOS OUTPUTS 23 R3OUT R3IN 24 R3 RS-232 INPUTS 5k 17 R4OUT R4IN 18 R4 5k 14 R5OUT R5IN 13 R5 5k 20 EN SHDN 21 GND 11 Figure 13. MAX235 Pin Configuration and Typical Operating Circuit 22 ______________________________________________________________________________________ +5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220–MAX249 TOP VIEW +5V INPUT 1.0µF 9 10 1.0µF 12 13 1.0µF 1.0µF VCC +5V TO +10V VOLTAGE DOUBLER C1+ C1- V+ C2+ V- +10V TO -10V VOLTAGE INVERTER 14 C2- 11 15 1.0µF +5V 400k 7 T1IN T3OUT 1 24 T4OUT T1OUT 2 23 R2IN R1IN 4 R1OUT 5 +5V 400k 6 T2IN 22 R2OUT T2OUT 3 21 SHDN MAX236 TTL/CMOS INPUTS 19 T4IN T1IN 7 18 T3IN GND 8 17 R3OUT VCC 9 16 R3IN C1+ 10 15 V- V+ 11 14 C2- C1- 12 13 C2+ T2OUT T2 3 RS-232 OUTPUTS +5V 400k 20 EN T2IN 6 T1OUT 2 T1 18 T3IN T3OUT 1 T3 +5V 400k 19 T4IN 5 R1OUT T4OUT 24 T4 R1IN 4 R1 5k DIP/SO TTL/CMOS OUTPUTS 22 R2OUT R2 R2IN 23 R3IN 16 RS-232 INPUTS 5k 17 R3OUT R3 5k 20 EN SHDN 21 GND 8 Figure 14. MAX236 Pin Configuration and Typical Operating Circuit ______________________________________________________________________________________ 23 MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers TOP VIEW +5V INPUT 1.0µF 10 1.0µF 12 13 1.0µF 14 C1+ C1C2+ C2- 24 T4OUT T1OUT 2 23 R2IN T2OUT 3 22 R2OUT R1IN 4 R1OUT 5 MAX237 T2IN 6 19 T4IN T1IN 7 18 T3IN GND 8 17 R3OUT VCC 9 16 R3IN C1+ 10 15 V- V+ 11 14 C2- C1- 12 13 C2+ 400k TTL/CMOS INPUTS T2OUT T2 +5V 20 T5OUT 3 400k 18 T3IN T3OUT 1 T3 +5V 1.0µF T1OUT 2 T1 6 T2IN 21 T5IN 15 V- 400k 7 T1IN +5V 11 V+ +10V TO -10V VOLTAGE INVERTER +5V T3OUT 1 1.0µF 9 VCC +5V TO +10V VOLTAGE DOUBLER RS-232 OUTPUTS 400k 19 T4IN T4OUT 24 T4 +5V 400k 21 T5IN DIP/SO 5 R1OUT T5OUT 20 T5 R1IN 4 R1 5k TTL/CMOS OUTPUTS 22 R2OUT R2 R2IN 23 R3IN 16 5k 17 R3OUT R3 5k GND 8 Figure 15. MAX237 Pin Configuration and Typical Operating Circuit 24 ______________________________________________________________________________________ RS-232 INPUTS +5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220–MAX249 TOP VIEW +5V INPUT 1.0µF 1.0µF 9 10 1.0µF 12 13 1.0µF 14 VCC +5V TO +10V VOLTAGE DOUBLER C1+ C1C2+ 24 T3OUT T1OUT 2 23 R3IN R2IN 3 R2OUT 4 T1IN 5 MAX238 20 T4OUT R1OUT 6 19 T3IN R1IN 7 18 T2IN GND 8 17 R4OUT VCC 9 16 R4IN C1+ 10 15 V- V+ 11 14 C2- C1- 12 13 C2+ 6 R1OUT RS-232 OUTPUTS T3OUT 24 T3 +5V 1 400k 19 T3IN 21 T4IN T2OUT T2 +5V TTL/CMOS INPUTS T1OUT 2 400k 18 T2IN 21 T4IN 1.0µF T1 +5V 15 400k 5 T1IN 22 R3OUT V- +10V TO -10V VOLTAGE INVERTER C2+5V T2OUT 1 V+ 11 400k T4OUT 20 T4 R1IN 7 R1 5k DIP/SO 4 R2OUT R2IN R2 TTL/CMOS OUTPUTS 3 RS-232 INPUTS 5k 22 R3OUT R3 R3IN 23 R4IN 16 5k 17 R4OUT R4 5k GND 8 Figure 16. MAX238 Pin Configuration and Typical Operating Circuit ______________________________________________________________________________________ 25 MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers TOP VIEW 7.5V TO 13.2V INPUT +5V INPUT 1.0µF 4 6 1.0µF 7 5 VCC C1+ V+ C1- +5V 24 T1IN R1IN 2 23 T2IN GND 3 22 R2OUT VCC 4 21 R2IN V+ 5 MAX239 TTL/CMOS INPUTS C+ 6 19 T1OUT C- 7 18 R3IN V- 8 17 R3OUT R5IN 9 16 T3IN R5OUT 10 15 N.C. R4OUT 11 14 EN 16 T3IN 1 R1OUT T1OUT 19 400k 23 T2IN T2OUT T2 +5V 20 T2OUT 1.0µF T1 +5V 8 400k 24 T1IN R1OUT 1 V- +10V TO -10V VOLTAGE INVERTER 20 RS-232 OUTPUTS 400k T3OUT 13 T3 R1IN 2 R1 5k 22 R2OUT 13 T3OUT R4IN 12 R2IN 21 R2 5k DIP/SO TTL/CMOS OUTPUTS 17 R3OUT R3 R3IN 18 R4IN 12 R5IN 9 5k 11 R4OUT R4 5k 10 R5OUT R5 5k 14 EN N.C. GND 3 Figure 17. MAX239 Pin Configuration and Typical Operating Circuit 26 ______________________________________________________________________________________ 15 RS-232 INPUTS +5V-Powered, Multichannel RS-232 Drivers/Receivers 1.0µF 25 19 VCC +5V TO +10V VOLTAGE DOUBLER C1+ 1.0µF 27 C128 C2+ 1.0µF 29 C2- 400k N.C. R2IN N.C. T2OUT T1OUT T3OUT T4OUT R3IN R3OUT T5IN N.C. +5V 11 10 9 8 7 6 5 4 3 2 1 MAX240 N.C. N.C. C1+ V+ C1C2+ C2 VN.C. N.C. N.C. T2OUT T2 37 T3IN T3OUT 6 T3 +5V 2 T5IN 16 R1OUT RS-232 OUTPUTS 400k 38 T4IN +5V 8 400k T4OUT 5 T4 400k T5OUT T5 41 R1IN 17 R1 5k 13 R2OUT R2IN 10 R2 23 24 25 26 27 28 29 30 31 32 33 12 13 14 15 16 17 18 19 20 21 22 T1OUT 7 T1 14 T2IN N.C. SHDN EN T5OUT R4IN R4OUT T4IN T3IN R5OUT R5IN N.C. 30 1.0µF +5V 44 43 42 41 40 39 38 37 36 35 34 V- 26 400k 15 T1IN TTL/CMOS INPUTS 1.0µF V+ +5V TO -10V VOLTAGE INVERTER +5V N.C. R2OUT T2IN T1IN R1OUT R1IN GND VCC N.C. N.C. N.C. MAX220–MAX249 +5V INPUT TOP VIEW 5k TTL/CMOS OUTPUTS 3 R3OUT R3 R3IN 4 R4IN 40 R5IN 35 5k RS-232 INPUTS Plastic FP 39 R4OUT R4 5k 36 R5OUT R5 5k 42 EN GND SHDN 43 18 Figure 18. MAX240 Pin Configuration and Typical Operating Circuit ______________________________________________________________________________________ 27 MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers ALL CAPACITORS = 0.1µF 0.1µF +5V INPUT TOP VIEW 0.1µF 1 16 VCC C1+ 1 V+ 2 0.1µF 3 C14 C2+ 0.1µF 5 C2- 15 GND C1- 3 C2+ 4 C1+ C2- 5 T2OUT 7 10 T2IN R2IN 8 9 V- +10V 6 -10V 0.1µF T1OUT 14 11 T1IN 12 R1OUT 11 T1IN +10V TO -10V VOLTAGE INVERTER 2 400k 13 R1IN V- 6 V+ +5V 14 T1OUT MAX243 16 VCC +5V TO +10V VOLTAGE DOUBLER +5V TTL/CMOS INPUTS RS-232 OUTPUTS 400k T2OUT 7 10 T2IN R2OUT DIP/SO 12 R1OUT R1IN 13 TTL/CMOS OUTPUTS 9 R2OUT RECEIVER INPUT ≤ -3 V OPEN ≥ +3V R1 OUTPUT HIGH HIGH LOW R2 OUTPUT HIGH LOW LOW R2IN 8 5k GND 15 Figure 19. MAX243 Pin Configuration and Typical Operating Circuit 28 RS-232 INPUTS 5k ______________________________________________________________________________________ +5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220–MAX249 +5V TOP VIEW 1µF 1µF 20 VCC +5V TO +10V VOLTAGE DOUBLER TB4OUT 4 3 2 1 44 43 42 41 40 RB5IN TB1OUT TB3OUT TA1OUT TB2OUT TA2OUT 5 TA4OUT 6 1µF TA3OUT RA4IN RA5IN 21 1µF C1+ 23 C124 C2+ 25 C2- 22 V+ 26 V- 1µF +10V TO -10V VOLTAGE INVERTER 2 TA1OUT +5V +5V TB1OUT 44 400k RA3IN 7 39 RB4IN RA2IN 8 38 RB3IN RA1IN 9 37 RB2IN RA1OUT 10 36 RB1IN RA2OUT 11 35 RB1OUT RA3OUT 12 RA4OUT 13 33 RB3OUT RA5OUT 14 32 RB4OUT TA1IN 15 31 RB5OUT TA2IN 16 30 TB1IN TA3IN 17 29 TB2IN MAX244 PLCC TB1IN 30 +5V +5V 2 TA2OUT TB2OUT 43 400k 16 TA2IN TB2IN 29 +5V +5V 3 TA3OUT TB3OUT 42 400k 17 TA3IN TB3IN 28 +5V +5V 4 TA4OUT TB4OUT 41 400k 18 TA4IN TB4IN 27 9 RA1IN RB1IN 36 TB3IN TB4IN V- C2- C2+ V+ C1- GND VCC 19 20 21 22 23 24 25 26 27 28 C1+ 18 TA4IN 34 RB2OUT 15 TA1IN 5k 5k 10 RA1OUT RB1OUT 35 8 RA2IN MAX249 FUNCTIONAL DESCRIPTION 10 RECEIVERS 5 A-SIDE RECEIVER 5 B-SIDE RECEIVER 8 TRANSMITTERS 4 A-SIDE TRANSMITTERS 4 B-SIDE TRANSMITTERS NO CONTROL PINS RB2IN 37 5k 5k 11 RA2OUT RB2OUT 34 7 RA3IN RB3IN 38 5k 5k 12 RA3OUT RB3OUT 33 6 RA4IN RB4IN 39 5k 5k 13 RA4OUT RB4OUT 32 5 RA5IN RB5IN 40 5k 5k 14 RA5OUT GND 19 RB5OUT 31 Figure 20. MAX244 Pin Configuration and Typical Operating Circuit ______________________________________________________________________________________ 29 MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers +5V TOP VIEW 1µF 40 VCC ENR 40 1 VCC TA1IN 2 39 ENT TA2IN 3 38 TB1IN TA3IN 4 37 TB2IN TA4IN 5 36 TB3IN RA5OUT 6 35 TB4IN RA4OUT 7 34 RB5OUT MAX245 RA3OUT 8 33 RB4OUT RA2OUT 9 32 RB3OUT RA1OUT 10 31 RB2OUT RA1IN 11 30 RB1OUT RA2IN 12 29 RB1IN RA3IN 13 28 RB2IN RA4IN 14 27 RB3IN RA5IN 15 26 RB4IN TA1OUT 16 25 RB5IN TA2OUT 17 24 TB1OUT TA3OUT 18 23 TB2OUT TA4OUT GND 19 22 TB3OUT 20 21 TB4OUT +5V +5V 16 TA1OUT 2 TA1IN TB1IN 38 +5V +5V 17 TA2OUT 3 TA2IN TB2IN 37 +5V +5V 18 TA3OUT TB3OUT 22 400k 4 TA3IN TB3IN 36 +5V +5V 19 TA4OUT TB4OUT 21 400k 5 TA4IN TB4IN 35 1 ENR ENT 39 11 RA1IN RB1IN 29 5k 5k 10 RA1OUT RB1OUT 30 12 RA2IN RB2IN 28 5k 5k RB2OUT 31 13 RA3IN RB3IN 27 5k 5k MAX245 FUNCTIONAL DESCRIPTION 10 RECEIVERS 5 A-SIDE RECEIVERS (RA5 ALWAYS ACTIVE) 5 B-SIDE RECEIVERS (RB5 ALWAYS ACTIVE) 8 TRANSMITTTERS 4 A-SIDE TRANSMITTERS 2 CONTROL PINS 1 RECEIVER ENABLE (ENR) 1 TRANSMITTER ENABLE (ENT) TB2OUT 23 400k 9 RA2OUT DIP TB1OUT 24 400k 8 RA3OUT RB3OUT 32 14 RA4IN RB4IN 26 5k 5k 7 RA4OUT RB4OUT 33 15 RA5IN RB5IN 25 5k 5k 6 RA5OUT RB5OUT 34 GND 20 Figure 21. MAX245 Pin Configuration and Typical Operating Circuit 30 ______________________________________________________________________________________ +5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220–MAX249 +5V TOP VIEW 1µF ENA 1 40 VCC TA1IN 2 39 ENB TA2IN 3 38 TB1IN TA3IN 4 37 TB2IN TA4IN 5 36 TB3IN RA5OUT 6 RA4OUT 7 RA3OUT 8 MAX246 35 TB4IN 34 RB5OUT 33 RB4OUT RA2OUT 9 32 RB3OUT RA1OUT 10 31 RB2OUT RA1IN 11 30 RB1OUT RA2IN 12 29 RB1IN RA3IN 13 28 RB2IN RA4IN 14 27 RB3IN RA5IN 15 26 RB4IN TA1OUT 16 25 RB5IN TA2OUT 17 24 TB1OUT TA3OUT 18 23 TB2OUT TA4OUT 19 22 TB3OUT GND 20 21 TB4OUT DIP 40 VCC +5V +5V TB1OUT 24 16 TA1OUT 400k 2 TA1IN TB1IN 38 +5V +5V 17 TA2OUT TB2OUT 23 400k 3 TA2IN TB2IN 37 +5V +5V 18 TA3OUT TB3OUT 22 400k 4 TA3IN TB3IN 36 +5V +5V 19 TA4OUT TB4OUT 21 400k 5 TA4IN TB4IN 35 1 ENA ENB 39 11 RA1IN RB1IN 29 5k 5k RB1OUT 30 10 RA1OUT RB2IN 28 12 RA2IN 5k 5k 9 RA2OUT RB2OUT 31 13 RA3IN MAX246 FUNCTIONAL DESCRIPTION 10 RECEIVERS 5 A-SIDE RECEIVERS (RA5 ALWAYS ACTIVE) 5 B-SIDE RECEIVERS (RB5 ALWAYS ACTIVE) 8 TRANSMITTERS 4 A-SIDE TRANSMITTERS 4 B-SIDE TRANSMITTERS 2 CONTROL PINS ENABLE A-SIDE (ENA) ENABLE B-SIDE (ENB) RB3IN 27 5k 5k 8 RA3OUT RB3OUT 32 14 RA4IN RB4IN 26 5k 5k 7 RA4OUT RB4OUT 33 RB5IN 25 15 RA5IN 5k 5k 6 RA5OUT RB5OUT 34 GND 20 Figure 22. MAX246 Pin Configuration and Typical Operating Circuit ______________________________________________________________________________________ 31 MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers +5V TOP VIEW 1µF 40 VCC +5V +5V 1 ENTA ENTA 1 40 VCC TA1IN 2 39 ENTB TA2IN 3 38 TB1IN TA3IN 4 37 TB2IN TA4IN 5 36 TB3IN RB5OUT 6 35 TB4IN RA4OUT 7 34 RB4OUT RA3OUT 8 33 RB3OUT MAX247 RA2OUT 9 32 RB2OUT RA1OUT 10 31 RB1OUT ENRA 11 30 ENRB RA1IN 12 29 RB1IN RA2IN 13 28 RB2IN RA3IN 14 27 RB3IN RA4IN 15 26 RB4IN TA1OUT 16 25 RB5IN TA2OUT 17 24 TB1OUT TA3OUT 18 23 TB2OUT TA4OUT 19 22 TB3OUT GND 20 21 TB4OUT 16 TA1OUT ENTB 39 TB1OUT 24 400k 2 TA1IN TB1IN 38 +5V +5V 17 TA2OUT TB2OUT 23 400k 3 TA2IN TB2IN 37 +5V +5V 18 TA3OUT TB3OUT 22 400k 4 TA3IN TB3IN 36 +5V +5V 19 TA4OUT TB4OUT 21 400k 5 TA4IN TB4IN 35 6 RB5OUT RB5IN 25 5k 12 RA1IN RB1IN 29 5k 5k 10 RA1OUT RB1OUT 31 13 RA2IN RB2IN 28 DIP 5k 5k MAX247 FUNCTIONAL DESCRIPTION 9 RECEIVERS 4 A-SIDE RECEIVERS 5 B-SIDE RECEIVERS (RB5 ALWAYS ACTIVE) 8 TRANSMITTERS 4 A-SIDE TRANSMITTERS 4 B-SIDE TRANSMITTERS 4 CONTROL PINS ENABLE RECEIVER A-SIDE (ENRA) ENABLE RECEIVER B-SIDE (ENRB) ENABLE RECEIVER A-SIDE (ENTA) ENABLE RECEIVERr B-SIDE (ENTB) 9 RA2OUT RB2OUT 32 14 RA3IN RB3IN 27 5k 5k 8 RA3OUT RB3OUT 33 15 RA4IN RB4IN 26 5k 5k 7 RA4OUT RB4OUT 34 11 ENRA ENRB 30 GND 20 Figure 23. MAX247 Pin Configuration and Typical Operating Circuit 32 ______________________________________________________________________________________ +5V-Powered, Multichannel RS-232 Drivers/Receivers MAX220–MAX249 TOP VIEW +5V 1µF 1µF 20 5 3 2 1 1µF RB4IN TA4OUT TB3OUT TB2OUT TB1OUT TA1OUT TA2OUT TA4OUT 4 TA3OUT RA3IN 6 RA4IN 21 1µF 44 43 42 41 40 C1+ 23 C124 C2+ 25 C2- VCC +5V TO +10V VOLTAGE DOUBLER V+ V- +5V 1 TA1OUT 39 RB3IN RA1IN 8 38 RB2IN ENRA 9 37 RB1IN RA1OUT 10 36 ENRB RA2OUT 11 35 RB1OUT RA3OUT 12 RA4OUT 13 33 RB3OUT TA1IN 14 32 RB4OUT MAX248 34 RB2OUT TA2IN 15 31 TB1IN TA3IN 16 30 TB2IN 29 TB3IN TB4IN ENTB V- C2- C2+ V+ C1- VCC 19 20 21 22 23 24 25 26 27 28 C1+ 18 GND 17 ENTA TA4IN PLCC TB1OUT 44 400k 14 TA1IN TB1IN 31 +5V +5V 2 TA2OUT TB2OUT 43 400k 15 TA2IN TB2IN 30 +5V +5V 3 TA3OUT TB3OUT 42 400k 16 TA3IN TB3IN 29 +5V +5V 4 TA4OUT TB4OUT 41 400k 17 TA4IN TB4IN 28 8 RA1IN RB1IN 37 5k 5k MAX248 FUNCTIONAL DESCRIPTION 8 RECEIVERS 4 A-SIDE RECEIVERS 4 B-SIDE RECEIVERS 8 TRANSMITTERS 4 A-SIDE TRANSMITTERS 4 B-SIDE TRANSMITTERS 4 CONTROL PINS ENABLE RECEIVER A-SIDE (ENRA) ENABLE RECEIVER B-SIDE (ENRB) ENABLE RECEIVER A-SIDE (ENTA) ENABLE RECEIVER B-SIDE (ENTB) 1µF ENTB 27 +5V 7 26 +10V TO -10V VOLTAGE INVERTER 18 ENTA RA2IN 22 10 RA1OUT RB1OUT 35 7 RA2IN RB2IN 38 5k 5k 11 RA2OUT RB2OUT 34 6 RA3IN RB3IN 39 5k 5k 12 RA3OUT RB3OUT 33 5 RA4IN RB4IN 40 5k 5k 13 RA4OUT 9 ENRA RB4OUT 32 ENRB 36 GND 19 Figure 24. MAX248 Pin Configuration and Typical Operating Circuit ______________________________________________________________________________________ 33 MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers +5V TOP VIEW 1µF 1µF 20 2 1 44 43 42 41 40 1µF RB4IN TB3OUT 3 RB5IN TB2OUT TB1OUT 4 TA1OUT 5 TA3OUT RA5IN 6 TA2OUT RA3IN RA4IN 21 1µF VCC +5V TO +10V VOLTAGE DOUBLER C1+ 23 C124 C2+ 25 C2- V+ V- 7 39 RB3IN 8 38 RB2IN ENRA 9 37 RB1IN RA1OUT 10 36 ENRB RA2OUT 11 35 RB1OUT RA3OUT 12 MAX249 34 RB2OUT RA4OUT 13 33 RB3OUT RA5OUT 14 32 RB4OUT TA1IN 15 31 RB5OUT TA2IN 16 30 TB1IN 29 TB2IN TB3IN ENTB V- C2- C1- C2+ V+ VCC 19 20 21 22 23 24 25 26 27 28 C1+ 18 GND 17 ENTA TA3IN PLCC +5V TB1OUT 44 400k 15 TA1IN TB1IN 30 +5V +5V TB2OUT 43 2 TA2OUT 400k 16 TA2IN TB2IN 29 +5V +5V 3 TA3OUT TB3OUT 42 400k 17 TA3IN TB3IN 28 8 RA1IN RB1IN 37 5k 5k 10 RA1OUT RB1OUT 35 7 RA2IN RB2IN 38 5k 5k MAX249 FUNCTIONAL DESCRIPTION 10 RECEIVERS 5 A-SIDE RECEIVERS 5 B-SIDE RECEIVERS 6 TRANSMITTERS 3 A-SIDE TRANSMITTERS 3 B-SIDE TRANSMITTERS 4 CONTROL PINS ENABLE RECEIVER A-SIDE (ENRA) ENABLE RECEIVER B-SIDE (ENRB) ENABLE RECEIVER A-SIDE (ENTA) ENABLE RECEIVER B-SIDE (ENTB) 11 RA2OUT RB2OUT 34 6 RA3IN RB3IN 39 5k 5k 12 RA3OUT RB3OUT 33 5 RA4IN RB4IN 40 5k 5k 13 RA4OUT RB4OUT 32 4 RA5IN RB5IN 41 5k 5k 14 RA5OUT RB5OUT 31 9 ENRA ENRB 36 GND 19 Figure 25. MAX249 Pin Configuration and Typical Operating Circuit 34 1µF ENTB 27 +5V 1 TA1OUT RA2IN 26 +10V TO -10V VOLTAGE INVERTER 18 ENTA RA1IN 22 ______________________________________________________________________________________ +5V-Powered, Multichannel RS-232 Drivers/Receivers PIN-PACKAGE MAX232AC/D 0°C to +70°C MAX222CPN PART TEMP. RANGE 0°C to +70°C 18 Plastic DIP MAX232AEPE -40°C to +85°C 16 Plastic DIP MAX222CWN 0°C to +70°C 18 Wide SO MAX232AESE -40°C to +85°C 16 Narrow SO MAX222C/D 0°C to +70°C Dice* MAX232AEWE -40°C to +85°C 16 Wide SO MAX222EPN -40°C to +85°C 18 Plastic DIP MAX232AEJE -40°C to +85°C 16 CERDIP MAX222EWN -40°C to +85°C 18 Wide SO MAX232AMJE -55°C to +125°C 16 CERDIP MAX222EJN -40°C to +85°C 18 CERDIP MAX232AMLP -55°C to +125°C 20 LCC MAX222MJN -55°C to +125°C 18 CERDIP MAX233CPP 0°C to +70°C 20 Plastic DIP MAX223CAI 0°C to +70°C 28 SSOP MAX233EPP -40°C to +85°C 20 Plastic DIP MAX223CWI 0°C to +70°C 28 Wide SO MAX233ACPP 0°C to +70°C 20 Plastic DIP MAX223C/D 0°C to +70°C Dice* MAX233ACWP 0°C to +70°C 20 Wide SO MAX223EAI -40°C to +85°C 28 SSOP MAX233AEPP -40°C to +85°C 20 Plastic DIP MAX223EWI -40°C to +85°C 28 Wide SO MAX233AEWP -40°C to +85°C 20 Wide SO MAX225CWI 0°C to +70°C 28 Wide SO MAX234CPE 0°C to +70°C 16 Plastic DIP MAX225EWI -40°C to +85°C 28 Wide SO MAX234CWE 0°C to +70°C 16 Wide SO MAX230CPP 0°C to +70°C 20 Plastic DIP MAX234C/D 0°C to +70°C Dice* MAX230CWP 0°C to +70°C 20 Wide SO MAX234EPE -40°C to +85°C 16 Plastic DIP MAX230C/D 0°C to +70°C Dice* MAX234EWE -40°C to +85°C 16 Wide SO MAX230EPP -40°C to +85°C 20 Plastic DIP MAX234EJE -40°C to +85°C 16 CERDIP MAX230EWP -40°C to +85°C 20 Wide SO MAX234MJE -55°C to +125°C 16 CERDIP MAX230EJP -40°C to +85°C 20 CERDIP MAX235CPG 0°C to +70°C 24 Wide Plastic DIP MAX230MJP -55°C to +125°C 20 CERDIP MAX235EPG -40°C to +85°C 24 Wide Plastic DIP MAX231CPD 0°C to +70°C 14 Plastic DIP MAX235EDG -40°C to +85°C 24 Ceramic SB MAX231CWE 0°C to +70°C 16 Wide SO MAX235MDG -55°C to +125°C 24 Ceramic SB MAX231CJD 0°C to +70°C 14 CERDIP MAX236CNG 0°C to +70°C 24 Narrow Plastic DIP MAX231C/D 0°C to +70°C Dice* MAX236CWG 0°C to +70°C 24 Wide SO MAX231EPD -40°C to +85°C 14 Plastic DIP MAX236C/D 0°C to +70°C Dice* MAX231EWE -40°C to +85°C 16 Wide SO MAX236ENG -40°C to +85°C 24 Narrow Plastic DIP MAX231EJD -40°C to +85°C 14 CERDIP MAX236EWG -40°C to +85°C 24 Wide SO MAX231MJD -55°C to +125°C 14 CERDIP MAX236ERG -40°C to +85°C 24 Narrow CERDIP MAX232CPE 0°C to +70°C 16 Plastic DIP MAX236MRG -55°C to +125°C 24 Narrow CERDIP MAX232CSE 0°C to +70°C 16 Narrow SO MAX237CNG 0°C to +70°C 24 Narrow Plastic DIP MAX232CWE 0°C to +70°C 16 Wide SO MAX237CWG 0°C to +70°C 24 Wide SO MAX232C/D 0°C to +70°C Dice* MAX237C/D 0°C to +70°C Dice* MAX232EPE -40°C to +85°C 16 Plastic DIP MAX237ENG -40°C to +85°C 24 Narrow Plastic DIP MAX232ESE -40°C to +85°C 16 Narrow SO MAX237EWG -40°C to +85°C 24 Wide SO MAX232EWE -40°C to +85°C 16 Wide SO MAX237ERG -40°C to +85°C 24 Narrow CERDIP MAX232EJE -40°C to +85°C 16 CERDIP MAX237MRG -55°C to +125°C 24 Narrow CERDIP MAX232MJE -55°C to +125°C 16 CERDIP MAX238CNG 0°C to +70°C 24 Narrow Plastic DIP MAX232MLP -55°C to +125°C 20 LCC MAX238CWG 0°C to +70°C 24 Wide SO 0°C to +70°C Dice* MAX232ACPE 0°C to +70°C 16 Plastic DIP MAX238C/D MAX232ACSE 0°C to +70°C 16 Narrow SO MAX238ENG MAX232ACWE 0°C to +70°C 16 Wide SO -40°C to +85°C Dice* 24 Narrow Plastic DIP * Contact factory for dice specifications. ______________________________________________________________________________________ 35 MAX220–MAX249 ___________________________________________Ordering Information (continued) MAX220–MAX249 +5V-Powered, Multichannel RS-232 Drivers/Receivers ___________________________________________Ordering Information (continued) PIN-PACKAGE MAX243CPE 0°C to +70°C 16 Plastic DIP MAX238EWG PART -40°C to +85°C TEMP. RANGE 24 Wide SO MAX243CSE 0°C to +70°C 16 Narrow SO MAX238ERG -40°C to +85°C 24 Narrow CERDIP MAX243CWE 0°C to +70°C 16 Wide SO MAX238MRG -55°C to +125°C 24 Narrow CERDIP MAX243C/D 0°C to +70°C Dice* MAX239CNG 0°C to +70°C 24 Narrow Plastic DIP MAX243EPE -40°C to +85°C 16 Plastic DIP MAX239CWG 0°C to +70°C 24 Wide SO MAX243ESE -40°C to +85°C 16 Narrow SO MAX239C/D 0°C to +70°C Dice* MAX243EWE -40°C to +85°C 16 Wide SO MAX239ENG -40°C to +85°C 24 Narrow Plastic DIP MAX243EJE -40°C to +85°C 16 CERDIP MAX239EWG -40°C to +85°C 24 Wide SO MAX243MJE -55°C to +125°C 16 CERDIP MAX239ERG -40°C to +85°C 24 Narrow CERDIP MAX244CQH 0°C to +70°C 44 PLCC MAX239MRG -55°C to +125°C 24 Narrow CERDIP MAX244C/D 0°C to +70°C Dice* MAX240CMH 0°C to +70°C 44 Plastic FP MAX244EQH -40°C to +85°C MAX240C/D 0°C to +70°C Dice* MAX245CPL 0°C to +70°C 40 Plastic DIP MAX241CAI 0°C to +70°C 28 SSOP MAX245C/D 0°C to +70°C Dice* MAX241CWI 0°C to +70°C 28 Wide SO MAX245EPL -40°C to +85°C 40 Plastic DIP MAX241C/D 0°C to +70°C Dice* MAX246CPL 0°C to +70°C 40 Plastic DIP MAX241EAI -40°C to +85°C 28 SSOP MAX246C/D 0°C to +70°C Dice* MAX241EWI -40°C to +85°C 28 Wide SO MAX246EPL -40°C to +85°C 40 Plastic DIP 0°C to +70°C 40 Plastic DIP Dice* 44 PLCC MAX242CAP 0°C to +70°C 20 SSOP MAX247CPL MAX242CPN 0°C to +70°C 18 Plastic DIP MAX247C/D 0°C to +70°C MAX242CWN 0°C to +70°C 18 Wide SO MAX247EPL -40°C to +85°C MAX242C/D 0°C to +70°C Dice* MAX248CQH 0°C to +70°C 44 PLCC MAX242EPN -40°C to +85°C 18 Plastic DIP MAX248C/D 0°C to +70°C Dice* MAX242EWN -40°C to +85°C 18 Wide SO MAX248EQH MAX242EJN -40°C to +85°C 18 CERDIP MAX242MJN -55°C to +125°C 18 CERDIP 40 Plastic DIP -40°C to +85°C 44 PLCC MAX249CQH 0°C to +70°C 44 PLCC MAX249EQH -40°C to +85°C 44 PLCC * Contact factory for dice specifications. Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 36 __________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 (408) 737-7600 © 2001 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products. ANEXOS 3 - Fichas Técnicas do Hardware desenvolvido HEF4047 clxxiv INTEGRATED CIRCUITS DATA SHEET For a complete data sheet, please also download: • The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC • The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC HEF4047B MSI Monostable/astable multivibrator Product specification File under Integrated Circuits, IC04 January 1995 Philips Semiconductors Product specification HEF4047B MSI Monostable/astable multivibrator DESCRIPTION The HEF4047B consists of a gatable astable multivibrator with logic techniques incorporated to permit positive or negative edge-triggered monostable multivibrator action with retriggering and external counting options. Inputs include + TRIGGER, − TRIGGER, ASTABLE, ASTABLE, RETRIGGER and MR (Master Reset). Buffered outputs are O, O and OSCILLATOR OUTPUT. In all modes of operation an external capacitor (Ct) must be connected between CTC and RCTC, and an external resistor (Rt) must be connected between RTC and RCTC (continued on next page). Fig.1 Functional diagram. FAMILY DATA, IDD LIMITS category MSI See Family Specifications January 1995 2 Philips Semiconductors Product specification HEF4047B MSI Monostable/astable multivibrator An external count down option can be implemented by coupling O to an external ‘N’ counter and resetting the counter with the trigger pulse. The counter output pulse is fed back to the ASTABLE input and has a duration equal to N times the period of the multivibrator. A HIGH level on the MR input assures no output pulse during an ON-power condition. This input can also be activated to terminate the output pulse at any time. In the monostable mode, a HIGH level or power-ON reset pulse must be applied to MR, whenever VDD is applied. Astable operation is enabled by a HIGH level on the ASTABLE input. The period of the square wave at O and O outputs is a function of the external components employed. ‘True’ input pulses on the ASTABLE or ‘complement’ pulses on the ASTABLE input, allow the circuit to be used as a gatable multivibrator. The OSCILLATOR OUTPUT period will be half of the O output in the astable mode. However, a 50% duty factor is not guaranteed at this output. In the monostable mode, positive edge-triggering is accomplished by applying a leading-edge pulse to the + TRIGGER input and a LOW level to the − TRIGGER input. For negative edge-triggering, a trailing-edge pulse is applied to the − TRIGGER and a HIGH level to the + TRIGGER. Input pulses may be of any duration relative to the output pulse. The multivibrator can be retriggered (on the leading-edge only) by applying a common pulse to both the RETRIGGER and + TRIGGER inputs. In this mode the output pulse remains HIGH as long as the input pulse period is shorter than the period determined by the RC components. HEF4047BP(N): 14-lead DIL; plastic (SOT27-1) HEF4047BD(F): 14-lead DIL; ceramic (cerdip) HEF4047BT(D): 14-lead SO; plastic (SOT73) (SOT108-1) ( ): Package Designator North America Fig.2 Pinning diagram. January 1995 3 This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in _white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ... Philips Semiconductors Monostable/astable multivibrator January 1995 4 Product specification Fig.3 Logic diagram. HEF4047B MSI (1) Special input protection that allows operating input voltages outside the supply voltage lines. Compared to the standard input protection pin 3 is more sensitive to static discharge; extra handling precautions are recommended. Philips Semiconductors Product specification HEF4047B MSI Monostable/astable multivibrator FUNCTIONAL CONNECTIONS PINS CONNECTED TO FUNCTION VDD VSS OUTPUT PULSE INPUT FROM PULSE PINS OUTPUT PERIOD OR PULSE WIDTH astable multivibrator free running 4, 5, 6, 14 7, 8, 9, 12 − 10, 11, 13 at pins 10, 11: true gating 4, 6, 14 7, 8, 9, 12 5 10, 11, 13 complement gating 6, 14 5, 7, 8, 9, 12 4 10, 11, 13 tA = 4,40 RtCt at pin 13: tA = 2,20 RtCt pos. edge-triggering 4, 14 5, 6, 7, 9, 12 8 10, 11 neg. edge-triggering 4, 8, 14 5, 7, 9, 12 6 10, 11 at pins 10, 11: retriggerable 4, 14 5, 6, 7, 9 8, 12 10, 11 tM = 2,48 RtCt 14 5, 6, 7, 8, 9, 12 − 10, 11 monostable multivibrator external count down(1) Notes 1. Input pulse to RESET of external counting chip; external counting chip output to pin 4. 2. In all cases, external resistor between pins 2 and 3, external capacitor between pins 1 and 3. DC CHARACTERISTICS VSS = 0 V; inputs at VSS or VDD Tamb (°C) VDD V SYMBOL −40 + 25 + 85 MAX. MIN. MAX. MAX. 0,3 − 0,3 1 Leakage current pin 3; output 15 I3 transistor OFF January 1995 5 µA pin 3 at VDD or VSS Philips Semiconductors Product specification HEF4047B MSI Monostable/astable multivibrator AC CHARACTERISTICS VSS = 0 V; Tamb = 25 °C; CL = 50 pF; input transition times ≤ 20 ns VDD V SYMBOL MIN. TYP. MAX. TYPICAL EXTRAPOLATION FORMULA Propagation delays ASTABLE, ASTABLE → OSC. OUTPUT HIGH to LOW 95 190 68 ns + (0,55 ns/pF) CL 45 90 43 ns + (0,23 ns/pF) CL 30 60 22 ns + (0,16 ns/pF) CL 85 170 58 ns + (0,55 ns/pF) CL 40 80 29 ns + (0,23 ns/pF) CL 30 60 22 ns + (0,16 ns/pF) CL 150 300 123 ns + (0,55 ns/pF) CL 65 130 54 ns + (0,23 ns/pF) CL 50 100 42 ns + (0,16 ns/pF) CL 130 260 103 ns + (0,55 ns/pF) CL 60 120 49 ns + (0,23 ns/pF) CL 45 90 37 ns + (0,16 ns/pF) CL 160 320 133 ns + (0,55 ns/pF) CL 65 130 54 ns + (0,23 ns/pF) CL 15 50 100 42 ns + (0,16 ns/pF) CL 5 155 310 128 ns + (0,55 ns/pF) CL 5 10 tPHL 15 5 LOW to HIGH 10 tPLH 15 ASTABLE, ASTABLE → O, O HIGH to LOW 5 10 tPHL 15 5 LOW to HIGH 10 tPLH 15 +/− TRIGGER → O, O HIGH to LOW LOW to HIGH + TRIGGER, RETRIGGER → O HIGH to LOW + TRIGGER, RETRIGGER → O LOW to HIGH MR → O HIGH to LOW MR → O LOW to HIGH Output transition times HIGH to LOW LOW to HIGH 5 10 tPHL 65 130 54 ns + (0,23 ns/pF) CL 15 50 100 42 ns + (0,16 ns/pF) CL 5 65 130 38 ns + (0,55 ns/pF) CL 10 tPLH 30 60 19 ns + (0,23 ns/pF) CL 15 25 50 17 ns + (0,16 ns/pF) CL 5 95 190 68 ns + (0,55 ns/pF) CL 10 tPHL 40 80 29 ns + (0,23 ns/pF) CL 15 30 60 22 ns + (0,16 ns/pF) CL 5 100 200 83 ns + (0,55 ns/pF) CL 10 tPLH 45 90 34 ns + (0,23 ns/pF) CL 15 35 70 27 ns + (0,16 ns/pF) CL 5 100 200 83 ns + (0,55 ns/pF) CL 10 tPHL 45 90 34 ns + (0,23 ns/pF) CL 15 35 70 27 ns + (0,16 ns/pF) CL 5 60 120 10 ns + (1,0 ns/pF) CL 30 60 10 10 tPLH tTHL 6 ns + (0,28 ns/pF) CL 15 20 40 5 60 120 30 60 9 ns + (0,42 ns/pF) CL 20 40 6 ns + (0,28 ns/pF) CL 10 tTLH 15 January 1995 9 ns + (0,42 ns/pF) CL 6 10 ns + (1,0 ns/pF) CL Philips Semiconductors Product specification HEF4047B MSI Monostable/astable multivibrator VDD V Minimum MR pulse 5 width; HIGH 10 SYMBOL MIN. TYP. MAX. tWMRH 15 60 30 30 15 20 10 Minimum input pulse width; any 5 input exept MR 10 tW 15 APPLICATION INFORMATION General features: • Monostable (one-shot) or astable (free-running) operation • True and complemented buffered outputs • Only one external R and C required Monostable multivibrator features: • Positive- or negative-edge triggering • Output pulse width independent of trigger pulse duration • Retriggerable option for pulse-width expansion • Long pulse width possible using small RC components by means of external counter provision • Fast recovery time essentially independent of pulse width • Pulse-width accuracy maintained at duty cycles approaching 100% Astable multivibrator features: • Free-running or gatable operating modes • 50% duty cycle • Oscillator output available January 1995 7 220 110 100 50 70 35 TYPICAL EXTRAPOLATION FORMULA Philips Semiconductors Product specification HEF4047B MSI Monostable/astable multivibrator 1. Astable mode design information a. Unit-to-unit transfer-voltage variations The following analysis presents worst-case variations from unit-to-unit as a function of transfer-voltage (VTR) shift for free running (astable) operation. Fig.4 Astable mode waveforms. V TR t 1 = – R t C t In ---------------------------V DD + V TR V DD – V TR t 2 = – R t C t In ------------------------------2V DD – V TR ( V TR ) ( V DD – V TR ) t A = 2 ( t 1 + t 2 ) = – 2R t C t In ------------------------------------------------------------------------- , where t A = Astable mode pulse width. ( V DD + V TR ) ( 2V DD – V TR ) Values for tA are: VDD = 5 or 10 V VDD = 15 V typ. : VTR = 0,5 VDD; tA = 4,40 RtCt min. : VTR = 0,3 VDD; tA = 4,71 RtCt max.: VTR = 0,7 VDD; tA = 4,71 RtCt min. : VTR = 4 V; tA = 4,84 RtCt max.: VTR = 11 V; tA = 4,84 RtCt thus if tA = 4,40 RtCt is used, the maximum variation will be (+ 7,0%; −0,0%) at 10 V. January 1995 8 Philips Semiconductors Product specification HEF4047B MSI Monostable/astable multivibrator b. Variations due to changes in VDD In addition to variations from unit-to-unit, the astable period may vary as a function of frequency with respect to VDD. Typical variations are presented graphically in Figs 5 and 6 with 10 V as a reference. Fig.5 Typical O and O period accuracy as a function of supply voltage; astable mode; Tamb = 25 °C. CURVE A fO kHz 10 Ct pF Rt kΩ 100 220 B 5 100 470 C 1 1000 220 January 1995 9 Philips Semiconductors Product specification HEF4047B MSI Monostable/astable multivibrator Fig.6 Typical O and O period accuracy as a function of supply voltage; astable mode; Tamb = 25 °C. CURVE fO kHz Ct pF Rt kΩ A 500 10 47 B 225 100 10 C 100 100 22 D 50 100 47 January 1995 10 Philips Semiconductors Product specification HEF4047B MSI Monostable/astable multivibrator 2. Monostable mode design information The following analysis presents worst case variations from unit-to-unit as a function of transfer-voltage (VTR) shift for one-shot (monostalbe) operation. Fig.7 Monostable waveforms. V TR t 1 ‘ = – R t C t In -------------2V DD t M = ( t 1' + t 2 ) ( V TR ) ( V DD – V TR ) t M = – R t C t In ------------------------------------------------------------ , where t M = Monostable mode pulse width. ( 2V DD – V TR ) ( 2V DD ) Values for tM are: typ. : VTR = 0,5 VDD; tM = 2,48 RtCt VDD = 5 to10 V VDD = 15 V min. : VTR = 0,3 VDD; tM = 2,78 RtCt max.: VTR = 0,7 VDD; tM = 2,52 RtCt min. : VTR = 4 V; tM = 2,88 RtCt max.: VTR = 11 V; tM = 2,56 RtCt Note 1. In the astable mode, the first positive half cycle has a duration of tM; succeeding durations are 1⁄2 tA. thus if tM = 2,48 RtCt is used, the maximum variation will be (+ 12%; −0,0%) at 10 V. January 1995 11 Philips Semiconductors Product specification HEF4047B MSI Monostable/astable multivibrator 3. Retrigger mode operation The HEF4047B can be used in the retrigger mode to extend the output pulse duration, or to compare the frequency of an input signal with that of the internal oscillator. In the retrigger mode the input pulse is applied to pins 8 and 12, and the output is taken from pin 10 or 11. Normal monostable action is obtained when one retrigger pulse is applied (Fig.8). Extended pulse duration is obtained when more than one pulse is applied. For two input pulses, tRE = t1’ + t1 + 2t2. For more than two pulses, tRE (output O), terminates at some variable time, tD, after the termination of the last retrigger pulse; tD is variable because tRE (output O) terminates after the second positive edge of the oscillator output appears at flip-flop 4. Fig.8 Retrigger mode waveforms. 4. External counter option Time tM can be extended by any amount with the use of external counting circuitry. Advantages include digitally controlled pulse duration, small timing capacitors for long time periods, and extremely fast recovery time. A typical implementation is shown in Fig.9. The pulse duration at the output is: t ext = ( N – 1 ) ( t A ) + ( t M + 1 ⁄ 2 t A ) Where text = pulse duration of the circuitry, and N is the number of counts used. Fig.9 Implementation of external counter option. January 1995 12 Philips Semiconductors Product specification HEF4047B MSI Monostable/astable multivibrator 5. Timing component limitations The capacitor used in the circuit should be non-polarized and have low leakage (i.e. the parallel resistance of the capacitor should be an order of magnitude greater than the external resistor used). There is no upper or lower limit for either Rt or Ct value to maintain oscillation. However, in consideration of accuracy, Ct must be much larger than the inherent stray capacitance in the system (unless this capacitance can be measured and taken into account). Rt must be much larger than the LOCMOS ‘ON’ resistance in series with it, which typically is hundreds of ohms. The recommended values for Rt and Ct to maintain agreement with previously calculated formulae without trimming should be: Ct ≥ 100 pF, up to any practical value, 10 kΩ ≤ Rt ≤ 1 MΩ. 6. Power consumption In the standby mode (monostable or astable), power dissipation will be a function of leakage current in the circuit. For dynamic operation, the power needed to charge the external timing capacitor Ct is given by the following formulae: Astable mode: P = 2 Ct V2 f (f at output pin 13) P = 4 Ct V2 f (f at output pins 10 and 11) Monostable mode: 2 2, 9 C t V ( duty cycle ) P = --------------------------------------------------------------------- ( f at output pins 10 and 11 ) T Because the power dissipation does not depend on Rt, a design for minimum power dissipation would be a small value of Ct. The value of R would depend on the desired period (within the limitations discussed previously). Typical power consumption in astable mode is shown in Figs 10, 11 and 12. January 1995 13 Philips Semiconductors Product specification HEF4047B MSI Monostable/astable multivibrator Fig.10 Power consumption as a function of the output frequency at O or O; VDD = 5 V; astable mode. Fig.11 Power consumption as a function of the output frequency at O or O; VDD = 10 V; astable mode. January 1995 14 Philips Semiconductors Product specification HEF4047B MSI Monostable/astable multivibrator Fig.12 Power consumption as a function of the output frequency at O or O; VDD = 15 V; astable mode. January 1995 15 ANEXOS 3 - Fichas Técnicas do Hardware desenvolvido AT89C51 cxc Features • Compatible with MCS-51™ Products • 4K Bytes of In-System Reprogrammable Flash Memory • • • • • • • • – Endurance: 1,000 Write/Erase Cycles Fully Static Operation: 0 Hz to 24 MHz Three-level Program Memory Lock 128 x 8-bit Internal RAM 32 Programmable I/O Lines Two 16-bit Timer/Counters Six Interrupt Sources Programmable Serial Channel Low-power Idle and Power-down Modes Description The AT89C51 is a low-power, high-performance CMOS 8-bit microcomputer with 4K bytes of Flash programmable and erasable read only memory (PEROM). The device is manufactured using Atmel’s high-density nonvolatile memory technology and is compatible with the industry-standard MCS-51 instruction set and pinout. The on-chip Flash allows the program memory to be reprogrammed in-system or by a conventional nonvolatile memory programmer. By combining a versatile 8-bit CPU with Flash on a monolithic chip, the Atmel AT89C51 is a powerful microcomputer which provides a highly-flexible and cost-effective solution to many embedded control applications. P1.0 P1.1 P1.2 P1.3 P1.4 P1.5 P1.6 P1.7 RST (RXD) P3.0 (TXD) P3.1 (INT0) P3.2 (INT1) P3.3 (T0) P3.4 (T1) P3.5 (WR) P3.6 (RD) P3.7 XTAL2 XTAL1 GND 44 43 42 41 40 39 38 37 36 35 34 P1.4 P1.3 P1.2 P1.1 (T2 EX) P1.0 (T2) NC VCC P0.0 (AD0) P0.1 (AD1) P0.2 (AD2) P0.3 (AD3) PQFP/TQFP VCC P0.0 (AD0) P0.1 (AD1) P0.2 (AD2) P0.3 (AD3) P0.4 (AD4) P0.5 (AD5) P0.6 (AD6) P0.7 (AD7) EA/VPP ALE/PROG PSEN P2.7 (A15) P2.6 (A14) P2.5 (A13) P2.4 (A12) P2.3 (A11) P2.2 (A10) P2.1 (A9) P2.0 (A8) P1.5 P1.6 P1.7 RST (RXD) P3.0 NC (TXD) P3.1 (INT0) P3.2 (INT1) P3.3 (T0) P3.4 (T1) P3.5 6 5 4 3 2 1 44 43 42 41 40 P1.4 P1.3 P1.2 P1.1 P1.0 NC VCC P0.0 (AD0) P0.1 (AD1) P0.2 (AD2) P0.3 (AD3) PLCC 7 8 9 10 11 12 13 14 15 16 17 39 38 37 36 35 34 33 32 31 30 29 18 19 20 21 22 23 24 25 26 27 28 12 13 14 15 16 17 18 19 20 21 22 PO.4 (AD4) P0.5 (AD5) P0.6 (AD6) P0.7 (AD7) EA/VPP NC ALE/PROG PSEN P2.7 (A15) P2.6 (A14) P2.5 (A13) 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 (WR)P3.6 (RD) P3.7 XTAL2 XTAL1 GND NC (A8) P2.0 (A9) P2.1 (A10) P2.2 (A11) P2.3 (A12) P2.4 33 32 31 30 29 28 27 26 25 24 23 1 2 3 4 5 6 7 8 9 10 11 (WR)P3.6 (RD) P3.7 XTAL2 XTAL1 GND GND (A8) P2.0 (A9) P2.1 (A10) P2.2 (A11) P2.3 (A12) P2.4 P1.5 P1.6 P1.7 RST (RXD) P3.0 NC (TXD) P3.1 (INT0) P3.2 (INT1) P3.3 (T0) P3.4 (T1) P3.5 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 AT89C51 Not Recommended for New Designs. Use AT89S51. PDIP Pin Configurations 8-bit Microcontroller with 4K Bytes Flash PO.4 (AD4) P0.5 (AD5) P0.6 (AD6) P0.7 (AD7) EA/VPP NC ALE/PROG PSEN P2.7 (A15) P2.6 (A14) P2.5 (A13) Rev. 0265G–02/00 1 Block Diagram P0.0 - P0.7 P2.0 - P2.7 PORT 0 DRIVERS PORT 2 DRIVERS VCC GND RAM ADDR. REGISTER B REGISTER PORT 0 LATCH RAM PORT 2 LATCH FLASH STACK POINTER ACC BUFFER TMP1 TMP2 PROGRAM ADDRESS REGISTER PC INCREMENTER ALU INTERRUPT, SERIAL PORT, AND TIMER BLOCKS PROGRAM COUNTER PSW PSEN ALE/PROG EA / VPP TIMING AND CONTROL INSTRUCTION REGISTER DPTR RST PORT 1 LATCH PORT 3 LATCH PORT 1 DRIVERS PORT 3 DRIVERS OSC P1.0 - P1.7 2 AT89C51 P3.0 - P3.7 AT89C51 The AT89C51 provides the following standard features: 4K bytes of Flash, 128 bytes of RAM, 32 I/O lines, two 16-bit timer/counters, a five vector two-level interrupt architecture, a full duplex serial port, on-chip oscillator and clock circuitry. In addition, the AT89C51 is designed with static logic for operation down to zero frequency and supports two software selectable power saving modes. The Idle Mode stops the CPU while allowing the RAM, timer/counters, serial port and interrupt system to continue functioning. The Power-down Mode saves the RAM contents but freezes the oscillator disabling all other chip functions until the next hardware reset. Port 2 pins that are externally being pulled low will source current (IIL) because of the internal pullups. Port 2 emits the high-order address byte during fetches from external program memory and during accesses to external data memory that use 16-bit addresses (MOVX @ DPTR). In this application, it uses strong internal pullups when emitting 1s. During accesses to external data memory that use 8-bit addresses (MOVX @ RI), Port 2 emits the contents of the P2 Special Function Register. Port 2 also receives the high-order address bits and some control signals during Flash programming and verification. Port 3 Pin Description VCC Supply voltage. GND Ground. Port 3 is an 8-bit bi-directional I/O port with internal pullups. The Port 3 output buffers can sink/source four TTL inputs. When 1s are written to Port 3 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 3 pins that are externally being pulled low will source current (IIL) because of the pullups. Port 3 also serves the functions of various special features of the AT89C51 as listed below: Port 0 Port 0 is an 8-bit open-drain bi-directional I/O port. As an output port, each pin can sink eight TTL inputs. When 1s are written to port 0 pins, the pins can be used as highimpedance inputs. Port Pin Alternate Functions P3.0 RXD (serial input port) P3.1 TXD (serial output port) Port 0 may also be configured to be the multiplexed loworder address/data bus during accesses to external program and data memory. In this mode P0 has internal pullups. P3.2 INT0 (external interrupt 0) P3.3 INT1 (external interrupt 1) P3.4 T0 (timer 0 external input) Port 0 also receives the code bytes during Flash programming, and outputs the code bytes during program verification. External pullups are required during program verification. P3.5 T1 (timer 1 external input) P3.6 WR (external data memory write strobe) P3.7 RD (external data memory read strobe) Port 1 Port 1 is an 8-bit bi-directional I/O port with internal pullups. The Port 1 output buffers can sink/source four TTL inputs. When 1s are written to Port 1 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 1 pins that are externally being pulled low will source current (IIL) because of the internal pullups. Port 1 also receives the low-order address bytes during Flash programming and verification. Port 2 Port 2 is an 8-bit bi-directional I/O port with internal pullups. The Port 2 output buffers can sink/source four TTL inputs. When 1s are written to Port 2 pins they are pulled high by the internal pullups and can be used as inputs. As inputs, Port 3 also receives some control signals for Flash programming and verification. RST Reset input. A high on this pin for two machine cycles while the oscillator is running resets the device. ALE/PROG Address Latch Enable output pulse for latching the low byte of the address during accesses to external memory. This pin is also the program pulse input (PROG) during Flash programming. In normal operation ALE is emitted at a constant rate of 1/6 the oscillator frequency, and may be used for external timing or clocking purposes. Note, however, that one ALE 3 pulse is skipped during each access to external Data Memory. unconnected while XTAL1 is driven as shown in Figure 2. There are no requirements on the duty cycle of the external clock signal, since the input to the internal clocking circuitry is through a divide-by-two flip-flop, but minimum and maximum voltage high and low time specifications must be observed. If desired, ALE operation can be disabled by setting bit 0 of SFR location 8EH. With the bit set, ALE is active only during a MOVX or MOVC instruction. Otherwise, the pin is weakly pulled high. Setting the ALE-disable bit has no effect if the microcontroller is in external execution mode. Idle Mode PSEN In idle mode, the CPU puts itself to sleep while all the onchip peripherals remain active. The mode is invoked by software. The content of the on-chip RAM and all the special functions registers remain unchanged during this mode. The idle mode can be terminated by any enabled interrupt or by a hardware reset. Program Store Enable is the read strobe to external program memory. When the AT89C51 is executing code from external program memory, PSEN is activated twice each machine cycle, except that two PSEN activations are skipped during each access to external data memory. It should be noted that when idle is terminated by a hard ware reset, the device normally resumes program execution, from where it left off, up to two machine cycles before the internal reset algorithm takes control. On-chip hardware inhibits access to internal RAM in this event, but access to the port pins is not inhibited. To eliminate the possibility of an unexpected write to a port pin when Idle is terminated by reset, the instruction following the one that invokes Idle should not be one that writes to a port pin or to external memory. EA/VPP External Access Enable. EA must be strapped to GND in order to enable the device to fetch code from external program memory locations starting at 0000H up to FFFFH. Note, however, that if lock bit 1 is programmed, EA will be internally latched on reset. EA should be strapped to V C C for internal program executions. This pin also receives the 12-volt programming enable voltage (VPP) during Flash programming, for parts that require 12-volt VPP. Figure 1. Oscillator Connections C2 XTAL2 XTAL1 Input to the inverting oscillator amplifier and input to the internal clock operating circuit. C1 XTAL1 XTAL2 Output from the inverting oscillator amplifier. GND Oscillator Characteristics XTAL1 and XTAL2 are the input and output, respectively, of an inverting amplifier which can be configured for use as an on-chip oscillator, as shown in Figure 1. Either a quartz crystal or ceramic resonator may be used. To drive the device from an external clock source, XTAL2 should be left Note: C1, C2 = 30 pF ± 10 pF for Crystals = 40 pF ± 10 pF for Ceramic Resonators Status of External Pins During Idle and Power-down Modes Mode Program Memory ALE PSEN PORT0 PORT1 PORT2 PORT3 Idle Internal 1 1 Data Data Data Data Idle External 1 1 Float Data Address Data Power-down Internal 0 0 Data Data Data Data Power-down External 0 0 Float Data Data Data 4 AT89C51 AT89C51 Figure 2. External Clock Drive Configuration ters retain their values until the power-down mode is terminated. The only exit from power-down is a hardware reset. Reset redefines the SFRs but does not change the on-chip RAM. The reset should not be activated before VCC is restored to its normal operating level and must be held active long enough to allow the oscillator to restart and stabilize. Program Memory Lock Bits On the chip are three lock bits which can be left unprogrammed (U) or can be programmed (P) to obtain the additional features listed in the table below. Power-down Mode In the power-down mode, the oscillator is stopped, and the instruction that invokes power-down is the last instruction executed. The on-chip RAM and Special Function Regis- When lock bit 1 is programmed, the logic level at the EA pin is sampled and latched during reset. If the device is powered up without a reset, the latch initializes to a random value, and holds that value until reset is activated. It is necessary that the latched value of EA be in agreement with the current logic level at that pin in order for the device to function properly. Lock Bit Protection Modes Program Lock Bits LB1 LB2 LB3 Protection Type 1 U U U No program lock features 2 P U U MOVC instructions executed from external program memory are disabled from fetching code bytes from internal memory, EA is sampled and latched on reset, and further programming of the Flash is disabled 3 P P U Same as mode 2, also verify is disabled 4 P P P Same as mode 3, also external execution is disabled 5 Programming the Flash The AT89C51 is normally shipped with the on-chip Flash memory array in the erased state (that is, contents = FFH) and ready to be programmed. The programming interface accepts either a high-voltage (12-volt) or a low-voltage (V CC ) program enable signal. The low-voltage programming mode provides a convenient way to program the AT89C51 inside the user’s system, while the high-voltage programming mode is compatible with conventional thirdparty Flash or EPROM programmers. The AT89C51 is shipped with either the high-voltage or low-voltage programming mode enabled. The respective top-side marking and device signature codes are listed in the following table. VPP = 12V VPP = 5V Top-side Mark AT89C51 xxxx yyww AT89C51 xxxx-5 yyww Signature (030H) = 1EH (031H) = 51H (032H) =F FH (030H) = 1EH (031H) = 51H (032H) = 05H The AT89C51 code memory array is programmed byte-bybyte in either programming mode. To program any nonblank byte in the on-chip Flash Memory, the entire memory must be erased using the Chip Erase Mode. Programming Algorithm: Before programming the AT89C51, the address, data and control signals should be set up according to the Flash programming mode table and Figure 3 and Figure 4. To program the AT89C51, take the following steps. 1. Input the desired memory location on the address lines. 2. Input the appropriate data byte on the data lines. 3. Activate the correct combination of control signals. 4. Raise EA/VPP to 12V for the high-voltage programming mode. 5. Pulse ALE/PROG once to program a byte in the Flash array or the lock bits. The byte-write cycle is self-timed and typically takes no more than 1.5 ms. Repeat steps 1 through 5, changing the address 6 AT89C51 and data for the entire array or until the end of the object file is reached. Data Polling: The AT89C51 features Data Polling to indicate the end of a write cycle. During a write cycle, an attempted read of the last byte written will result in the complement of the written datum on PO.7. Once the write cycle has been completed, true data are valid on all outputs, and the next cycle may begin. Data Polling may begin any time after a write cycle has been initiated. Ready/Busy: The progress of byte programming can also be monitored by the RDY/BSY output signal. P3.4 is pulled low after ALE goes high during programming to indicate BUSY. P3.4 is pulled high again when programming is done to indicate READY. Program Verify: If lock bits LB1 and LB2 have not been programmed, the programmed code data can be read back via the address and data lines for verification. The lock bits cannot be verified directly. Verification of the lock bits is achieved by observing that their features are enabled. Chip Erase: The entire Flash array is erased electrically by using the proper combination of control signals and by holding ALE/PROG low for 10 ms. The code array is written with all “1”s. The chip erase operation must be executed before the code memory can be re-programmed. Reading the Signature Bytes: The signature bytes are read by the same procedure as a normal verification of locations 030H, 031H, and 032H, except that P3.6 and P3.7 must be pulled to a logic low. The values returned are as follows. (030H) = 1EH indicates manufactured by Atmel (031H) = 51H indicates 89C51 (032H) = FFH indicates 12V programming (032H) = 05H indicates 5V programming Programming Interface Every code byte in the Flash array can be written and the entire array can be erased by using the appropriate combination of control signals. The write operation cycle is selftimed and once initiated, will automatically time itself to completion. All major programming vendors offer worldwide support for the Atmel microcontroller series. Please contact your local programming vendor for the appropriate software revision. AT89C51 Flash Programming Modes RST PSEN EA/VPP P2.6 P2.7 P3.6 P3.7 Write Code Data H L H/12V L H H H Read Code Data H L H L L H H Bit - 1 H L H/12V H H H H Bit - 2 H L H/12V H H L L Bit - 3 H L H/12V H L H L Chip Erase H L H/12V H L L L Read Signature Byte H L H L L L L Mode Write Lock Note: ALE/PROG H (1) H 1. Chip Erase requires a 10 ms PROG pulse. Figure 3. Programming the Flash Figure 4. Verifying the Flash +5V +5V AT89C51 A0 - A7 ADDR. OOOOH/OFFFH A8 - A11 P1 P2.0 - P2.3 AT89C51 VCC P0 PGM DATA A0 - A7 ADDR. OOOOH/0FFFH P2.7 P2.0 - P2.3 P0 P2.6 ALE PROG P3.6 SEE FLASH PROGRAMMING MODES TABLE P2.7 EA VIH/VPP 3-24 MHz PGM DATA (USE 10K PULLUPS) ALE P3.6 VIH P3.7 P3.7 XTAL2 VCC A8 - A11 P2.6 SEE FLASH PROGRAMMING MODES TABLE P1 XTAL2 EA XTAL1 RST 3-24 MHz XTAL1 GND RST PSEN VIH GND VIH PSEN 7 Flash Programming and Verification Waveforms - High-voltage Mode (VPP = 12V) PROGRAMMING ADDRESS P1.0 - P1.7 P2.0 - P2.3 VERIFICATION ADDRESS tAVQV PORT 0 DATA IN tDVGL tAVGL tGHDX DATA OUT tGHAX ALE/PROG tSHGL tGLGH VPP tGHSL LOGIC 1 LOGIC 0 EA/VPP tEHSH tEHQZ tELQV P2.7 (ENABLE) tGHBL P3.4 (RDY/BSY) BUSY READY tWC Flash Programming and Verification Waveforms - Low-voltage Mode (VPP = 5V) PROGRAMMING ADDRESS P1.0 - P1.7 P2.0 - P2.3 VERIFICATION ADDRESS tAVQV PORT 0 DATA IN tDVGL tAVGL tGHDX DATA OUT tGHAX ALE/PROG tSHGL tGLGH LOGIC 1 LOGIC 0 EA/VPP tEHSH tEHQZ tELQV P2.7 (ENABLE) tGHBL P3.4 (RDY/BSY) BUSY tWC 8 AT89C51 READY AT89C51 Flash Programming and Verification Characteristics TA = 0°C to 70°C, VCC = 5.0 ± 10% Symbol VPP (1) Parameter Min Max Units Programming Enable Voltage 11.5 12.5 V 1.0 mA 24 MHz IPP(1) Programming Enable Current 1/tCLCL Oscillator Frequency tAVGL Address Setup to PROG Low 48tCLCL tGHAX Address Hold after PROG 48tCLCL tDVGL Data Setup to PROG Low 48tCLCL tGHDX Data Hold after PROG 48tCLCL tEHSH P2.7 (ENABLE) High to VPP 48tCLCL tSHGL VPP Setup to PROG Low 10 µs tGHSL(1) VPP Hold after PROG 10 µs tGLGH PROG Width tAVQV Address to Data Valid 48tCLCL tELQV ENABLE Low to Data Valid 48tCLCL tEHQZ Data Float after ENABLE tGHBL PROG High to BUSY Low tWC Note: Byte Write Cycle Time 1. Only used in 12-volt programming mode. 3 1 0 110 µs 48tCLCL 1.0 µs 2.0 ms 9 Absolute Maximum Ratings* Operating Temperature.................................. -55°C to +125°C *NOTICE: Storage Temperature ..................................... -65°C to +150°C Voltage on Any Pin with Respect to Ground .....................................-1.0V to +7.0V Maximum Operating Voltage ............................................ 6.6V Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC Output Current...................................................... 15.0 mA DC Characteristics TA = -40°C to 85°C, VCC = 5.0V ± 20% (unless otherwise noted) Symbol Parameter Condition Min Max Units VIL Input Low-voltage (Except EA) -0.5 0.2 VCC - 0.1 V VIL1 Input Low-voltage (EA) -0.5 0.2 VCC - 0.3 V VIH Input High-voltage 0.2 VCC + 0.9 VCC + 0.5 V VIH1 Input High-voltage 0.7 VCC VCC + 0.5 V IOL = 1.6 mA 0.45 V IOL = 3.2 mA 0.45 V VOL Output Low-voltage (Except XTAL1, RST) (XTAL1, RST) (1) (Ports 1,2,3) (1) VOL1 Output Low-voltage (Port 0, ALE, PSEN) VOH Output High-voltage (Ports 1,2,3, ALE, PSEN) IOH = -60 µA, VCC = 5V ± 10% 2.4 V IOH = -25 µA 0.75 VCC V IOH = -10 µA 0.9 VCC V 2.4 V IOH = -300 µA 0.75 VCC V IOH = -80 µA 0.9 VCC V IOH = -800 µA, VCC = 5V ± 10% VOH1 Output High-voltage (Port 0 in External Bus Mode) IIL Logical 0 Input Current (Ports 1,2,3) VIN = 0.45V -50 µA ITL Logical 1 to 0 Transition Current (Ports 1,2,3) VIN = 2V, VCC = 5V ± 10% -650 µA ILI Input Leakage Current (Port 0, EA) 0.45 < VIN < VCC ±10 µA RRST Reset Pull-down Resistor 300 KΩ CIO Pin Capacitance Test Freq. = 1 MHz, TA = 25°C 10 pF Active Mode, 12 MHz 20 mA Idle Mode, 12 MHz 5 mA VCC = 6V 100 µA VCC = 3V 40 µA 50 Power Supply Current ICC Power-down Mode(2) Notes: 10 1. Under steady state (non-transient) conditions, IOL must be externally limited as follows: Maximum IOL per port pin: 10 mA Maximum IOL per 8-bit port: Port 0: 26 mA Ports 1, 2, 3: 15 mA Maximum total IOL for all output pins: 71 mA If IOL exceeds the test condition, VOL may exceed the related specification. Pins are not guaranteed to sink current greater than the listed test conditions. 2. Minimum VCC for Power-down is 2V. AT89C51 AT89C51 AC Characteristics Under operating conditions, load capacitance for Port 0, ALE/PROG, and PSEN = 100 pF; load capacitance for all other outputs = 80 pF. External Program and Data Memory Characteristics 12 MHz Oscillator Min Max 16 to 24 MHz Oscillator Symbol Parameter Min Max Units 1/tCLCL Oscillator Frequency 0 24 MHz tLHLL ALE Pulse Width 127 2tCLCL-40 ns tAVLL Address Valid to ALE Low 43 tCLCL-13 ns tLLAX Address Hold after ALE Low 48 tCLCL-20 ns tLLIV ALE Low to Valid Instruction In tLLPL ALE Low to PSEN Low 43 tCLCL-13 ns tPLPH PSEN Pulse Width 205 3tCLCL-20 ns tPLIV PSEN Low to Valid Instruction In tPXIX Input Instruction Hold after PSEN tPXIZ Input Instruction Float after PSEN tPXAV PSEN to Address Valid tAVIV Address to Valid Instruction In 312 5tCLCL-55 ns tPLAZ PSEN Low to Address Float 10 10 ns tRLRH RD Pulse Width 400 6tCLCL-100 ns tWLWH WR Pulse Width 400 6tCLCL-100 ns tRLDV RD Low to Valid Data In tRHDX Data Hold after RD tRHDZ Data Float after RD 97 2tCLCL-28 ns tLLDV ALE Low to Valid Data In 517 8tCLCL-150 ns tAVDV Address to Valid Data In 585 9tCLCL-165 ns tLLWL ALE Low to RD or WR Low 200 3tCLCL+50 ns tAVWL Address to RD or WR Low 203 4tCLCL-75 ns tQVWX Data Valid to WR Transition 23 tCLCL-20 ns tQVWH Data Valid to WR High 433 7tCLCL-120 ns tWHQX Data Hold after WR 33 tCLCL-20 ns tRLAZ RD Low to Address Float tWHLH RD or WR High to ALE High 233 4tCLCL-65 145 0 3tCLCL-45 0 59 75 tCLCL-8 0 5tCLCL-90 3tCLCL-50 0 43 123 tCLCL-20 ns ns 0 300 ns ns tCLCL-10 252 ns ns ns 0 ns tCLCL+25 ns 11 External Program Memory Read Cycle tLHLL ALE tAVLL tLLIV tLLPL tPLIV PSEN tPXAV tPLAZ tPXIZ tLLAX tPXIX A0 - A7 PORT 0 tPLPH INSTR IN A0 - A7 tAVIV PORT 2 A8 - A15 A8 - A15 External Data Memory Read Cycle tLHLL ALE tWHLH PSEN tLLDV tRLRH tLLWL RD tLLAX tAVLL PORT 0 tRLDV tRLAZ A0 - A7 FROM RI OR DPL tRHDZ tRHDX DATA IN A0 - A7 FROM PCL INSTR IN tAVWL tAVDV PORT 2 12 P2.0 - P2.7 OR A8 - A15 FROM DPH AT89C51 A8 - A15 FROM PCH AT89C51 External Data Memory Write Cycle tLHLL ALE tWHLH PSEN tLLWL WR tAVLL tLLAX tQVWX A0 - A7 FROM RI OR DPL PORT 0 tWLWH tQVWH DATA OUT tWHQX A0 - A7 FROM PCL INSTR IN tAVWL PORT 2 P2.0 - P2.7 OR A8 - A15 FROM DPH A8 - A15 FROM PCH External Clock Drive Waveforms tCHCX VCC - 0.5V tCHCX tCLCH tCHCL 0.7 VCC 0.2 VCC - 0.1V 0.45V tCLCX tCLCL External Clock Drive Symbol Parameter 1/tCLCL Oscillator Frequency tCLCL Clock Period tCHCX Min Max Units 0 24 MHz 41.6 ns High Time 15 ns tCLCX Low Time 15 ns tCLCH Rise Time 20 ns tCHCL Fall Time 20 ns 13 Serial Port Timing: Shift Register Mode Test Conditions (VCC = 5.0 V ± 20%; Load Capacitance = 80 pF) 12 MHz Osc Variable Oscillator Max Min Units Symbol Parameter Min Max tXLXL Serial Port Clock Cycle Time 1.0 12tCLCL µs tQVXH Output Data Setup to Clock Rising Edge 700 10tCLCL-133 ns tXHQX Output Data Hold after Clock Rising Edge 50 2tCLCL-117 ns tXHDX Input Data Hold after Clock Rising Edge 0 0 ns tXHDV Clock Rising Edge to Input Data Valid 700 10tCLCL-133 ns Shift Register Mode Timing Waveforms INSTRUCTION ALE 0 1 2 3 4 5 6 7 8 tXLXL CLOCK tQVXH WRITE TO SBUF tXHQX 0 1 tXHDV OUTPUT DATA CLEAR RI VALID 2 3 4 5 6 tXHDX VALID SET TI VALID VALID VALID VALID VALID AC Testing Input/Output Waveforms(1) Note: 14 Float Waveforms(1) V LOAD+ 0.2 VCC + 0.9V TEST POINTS 0.45V VALID SET RI INPUT DATA VCC - 0.5V 7 AT89C51 V LOAD - Note: V OL - 0.1V V OL + 0.1V Timing Reference Points V LOAD 0.2 VCC - 0.1V 1. AC Inputs during testing are driven at VCC - 0.5V for a logic 1 and 0.45V for a logic 0. Timing measurements are made at VIH min. for a logic 1 and VIL max. for a logic 0. 0.1V 0.1V 1. For timing purposes, a port pin is no longer floating when a 100 mV change from load voltage occurs. A port pin begins to float when 100 mV change from the loaded VOH/VOL level occurs. AT89C51 Ordering Information Speed (MHz) Power Supply Ordering Code Package 12 5V ± 20% AT89C51-12AC 44A Commercial AT89C51-12JC 44J (0° C to 70° C) AT89C51-12PC 40P6 AT89C51-12QC 44Q AT89C51-12AI 44A Industrial AT89C51-12JI 44J (-40° C to 85° C) AT89C51-12PI 40P6 AT89C51-12QI 44Q AT89C51-16AC 44A Commercial AT89C51-16JC 44J (0° C to 70° C) AT89C51-16PC 40P6 AT89C51-16QC 44Q AT89C51-16AI 44A Industrial AT89C51-16JI 44J (-40° C to 85° C) AT89C51-16PI 40P6 AT89C51-16QI 44Q AT89C51-20AC 44A Commercial AT89C51-20JC 44J (0° C to 70° C) AT89C51-20PC 40P6 AT89C51-20QC 44Q AT89C51-20AI 44A Industrial AT89C51-20JI 44J (-40° C to 85° C) AT89C51-20PI 40P6 AT89C51-20QI 44Q AT89C51-24AC 44A Commercial AT89C51-24JC 44J (0° C to 70° C) AT89C51-24PC 40P6 AT89C51-24QC 44Q AT89C51-24AI 44A Industrial AT89C51-24JI 44J (-40° C to 85° C) AT89C51-24PI 40P6 AT89C51-24QI 44Q 16 20 24 5V ± 20% 5V ± 20% 5V ± 20% Operation Range Package Type 44A 44-lead, Thin Plastic Gull Wing Quad Flatpack (TQFP) 44J 44-lead, Plastic J-leaded Chip Carrier (PLCC) 40P6 40-lead, 0.600” Wide, Plastic Dual Inline Package (PDIP) 44Q 44-lead, Plastic Gull Wing Quad Flatpack (PQFP) 15 Packaging Information 44A, 44-lead, Thin (1.0 mm) Plastic Gull Wing Quad Flatpack (TQFP) Dimensions in Millimeters and (Inches)* 44J, 44-lead, Plastic J-leaded Chip Carrier (PLCC) Dimensions in Inches and (Millimeters) JEDEC STANDARD MS-018 AC JEDEC STANDARD MS-026 ACB 12.21(0.478) SQ 11.75(0.458) PIN 1 ID 0.45(0.018) 0.30(0.012) 0.80(0.031) BSC .045(1.14) X 45° .045(1.14) X 30° - 45° PIN NO. 1 IDENTIFY .630(16.0) .590(15.0) .656(16.7) SQ .650(16.5) .032(.813) .026(.660) .695(17.7) SQ .685(17.4) .050(1.27) TYP .500(12.7) REF SQ 10.10(0.394) SQ 9.90(0.386) .021(.533) .013(.330) .043(1.09) .020(.508) .120(3.05) .090(2.29) .180(4.57) .165(4.19) 1.20(0.047) MAX 0 7 0.20(.008) 0.09(.003) .012(.305) .008(.203) .022(.559) X 45° MAX (3X) 0.75(0.030) 0.45(0.018) 0.15(0.006) 0.05(0.002) Controlling dimension: millimeters 40P6, 40-lead, 0.600" Wide, Plastic Dual Inline Package (PDIP) Dimensions in Inches and (Millimeters) 2.07(52.6) 2.04(51.8) 44Q, 44-lead, Plastic Quad Flat Package (PQFP) Dimensions in Millimeters and (Inches)* JEDEC STANDARD MS-022 AB 13.45 (0.525) SQ 12.95 (0.506) PIN 1 PIN 1 ID .566(14.4) .530(13.5) 0.50 (0.020) 0.35 (0.014) 0.80 (0.031) BSC .090(2.29) MAX 1.900(48.26) REF .220(5.59) MAX .005(.127) MIN SEATING PLANE .065(1.65) .015(.381) .022(.559) .014(.356) .161(4.09) .125(3.18) .110(2.79) .090(2.29) .012(.305) .008(.203) .065(1.65) .041(1.04) 10.10 (0.394) SQ 9.90 (0.386) .630(16.0) .590(15.0) 2.45 (0.096) MAX 0 REF 15 .690(17.5) .610(15.5) 0.17 (0.007) 0.13 (0.005) 0 7 1.03 (0.041) 0.78 (0.030) Controlling dimension: millimeters 16 AT89C51 0.25 (0.010) MAX Atmel Headquarters Atmel Operations Corporate Headquarters Atmel Colorado Springs 2325 Orchard Parkway San Jose, CA 95131 TEL (408) 441-0311 FAX (408) 487-2600 Europe 1150 E. Cheyenne Mtn. Blvd. Colorado Springs, CO 80906 TEL (719) 576-3300 FAX (719) 540-1759 Atmel Rousset Atmel U.K., Ltd. Coliseum Business Centre Riverside Way Camberley, Surrey GU15 3YL England TEL (44) 1276-686-677 FAX (44) 1276-686-697 Zone Industrielle 13106 Rousset Cedex France TEL (33) 4-4253-6000 FAX (33) 4-4253-6001 Asia Atmel Asia, Ltd. Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimhatsui East Kowloon Hong Kong TEL (852) 2721-9778 FAX (852) 2722-1369 Japan Atmel Japan K.K. 9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan TEL (81) 3-3523-3551 FAX (81) 3-3523-7581 Fax-on-Demand North America: 1-(800) 292-8635 International: 1-(408) 441-0732 e-mail [email protected] Web Site http://www.atmel.com BBS 1-(408) 436-4309 © Atmel Corporation 2000. Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company’s standard warranty which is detailed in Atmel’s Terms and Conditions located on the Company’s web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel’s products are not authorized for use as critical components in life suppor t devices or systems. Marks bearing ® and/or ™ are registered trademarks and trademarks of Atmel Corporation. Terms and product names in this document may be trademarks of others. Printed on recycled paper. 0265G–02/00/xM ANEXOS 3 - Fichas Técnicas do Hardware desenvolvido XC9536PC ccviii 9 1 XC9536 In-System Programmable CPLD December 4, 1998 (Version 5.0) 1 1* Product Specification Features Power Management • • 5 ns pin-to-pin logic delays on all pins fCNT to 100 MHz • • • 36 macrocells with 800 usable gates Up to 34 user I/O pins 5 V in-system programmable (ISP) - Endurance of 10,000 program/erase cycles - Program/erase over full commercial voltage and temperature range Enhanced pin-locking architecture Flexible 36V18 Function Block - 90 product terms drive any or all of 18 macrocells within Function Block - Global and product term clocks, output enables, set and reset signals Extensive IEEE Std 1149.1 boundary-scan (JTAG) support Programmable power reduction mode in each macrocell Slew rate control on individual outputs User programmable ground pin capability Extended pattern security features for design protection High-drive 24 mA outputs 3.3 V or 5 V I/O capability Advanced CMOS 5V FastFLASH technology Supports parallel programming of more than one XC9500 concurrently Available in 44-pin PLCC, 44-pin VQFP, and 48-pin CSP packages Power dissipation can be reduced in the XC9536 by configuring macrocells to standard or low-power modes of operation. Unused macrocells are turned off to minimize power dissipation. • • • • • • • • • • ICC (mA) = MCHP (1.7) + MCLP (0.9) + MC (0.006 mA/MHz) f Where: MCHP = Macrocells in high-performance mode MCLP = Macrocells in low-power mode MC = Total number of macrocells used f = Clock frequency (MHz) Figure 1 shows a typical calculation for the XC9536 device. (83) ance erform High P Typical ICC (mA) • • Operating current for each design can be approximated for specific operating conditions using the following equation: (50) (50) ower Low P (30) Description The XC9536 is a high-performance CPLD providing advanced in-system programming and test capabilities for general purpose logic integration. It is comprised of two 36V18 Function Blocks, providing 800 usable gates with propagation delays of 5 ns. See Figure 2 for the architecture overview. December 4, 1998 (Version 5.0) 0 50 Clock Frequency (MHz) 100 X5920 Figure 1: Typical ICC vs. Frequency For XC9536 1 XC9536 In-System Programmable CPLD 3 JTAG Port 1 JTAG Controller In-System Programming Controller 36 18 I/O Function Block 1 Macrocells 1 to 18 I/O I/O I/O Blocks I/O I/O I/O FastCONNECT Switch Matrix I/O 36 18 Function Block 2 Macrocells 1 to 18 I/O 3 I/O/GCK 1 I/O/GSR I/O/GTS 2 X5919 Figure 2: XC9536 Architecture Note: Function Block outputs (indicated by the bold line) drive the I/O Blocks directly 2 December 4, 1998 (Version 5.0) XC9536 In-System Programmable CPLD Absolute Maximum Ratings Symbol VCC VIN VTS TSTG TSOL Warning: Parameter Supply voltage relative to GND DC input voltage relative to GND Voltage applied to 3-state output with respect to GND Storage temperature Max soldering temperature (10 s @ 1/16 in = 1.5 mm) Value Units -0.5 to 7.0 -0.5 to VCC + 0.5 -0.5 to VCC + 0.5 -65 to +150 +260 V V V °C °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions is not implied. Exposure to Absolute Maximum Rating conditions for extended periods of time may affect device reliability. Recommended Operating Conditions Symbol 1 Parameter VCCINT Supply voltage for internal logic and input buffer VCCIO Supply voltage for output drivers for 5 V operation Supply voltage for output drivers for 3.3 V operation Low-level input voltage High-level input voltage Output voltage VIL VIH VO Min Max Units 4.75 (4.5) 4.75 (4.5) 3.0 0 2.0 0 5.25 (5.5) 5.25 (5.5) 3.6 0.80 VCCINT +0.5 VCCIO V V V V V V Note 1. Numbers in parenthesis are for industrial-temperature range versions. Endurance Characteristics Symbol Parameter tDR Data Retention NPE Program/Erase Cycles December 4, 1998 (Version 5.0) Min Max Units 20 - Years 10,000 - Cycles 3 XC9536 In-System Programmable CPLD DC Characteristics Over Recommended Operating Conditions Symbol VOH Parameter Test Conditions Min Output high voltage for 5 V operation IOH = -4.0 mA VCC = Min Output high voltage for 3.3 V operation IOH = -3.2 mA VCC = Min Output low voltage for 5 V operation IOL = 24 mA VCC = Min Output low voltage for 3.3 V operation IOL = 10 mA VCC = Min Input leakage current VCC = Max VIN = GND or VCC I/O high-Z leakage current VCC = Max VIN = GND or VCC I/O capacitance VIN = GND f = 1.0 MHz Operating Supply Current VI = GND, No load (low power mode, active) f = 1.0 MHz VOL IIL IIH CIN ICC Max Units 2.4 V 2.4 V 0.5 V 0.4 V ±10.0 µA ±10.0 µA 10.0 pF mA 30 (Typ) AC Characteristics Symbol Parameter tPD tSU tH tCO fCNT1 fSYSTEM 2 tPSU tPH tPCO tOE tOD tPOE tPOD tWLH I/O to output valid I/O setup time before GCK I/O hold time after GCK GCK to output valid 16-bit counter frequency Multiple FB internal operating frequency I/O setup time before p-term clock input I/O hold time after p-term clock input P-term clock to output valid GTS to output valid GTS to output disable Product term OE to output enabled Product term OE to output disabled GCK pulse width (High or Low) XC9536-5 XC9536-6 XC9536-7 XC9536-10 XC9536-15 Min Max Min Max Min Max Min Max Min Max 5.0 3.5 0.0 6.0 3.5 0.0 4.0 100.0 100.0 0.5 3.0 4.0 100.0 100.0 0.5 3.0 7.0 5.0 5.0 9.0 9.0 4.0 7.5 4.5 0.0 4.5 83.3 83.3 0.5 4.0 7.0 5.0 5.0 9.0 9.0 4.0 10.0 6.0 0.0 6.0 66.7 66.7 2.0 4.0 8.5 5.5 5.5 9.5 9.5 4.0 15.0 8.0 0.0 8.0 55.6 55.6 4.0 4.0 10.0 6.0 6.0 10.0 10.0 4.5 12.0 11.0 11.0 14.0 14.0 5.5 Units ns ns ns ns MHz MHz ns ns ns ns ns ns ns ns Note: 1. fCNT is the fastest 16-bit counter frequency available. fCNT is also the Export Control Maximum flip-flop toggle rate, fTOG. 2. fSYSTEM is the internal operating frequency for general purpose system designs spanning multiple FBs. 4 December 4, 1998 (Version 5.0) XC9536 In-System Programmable CPLD VTEST R1 Output Type Device Output R2 VCCIO VTEST R1 R2 CL 5.0 V 5.0 V 160 Ω 120 Ω 35 pF 3.3 V 3.3 V 260 Ω 360 Ω 35 pF CL X5906 Figure 3: AC Load Circuit Internal Timing Parameters Symbol Parameter Buffer Delays tIN Input buffer delay tGCK GCK buffer delay tGSR GSR buffer delay tGTS GTS buffer delay tOUT Output buffer delay tEN Output buffer enable/disable delay Product Term Control Delays tPTCK Product term clock delay tPTSR Product term set/reset delay tPTTS Product term 3-state delay Internal Register and Combinatorial delays tPDI Combinatorial logic propagation delay tSUI Register setup time tHI Register hold time tCOI Register clock to output valid time tAOI Register async. S/R to output delay tRAI Register async. S/R recovery before clock tLOGI Internal logic delay tLOGILP Internal low power logic delay Feedback Delays tF FastCONNECT matrix feeback delay Time Adders tPTA3 Incremental Product Term Allocator delay tSLEW Slew-rate limited delay XC9536-5 XC9536-6 XC9536-7 XC9536-10 XC9536-15 Min Max Min Max Min Max Min Max Min Max Units 1.5 1.5 4.0 5.0 2.0 0.0 1.5 1.5 4.0 5.0 2.0 0.0 2.5 1.5 4.5 5.5 2.5 0.0 3.5 2.5 6.0 6.0 3.0 0.0 4.5 3.0 7.5 11.0 4.5 0.0 ns ns ns ns ns ns 3.0 1.0 5.5 3.0 1.0 5.5 3.0 2.0 4.5 3.0 2.5 3.5 2.5 3.0 5.0 ns ns ns 0.5 1.5 0.5 1.0 3.0 1.0 9.0 1.0 9.0 2.0 10.0 2.5 11.0 3.0 11.5 ns ns ns ns ns ns ns ns 6.0 6.0 8.0 9.5 11.0 ns 0.8 3.5 0.8 3.5 1.0 4.0 1.0 4.5 1.0 5.0 ns ns 2.5 1.0 2.5 1.0 0.5 6.0 5.0 1.5 3.0 0.5 6.0 5.0 2.5 3.5 0.5 6.5 7.5 3.5 4.5 0.5 7.0 10.0 0.5 8.0 10.0 Note: 3. tPTA is multiplied by the span of the function as defined in the family data sheet. December 4, 1998 (Version 5.0) 5 XC9536 In-System Programmable CPLD XC9536 I/O Pins Function Macrocell Block PC44 1 1 2 1 2 3 1 3 5 1 4 4 1 5 6 1 6 8 1 7 7 1 8 9 1 9 11 1 10 12 1 11 13 1 12 14 1 13 18 1 14 19 1 15 20 1 16 22 1 17 24 1 18 – Note: [1] Global control pin VQ44 CS48 40 41 43 42 44 2 1 3 5 6 7 8 12 13 14 16 18 – D6 C7 B7 C6 B6 A6 A7 C5 B5 A4 B4 A3 B2 B1 C2 C3 D2 - BScan Notes Order 105 102 99 96 93 90 87 84 81 78 75 72 69 66 63 60 57 54 [1] [1] [1] Function Macrocell Block PC44 2 1 1 2 2 44 2 3 42 2 4 43 2 5 40 2 6 39 2 7 38 2 8 37 2 9 36 2 10 35 2 11 34 2 12 33 2 13 29 2 14 28 2 15 27 2 16 26 2 17 25 2 18 Note: [1] Global control pin VQ44 CS48 39 38 36 37 34 33 32 31 30 29 28 27 23 22 21 20 19 - D7 E5 E6 E7 F6 G7 G6 F5 G5 F4 G4 E3 F2 G1 F1 E2 E1 - BScan Notes Order 51 48 45 42 39 36 33 30 27 24 21 18 15 12 9 6 3 0 [1] [1] [1] XC9536 Global, JTAG and Power Pins 6 Pin Type PC44 VQ44 CS48 I/O/GCK1 I/O/GCK2 I/O/GCK3 I/O/GTS1 I/O/GTS2 I/O/GSR TCK TDI TDO TMS VCCINT 5 V VCCIO 3.3 V/5 V GND No Connects 5 6 7 42 40 39 17 15 30 16 21,41 32 23,10,31 — 43 44 1 36 34 33 11 9 24 10 15,35 26 17,4,25 — B7 B6 A7 E6 F6 G7 A1 B3 G2 A2 C1,F7 G3 A5, D1, F3 C4, D3, D4, E4 December 4, 1998 (Version 5.0) XC9536 In-System Programmable CPLD Ordering Information XC9536 -5 PC 44 C Device Type Temperature Range Number of Pins Speed Package Type Packaging Options Speed Options -15 -10 -7 -6 -5 PC44 44-Pin Plastic Leaded Chip Carrier (PLCC) VQ44 44-Pin Thin Quad Pack (VQFP) CS48 48-Pin Chip Scale Package (CSP) 15 ns pin-to-pin delay 10 ns pin-to-pin delay 7.5 ns pin-to-pin delay 6 ns pin-to-pin delay 5 ns pin-to-pin delay Temperature Options C = Commercial (0°C to +70°C) I = Industrial (–40°C to +85°C) Component Availability Pins 44 Type Code XC9536 –15 –10 –7 –6 –5 Plastic PLCC PC44 C,I C,I C,I C C Plastic VQFP VQ44 C,I C,I C,I C C 48 Plastic CSP CS48 C C C C = Commercial (0°C to +70°C), I = Industrial (–40°C to +85°C) Revision Control Date 6/3/98 11/2/98 12/04/98 Reason Revise datasheet to reflect new CSP package pinouts & ordering code. Revise datasheet to reflect new AC characteristics and Internal Timing Parameters. Revise datasheet to remove PCI compliancy statement and remove tLF. December 4, 1998 (Version 5.0) 7 ANEXOS 4 – Lista de Material ANEXOS 4 ccxvii ANEXOS 4 – Lista de Material Lista do material implementado ccxviii Trabalho Nº 1 Descrição do Material 7805 Díodo 1N4001 Resistência de 150 Ω Resistência de 1 KΩ Condensador de 0.01 µF Condensador de 0.1 µF Condensador de 1 µF Condensador de 4.7 µF Condensador de 10 µF Condensador de 33 µF Condensador de 22 pF Condensador de 33 pF Cristal de 11.0592 MHz MAX233 MAX1112 L293 HEF4047 AT89C51 XC9536 Adaptador PLCC44 – DIP40 Botão de Pressão Conector DB9 (Porta Série) Cabo porta Série Breadboard Placa PCB Quantidade 1X 4X 1X 1X 6X 1X 3X 2X 1X 1X 1X 2X 1X 1X 1X 2X 1X 1X 1X 1X 1X 1X 1X 2X 1X Trabalho Nº 2 Descrição do Material LDR Fototransistor Potenciómetro de 5 KΩ Díodo 1N4001 Resistência de 10 KΩ Resistência de 150 Ω Resistência de 4,7 KΩ Condensador de 0.01 µF GL494 L293 Breadboard Placa PCB Quantidade 2X 1X 2X 1X 2X 2X 1X 2X 2X 1X 1X 1X