Download Remarks on Numerical Experiments of the Allen

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

History of numerical weather prediction wikipedia , lookup

Mathematical economics wikipedia , lookup

Corecursion wikipedia , lookup

Routhian mechanics wikipedia , lookup

Mathematical optimization wikipedia , lookup

Perturbation theory wikipedia , lookup

Numerical weather prediction wikipedia , lookup

Inverse problem wikipedia , lookup

Multiple-criteria decision analysis wikipedia , lookup

Computational electromagnetics wikipedia , lookup

Computational fluid dynamics wikipedia , lookup

Data assimilation wikipedia , lookup

Transcript
Hindawi Publishing Corporation
Advances in Numerical Analysis
Volume 2016, Article ID 1492812, 16 pages
http://dx.doi.org/10.1155/2016/1492812
Research Article
Remarks on Numerical Experiments of the Allen-Cahn
Equations with Constraint via Yosida Approximation
Tomoyuki Suzuki,1 Keisuke Takasao,2 and Noriaki Yamazaki1
1
Department of Mathematics, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku,
Yokohama 221-8686, Japan
2
Graduate School of Mathematical Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8914, Japan
Correspondence should be addressed to Noriaki Yamazaki; [email protected]
Received 16 February 2016; Accepted 5 April 2016
Academic Editor: Yinnian He
Copyright © 2016 Tomoyuki Suzuki et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
We consider a one-dimensional Allen-Cahn equation with constraint from the viewpoint of numerical analysis. The constraint is
provided by the subdifferential of the indicator function on the closed interval, which is the multivalued function. Therefore, it
is very difficult to perform a numerical experiment of our equation. In this paper we approximate the constraint by the Yosida
approximation. Then, we study the approximating system of the original model numerically. In particular, we give the criteria for
the standard forward Euler method to give the stable numerical experiments of the approximating equation. Moreover, we provide
the numerical experiments of the approximating equation.
More precisely, πœ•πΌ[βˆ’1,1] (β‹…) is a set-valued mapping defined by
1. Introduction
In this paper, for each πœ€ ∈ (0, 1] we consider the following
Allen-Cahn equation with constraint from the viewpoint of
numerical analysis:
πœ€
+
π‘’π‘‘πœ€ βˆ’ 𝑒π‘₯π‘₯
πœ•πΌ[βˆ’1,1] (π‘’πœ€ ) π‘’πœ€
βˆ‹ 2
πœ€2
πœ€
in 𝑄 fl (0, 𝑇) × (0, 1) , (1)
𝑒π‘₯πœ€ (𝑑, 0) = 𝑒π‘₯πœ€ (𝑑, 1) = 0,
𝑑 ∈ (0, 𝑇) ,
π‘’πœ€ (0, π‘₯) = 𝑒0πœ€ (π‘₯) , π‘₯ ∈ (0, 1) ,
(2)
(3)
where 0 < 𝑇 < +∞ and 𝑒0πœ€ is given initial data. Also,
the constraint πœ•πΌ[βˆ’1,1] (β‹…) is the subdifferential of the indicator
function 𝐼[βˆ’1,1] (β‹…) on the closed interval [βˆ’1, 1] defined by
0,
{
{
{
{
{
{
{[0, ∞) ,
πœ•πΌ[βˆ’1,1] (𝑧) fl {
{
{
{0} ,
{
{
{
{
{(βˆ’βˆž, 0] ,
if 𝑧 = 1,
if βˆ’ 1 < 𝑧 < 1,
if 𝑧 = βˆ’1.
V (𝑑, π‘₯)
the volume of pure liquid in π΅π‘Ÿ (π‘₯) at time 𝑑
,
󡄨
󡄨󡄨
π‘Ÿβ†“0
σ΅„¨σ΅„¨π΅π‘Ÿ (π‘₯)󡄨󡄨󡄨
(4)
(5)
The Allen-Cahn equation was proposed to describe the
macroscopic motion of phase boundaries. In the physical
context, the function π‘’πœ€ = π‘’πœ€ (𝑑, π‘₯) in (𝑃)πœ€ fl {(1), (2), (3)}
is the nonconserved order parameter that characterizes the
physical structure. For instance, let V = V(𝑑, π‘₯) be the local
ratio of the volume of pure liquid relative to that of pure solid
at time 𝑑 and position π‘₯ ∈ (0, 1), defined by
fl lim
if 𝑧 ∈ [βˆ’1, 1] ,
{0,
𝐼[βˆ’1,1] (𝑧) fl {
+∞, otherwise.
{
if 𝑧 < βˆ’1 or 𝑧 > 1,
(6)
where π΅π‘Ÿ (π‘₯) is the ball in R with center π‘₯ and radius π‘Ÿ and
|π΅π‘Ÿ (π‘₯)| denotes its volume. Put π‘’πœ€ (𝑑, π‘₯) fl 2V(𝑑, π‘₯) βˆ’ 1 for any
2
Advances in Numerical Analysis
(𝑑, π‘₯) ∈ 𝑄. Then, we observe that π‘’πœ€ (𝑑, π‘₯) is the nonconserved
order parameter that characterizes the physical structure:
π‘’πœ€ (𝑑, π‘₯) = 1
πœ€
𝑒 (𝑑, π‘₯) = βˆ’1
on the pure liquid region,
on the pure solid region,
(7)
βˆ’1 < π‘’πœ€ (𝑑, π‘₯) < 1 on the mixture region.
There is a vast amount of literature on the Allen-Cahn
equation with or without constraint πœ•πΌ[βˆ’1,1] (β‹…). For these
studies, we refer to [1–16]. In particular, Chen and Elliott [5]
considered the singular limit of (𝑃)πœ€ as πœ€ β†’ 0 in the general
bounded domain Ξ© (βŠ‚ R𝑁 with 𝑁 β‰₯ 1).
Also, there is a vast amount of literature on the numerical analysis of the Allen-Cahn equation without constraint
πœ•πΌ[βˆ’1,1] (β‹…). For these studies, we refer to [17–21].
Note that the constraint πœ•πΌ[βˆ’1,1] (β‹…) is the multivalued
function. Therefore, it is very difficult to apply the numerical
methods developed by [17–21] to (𝑃)πœ€ . Hence, it is difficult to
perform a numerical experiment of (𝑃)πœ€ . Recently, Blank et al.
[2] proposed as a numerical method a primal-dual active set
algorithm for the local and nonlocal Allen-Cahn variational
inequalities with constraint. Also, Farshbaf-Shaker et al. [8]
gave the results of the limit of a solution π‘’πœ€ and an element of
πœ•πΌ[βˆ’1,1] (π‘’πœ€ ), called the Lagrange multiplier, to (𝑃)πœ€ as πœ€ β†’ 0.
Moreover, they [9] gave the numerical experiment to (𝑃)πœ€
via the Lagrange multiplier in one dimension of space for
sufficient small πœ€ ∈ (0, 1]. Furthermore, they [9] considered
the approximating method, called the Yosida approximation.
More precisely, for 𝛿 > 0, the Yosida approximation
(πœ•πΌ[βˆ’1,1] )𝛿 (β‹…) of πœ•πΌ[βˆ’1,1] (β‹…) is defined by
(πœ•πΌ[βˆ’1,1] )𝛿 (𝑧) =
(𝐸)πœ€π›Ώ
(πœ•πΌ[βˆ’1,1] )𝛿 (π‘’π›Ώπœ€ ) π‘’π›Ώπœ€
{
{(π‘’πœ€ ) +
= 2
𝛿 𝑑
πœ€2
πœ€
{
{ πœ€
πœ€
{𝑒𝛿 (0) = 𝑒0
in R, for 𝑑 ∈ (0, 𝑇) ,
(10)
in R.
Then, we give the criteria to get the stable numerical experiments of (𝐸)πœ€π›Ώ . Also, we give some numerical experiments
of (𝐸)πœ€π›Ώ . Moreover, we show the criteria to get the stable
numerical experiments of PDE problem (𝑃)πœ€π›Ώ . Therefore, the
main novelties are the following:
(a) We give the criteria to get the stable numerical experiments of the ODE problem (𝐸)πœ€π›Ώ . Also, we provide
the numerical experiments to (𝐸)πœ€π›Ώ for sufficient small
πœ€ ∈ (0, 1] and 𝛿 ∈ (0, 1].
(b) We give the criteria to get the stable numerical experiments of the PDE problem (𝑃)πœ€π›Ώ . Also, we provide
(8)
where [𝑧]+ is the positive part of 𝑧. Then, for each 𝛿 > 0, they
[9] considered the following approximation problem of (𝑃)πœ€ :
(πœ•πΌ[βˆ’1,1] )𝛿 (π‘’π›Ώπœ€ ) π‘’π›Ώπœ€
{
πœ€
πœ€
{
βˆ’
+
= 2
(𝑒
)
)
(𝑒
{
𝛿 π‘₯π‘₯
{ 𝛿 𝑑
πœ€2
πœ€
πœ€ {
πœ€
πœ€
(𝑃)𝛿 {(𝑒 ) (𝑑, 0) = (𝑒 ) (𝑑, 1) = 0,
{
𝛿
𝛿
π‘₯
π‘₯
{
{
{ πœ€
πœ€
{𝑒𝛿 (0, π‘₯) = 𝑒0 (π‘₯) ,
In [9, Remark 4.2], Figure 1 shows the unstable numerical
result to (𝑃)πœ€π›Ώ was given by the standard explicit finite
difference scheme to (𝑃)πœ€π›Ώ .
From Figure 1, we observe that we have to choose the
suitable constants πœ€ and 𝛿 and the mesh size of time Δ𝑑 and
space Ξ”π‘₯ in order to get the stable numerical results of (𝑃)πœ€π›Ώ .
Therefore, in this paper, for each πœ€ > 0 and 𝛿 > 0, we give
the criteria for the standard explicit finite difference scheme
to provide the stable numerical experiments of (𝑃)πœ€π›Ώ . To this
end, we first consider the following ODE problem, denoted
by (𝐸)πœ€π›Ώ :
[𝑧 βˆ’ 1]+ βˆ’ [βˆ’1 βˆ’ 𝑧]+
, βˆ€π‘§ ∈ R,
𝛿
in 𝑄 fl (0, 𝑇) × (0, 1) ,
𝑑 ∈ (0, 𝑇) ,
(9)
π‘₯ ∈ (0, 1) .
the numerical experiments to (𝑃)πœ€π›Ώ for sufficient small
πœ€ ∈ (0, 1] and 𝛿 ∈ (0, 1].
The plan of this paper is as follows. In Section 2, we
mention the solvability and convergence result of (𝐸)πœ€π›Ώ . In
Section 3, we consider (𝐸)πœ€π›Ώ numerically. Then, we prove
the main result (Theorem 7) corresponding to item (a)
listed above. Also, we provide the numerical experiments
to (𝐸)πœ€π›Ώ for sufficient small πœ€ ∈ (0, 1] and 𝛿 ∈ (0, 1]. In
Section 4, we mention the solvability and convergence result
of (𝑃)πœ€π›Ώ . In the final Section 5, we consider (𝑃)πœ€π›Ώ from the
viewpoint of numerical analysis. Then, we prove the main
result (Theorem 16) corresponding to item (b) listed above.
Also, we provide the numerical experiments to (𝑃)πœ€π›Ώ for
sufficient small πœ€ ∈ (0, 1] and 𝛿 ∈ (0, 1].
Notations and Basic Assumptions. Throughout this paper, we
put 𝐻 fl 𝐿2 (0, 1) with the usual real Hilbert space structure.
The inner product and norm in 𝐻 are denoted by (β‹…, β‹…)𝐻 and
by | β‹… |𝐻, respectively. We also put 𝑉 fl 𝐻1 (0, 1) with the usual
norm |𝑧|𝑉 fl {|𝑧|2𝐻 + |𝑧π‘₯ |2𝐻}1/2 for 𝑧 ∈ 𝑉.
In Sections 2 and 4, we use some techniques of proper
(i.e., not identically equal to infinity), l.s.c. (lower semicontinuous), and convex functions and their subdifferentials, which
are useful in the systematic study of variational inequalities.
So, let us outline some notations and definitions. Let π‘Š be the
real Hilbert space with the inner product (β‹…, β‹…)π‘Š. For a proper,
l.s.c., and convex function πœ“ : π‘Š β†’ R βˆͺ {+∞}, the effective
domain 𝐷(πœ“) is defined by
𝐷 (πœ“) fl {𝑧 ∈ π‘Š; πœ“ (𝑧) < ∞} .
(11)
u(t, x)
Advances in Numerical Analysis
3
Definition 1. Let πœ€ ∈ (0, 1], 𝛿 ∈ (0, 1], and 𝑒0πœ€ ∈ R. Then, a
function π‘’π›Ώπœ€ : [0, 𝑇] β†’ R is called a solution to (𝐸)πœ€π›Ώ on [0, 𝑇],
if the following conditions are satisfied:
1.5
1
0.5
0
βˆ’0.5
βˆ’1
βˆ’1.5
(i) π‘’π›Ώπœ€ ∈ π‘Š1,2 (0, 𝑇).
(ii) The following equation holds:
e
m
Ti
0
0.002
0.004
0.006
0.008
0.01
(π‘’π›Ώπœ€ )𝑑 +
0
0.2
0.8
0.6
0.4
1
Ξ©
Figure 1: Behavior of a solution to (𝑃)πœ€π›Ώ with πœ€ = 0.007 and 𝛿 = 0.01.
The subdifferential of πœ“ is a possibly multivalued operator in
π‘Š and is defined by π‘§βˆ— ∈ πœ•πœ“(𝑧) if and only if
𝑧 ∈ 𝐷 (πœ“) ,
(π‘§βˆ— , 𝑦 βˆ’ 𝑧)π‘Š ≀ πœ“ (𝑦) βˆ’ πœ“ (𝑧)
βˆ€π‘¦ ∈ π‘Š.
(12)
For various properties and related notions of the proper, l.s.c.,
and convex function πœ“ and its subdifferential πœ•πœ“, we refer to
the monograph by Brézis [22].
2. Solvability and Convergence Results of (𝐸)πœ€π›Ώ
We begin by giving the rigorous definition of solutions to our
problem (𝐸)πœ€π›Ώ (πœ€ ∈ (0, 1] and 𝛿 ∈ (0, 1]).
(πœ•πΌ[βˆ’1,1] )𝛿 (π‘’π›Ώπœ€ )
πœ€2
(𝐸)πœ€π›Ώ
Next, we show the convergence result of
as 𝛿 β†’ 0.
To this end, we recall a notion of convergence for convex
functions, developed by Mosco [26].
Definition 3 (cf. [26]). Let πœ“ and πœ“π‘› (𝑛 ∈ N) be proper, l.s.c.,
and convex functions on a Hilbert space π‘Š. Then, one says
that πœ“π‘› converges to πœ“ on π‘Š in the sense of Mosco [26] as
𝑛 β†’ ∞, if the following two conditions are satisfied:
π‘’π›Ώπœ€
πœ€2
in R, for 𝑑 ∈ (0, 𝑇) . (13)
(iii) π‘’π›Ώπœ€ (0) = 𝑒0πœ€ in R.
Now, we show the solvability result of (𝐸)πœ€π›Ώ on [0, 𝑇].
Proposition 2. Let πœ€ ∈ (0, 1], 𝛿 ∈ (0, 1], and 𝑒0πœ€ ∈ R with
|𝑒0πœ€ | ≀ 1. Then, there exists a unique solution π‘’π›Ώπœ€ to (𝐸)πœ€π›Ώ on
[0, 𝑇] in the sense of Definition 1.
Proof. We can prove the uniqueness of solutions to (𝐸)πœ€π›Ώ on
[0, 𝑇] by the quite standard arguments: monotonicity and
Gronwall’s inequality.
Also, we can show the existence of solutions to (𝐸)πœ€π›Ώ on
[0, 𝑇] applying the abstract theory of evolution equations
governed by subdifferentials. Indeed, we define a function
(𝐼[βˆ’1,1] )𝛿 (β‹…) on R by
󡄨2 󡄨
󡄨2
󡄨󡄨
󡄨[𝑧 βˆ’ 1]+ 󡄨󡄨󡄨 + 󡄨󡄨󡄨[βˆ’1 βˆ’ 𝑧]+ 󡄨󡄨󡄨
(𝐼[βˆ’1,1] )𝛿 (𝑧) = 󡄨
, βˆ€π‘§ ∈ R.
2𝛿
(14)
Clearly, (𝐼[βˆ’1,1] )𝛿 (β‹…) is proper, l.s.c., and convex on R with
πœ•(𝐼[βˆ’1,1] )𝛿 (β‹…) = (πœ•πΌ[βˆ’1,1] )𝛿 (β‹…) in R, where (πœ•πΌ[βˆ’1,1] )𝛿 (β‹…) is the
Yosida approximation of πœ•πΌ[βˆ’1,1] (β‹…) defined by (8).
Note that the problem (𝐸)πœ€π›Ώ can be rewritten as in an
abstract framework of the form
𝑑
1
1
{ π‘’πœ€ (𝑑) + 2 πœ• (𝐼[βˆ’1,1] )𝛿 (π‘’π›Ώπœ€ (𝑑)) βˆ’ 2 π‘’π›Ώπœ€ (𝑑) = 0
πœ€
πœ€
(𝐸𝑃)πœ€π›Ώ { 𝑑𝑑 𝛿
πœ€
πœ€
{𝑒𝛿 (0) = 𝑒0
Therefore, applying the Lipschitz perturbation theory of
abstract evolution equations (cf. [23–25]), we can show the
existence of a solution π‘’π›Ώπœ€ to (𝐸𝑃)πœ€π›Ώ , hence, (𝐸)πœ€π›Ώ , on [0, 𝑇] for
each πœ€ ∈ (0, 1] and 𝛿 ∈ (0, 1] in the sense of Definition 1. Thus,
the proof of Proposition 2 has been completed.
=
in R, for 𝑑 ∈ (0, 𝑇) ,
in R.
(15)
(i) for any subsequence {πœ“π‘›π‘˜ } βŠ‚ {πœ“π‘› }, if π‘§π‘˜ β†’ 𝑧 weakly in
π‘Š as π‘˜ β†’ ∞, then
lim inf πœ“π‘›π‘˜ (π‘§π‘˜ ) β‰₯ πœ“ (𝑧) ;
π‘˜β†’βˆž
(16)
(ii) for any 𝑧 ∈ 𝐷(πœ“), there is a sequence {𝑧𝑛 } in π‘Š such
that
𝑧𝑛 󳨀→ 𝑧
in π‘Š as 𝑛 󳨀→ ∞,
lim πœ“π‘› (𝑧𝑛 ) = πœ“ (𝑧) .
(17)
π‘›β†’βˆž
It is well known that the following lemma holds. Therefore, we omit the detailed proof.
4
Advances in Numerical Analysis
Lemma 4 (cf. [27, Section 5], [22, Chapter 2], and [28, Section
2]). Consider
π‘œπ‘› R 𝑖𝑛 π‘‘β„Žπ‘’ 𝑠𝑒𝑛𝑠𝑒 π‘œπ‘“ π‘€π‘œπ‘ π‘π‘œ [26] π‘Žπ‘  𝛿 󳨀→ 0.
(18)
By Lemma 4 and the general convergence theory of
evolution equations, we get the following result. We omit the
detailed proof.
Proposition 5 (cf. [27, Section 5], [28, Section 2]). Let πœ€ ∈
(0, 1], 𝛿 ∈ (0, 1], and 𝑒0πœ€ ∈ R with |𝑒0πœ€ | ≀ 1. Also, let π‘’π›Ώπœ€ be the
unique solution to (𝐸)πœ€π›Ώ on [0, 𝑇]. Then, there exists a unique
function π‘’πœ€ ∈ π‘Š1,2 (0, 𝑇) such that
𝑖𝑛 𝐢 ([0, 𝑇]) π‘Žπ‘  𝛿 󳨀→ 0
(𝐷𝐸)πœ€π›Ώ
(π‘’πœ€ ) π‘’πœ€
πœ•πΌ
{
{π‘’πœ€ + [βˆ’1,1]
βˆ‹ 2
(𝐸) { 𝑑
πœ€2
πœ€
{ πœ€
πœ€
𝑒
=
𝑒
(0)
0
{
πœ€
(𝐼[βˆ’1,1] )𝛿 (β‹…) 󳨀→ 𝐼[βˆ’1,1] (β‹…)
π‘’π›Ώπœ€ 󳨀→ π‘’πœ€
and π‘’πœ€ is the unique solution of the following problem (𝐸)πœ€ on
[0, 𝑇]:
(19)
Theorem 7. Let πœ€ ∈ (0, 1], 𝛿 ∈ (0, 1), and Δ𝑑 ∈ (0, 1]. Assume
𝑒0πœ€ ∈ (0, 1] (resp., 𝑒0πœ€ ∈ [βˆ’1, 0)) and 𝑇 = ∞. Let {𝑒𝑛 ; 𝑛 β‰₯ 0} be
the solution to (𝐷𝐸)πœ€π›Ώ . Then, one has the following:
(i) If Δ𝑑 ∈ (0, π›Ώπœ€2 /(1 βˆ’ 𝛿)), 𝑒𝑛 converges to 1/(1 βˆ’ 𝛿) (resp.,
βˆ’1/(1 βˆ’ 𝛿)) monotonically as 𝑛 β†’ ∞.
(ii) If Δ𝑑 ∈ (π›Ώπœ€2 /(1 βˆ’ 𝛿), 2π›Ώπœ€2 /(1 βˆ’ 𝛿)), 𝑒𝑛 oscillates and
converges to 1/(1 βˆ’ 𝛿) (resp., βˆ’1/(1 βˆ’ 𝛿)) as 𝑛 β†’ ∞.
Proof. We give the proof of Theorem 7 in the case of the initial
value 𝑒0πœ€ ∈ (0, 1].
(20)
𝑖𝑛 R.
3. Stable Criteria and Numerical
Experiments for (𝐸)πœ€π›Ώ
In this section we consider (𝐸)πœ€π›Ώ from the viewpoint of
numerical analysis.
Remark 6. Note from Proposition 5 that (𝐸)πœ€π›Ώ is the approximating problem of (𝐸)πœ€ . Also note from (5) that the constraint
πœ•πΌ[βˆ’1,1] (β‹…) is the multivalued function. Therefore, it is very
difficult to study (𝐸)πœ€ numerically.
In order to perform the numerical experiments of (𝐸)πœ€π›Ώ
via the standard forward Euler method, we consider the
following explicit finite difference scheme to (𝐸)πœ€π›Ώ , denoted by
(𝐷𝐸)πœ€π›Ώ :
𝑛+1
𝑛
(πœ•πΌ[βˆ’1,1] )𝛿 (𝑒𝑛 ) 𝑒𝑛
{
{𝑒 βˆ’ 𝑒 +
= 2
Δ𝑑
πœ€2
πœ€
{
{ 0
πœ€
=
𝑒
𝑒
0
{
where Δ𝑑 is the mesh size of time and 𝑁𝑑 is the integer part of
number 𝑇/Δ𝑑.
We observe that 𝑒𝑛 is the approximating solution of (𝐸)πœ€π›Ώ
at the time 𝑑 = 𝑛Δ𝑑. Also, we observe that the explicit finite
difference scheme (𝐷𝐸)πœ€π›Ώ converges to (𝐸)πœ€π›Ώ as Δ𝑑 β†’ 0 since
(𝐷𝐸)πœ€π›Ώ is the standard time discretization scheme for (𝐸)πœ€π›Ώ .
In Figure 2, we give the unstable numerical experiment of
(𝐷𝐸)πœ€π›Ώ in the case when 𝑇 = 0.002, πœ€ = 0.003, 𝛿 = 0.01, the
initial data 𝑒0πœ€ = 0.1, and the mesh size of time Δ𝑑 = 0.000001.
From Figure 2, we observe that we have to choose the
suitable constants πœ€ and 𝛿 and the mesh size of time Δ𝑑 in
order to get the stable numerical results of (𝐷𝐸)πœ€π›Ώ .
Now, let us mention the first main result in this paper,
which is concerned with the criteria to give the stable
numerical experiments of (𝐷𝐸)πœ€π›Ώ .
𝑖𝑛 R, π‘“π‘œπ‘Ÿ 𝑑 ∈ (0, 𝑇) ,
in R, for 𝑛 = 0, 1, 2, . . . , 𝑁𝑑 ,
(21)
in R,
For simplicity, we set
𝑓𝛿 (𝑧) fl (πœ•πΌ[βˆ’1,1] )𝛿 (𝑧) βˆ’ 𝑧 for 𝑧 ∈ R.
(22)
Then, we observe that
1+𝑧
βˆ’ 𝑧, if 𝑧 ≀ βˆ’1,
{
{
{
{
{ 𝛿
if 𝑧 ∈ [βˆ’1, 1] ,
𝑓𝛿 (𝑧) = {βˆ’π‘§,
{
{𝑧 βˆ’ 1
{
{
βˆ’ 𝑧, if 𝑧 β‰₯ 1,
{ 𝛿
(23)
and 𝑧 = 0, 1/(1 βˆ’ 𝛿), βˆ’1/(1 βˆ’ 𝛿) are the zero points of
𝑓𝛿 (β‹…). Also, we observe that the difference equation (𝐷𝐸)πœ€π›Ώ is
reformulated in the following form:
𝑒𝑛+1 = 𝑒𝑛 βˆ’
Δ𝑑
𝑓 (𝑒𝑛 )
πœ€2 𝛿
in R, for 𝑛 = 0, 1, 2, . . . .
(24)
Note from (23) and (24) that if 𝑒𝑛 ∈ (0, 1] we have
𝑒𝑛+1 = 𝑒𝑛 βˆ’
Δ𝑑
Δ𝑑
𝑓𝛿 (𝑒𝑛 ) = 𝑒𝑛 βˆ’ 2 β‹… (βˆ’π‘’π‘› ) β‰₯ 𝑒𝑛 ,
2
πœ€
πœ€
(25)
which implies that 𝑒𝑛 is increasing with respect to 𝑛 until
𝑒𝑛+1 β‰₯ 1.
Now, we prove (i). To this end, we assume that Δ𝑑 ∈
(0, π›Ώπœ€2 /(1 βˆ’ 𝛿)). At first, by the mathematical induction, we
show
𝑒𝑖 ∈ (0,
1
)
1βˆ’π›Ώ
βˆ€π‘– β‰₯ 0.
(26)
Advances in Numerical Analysis
5
1.2
Taking the limit in (24), we observe from the continuity of
𝑓𝛿 (β‹…) that π‘’βˆž = 1/(1 βˆ’ 𝛿), which is the zero point of 𝑓𝛿 (β‹…).
Hence, the proof of (i) has been completed.
Next, we show (ii). To this end, we assume that Δ𝑑 ∈
(π›Ώπœ€2 /(1 βˆ’ 𝛿), 2π›Ώπœ€2 /(1 βˆ’ 𝛿)). Then, we can find the minimal
number 𝑛0 ∈ N so that
1
Solution
0.8
0.6
𝑒𝑛0 ∈ (1,
0.4
𝑖
𝑒 ∈ (0, 1]
0.2
0
1+𝛿
),
1βˆ’π›Ώ
0
0.0005
0.001
Time
0.0015
0.002
Figure 2: Behavior of a solution 𝑒𝑛 to (𝐷𝐸)πœ€π›Ώ with πœ€ = 0.003 and
𝛿 = 0.01.
Clearly (26) holds for 𝑖 = 0 because of 𝑒0 = 𝑒0πœ€ ∈ (0, 1].
Now, we assume that (26) holds for all 𝑖 = 0, 1, . . . , 𝑛.
Suppose 𝑒𝑛 ∈ (0, 1]. Then, we infer from (25) that
𝑒𝑛+1
Δ𝑑
Δ𝑑
𝛿
1
= (1 + 2 ) 𝑒𝑛 ≀ 1 + 2 < 1 +
=
.
πœ€
πœ€
1βˆ’π›Ώ 1βˆ’π›Ώ
1
) , if 𝑒𝑛 ∈ (0, 1] .
1βˆ’π›Ώ
π‘’π‘˜+1 = π‘’π‘˜ βˆ’
Δ𝑑
Δ𝑑
𝑓 (π‘’π‘˜ ) = (1 + 2 ) π‘’π‘˜
πœ€2 𝛿
πœ€
Δ𝑑 2
Δ𝑑 π‘˜+1
= (1 + 2 ) π‘’π‘˜βˆ’1 = β‹… β‹… β‹… = (1 + 2 ) 𝑒0 .
πœ€
πœ€
Next, if 𝑒𝑛 ∈ [1, 1/(1 βˆ’ 𝛿)), we observe from (23) and (24)
that
𝑒𝑛 ≀ 𝑒𝑛+1 = 𝑒𝑛 βˆ’
Δ𝑑
𝑓 (𝑒𝑛 )
πœ€2 𝛿
1+
Δ𝑑 1 βˆ’ (1 βˆ’ 𝛿) 𝑒𝑛
1 βˆ’ (1 βˆ’ 𝛿) 𝑒𝑛
=𝑒 + 2 β‹…
< 𝑒𝑛 +
πœ€
𝛿
1βˆ’π›Ώ
(29)
𝑛
𝑒𝑛0 > 1,
𝑒𝑖 ∈ (0, 1]
βˆ€π‘– = 0, 1, . . . , 𝑛0 βˆ’ 1.
(36)
𝑒𝑛0 = 𝑒𝑛0 βˆ’1 βˆ’
Δ𝑑
Δ𝑑
𝑓𝛿 (𝑒𝑛0 βˆ’1 ) = (1 + 2 ) 𝑒𝑛0 βˆ’1
2
πœ€
πœ€
2𝛿
1+𝛿
)β‹…1=
,
1βˆ’π›Ώ
1βˆ’π›Ώ
(37)
and thus, (33) holds.
To show (ii), we put
which implies that
1
1
) , if 𝑒𝑛 ∈ [1,
).
1βˆ’π›Ώ
1βˆ’π›Ώ
(30)
From (28) and (30) we infer that (26) holds for 𝑖 = 𝑛 + 1.
Therefore, we conclude from the mathematical induction that
(26) holds.
Also, by (23) and (26) we observe that 𝑓𝛿 (𝑒𝑛 ) ≀ 0 for all
𝑛 β‰₯ 0. Therefore, we observe from (24) that
𝑒𝑛+1 = 𝑒𝑛 βˆ’
Δ𝑑
𝑓 (𝑒𝑛 ) β‰₯ 𝑒𝑛
πœ€2 𝛿
βˆ€π‘› β‰₯ 0.
(31)
Therefore, we infer from (26) and (31) that {𝑒𝑛 ; 𝑛 β‰₯ 0} is a
bounded and increasing sequence with respect to 𝑛. Thus,
there exists a point π‘’βˆž ∈ R such that
𝑛
(35)
we can find the minimal number 𝑛0 ∈ N so that
< (1 +
1
,
1βˆ’π›Ώ
𝑒𝑛+1 ∈ [1,
Δ𝑑
𝛿
>1+
> 1,
πœ€2
1βˆ’π›Ώ
Also, we observe from (25) that
Δ𝑑
𝑒𝑛 βˆ’ 1
= 𝑒𝑛 βˆ’ 2 β‹… (
βˆ’ 𝑒𝑛 )
πœ€
𝛿
=
(34)
Taking into account (34), 𝑒0 ∈ (0, 1], and
(27)
(28)
βˆ€π‘– = 0, 1, . . . , 𝑛0 βˆ’ 1.
Indeed, if 𝑒𝑖 ∈ (0, 1] for all 𝑖 = 0, 1, . . . , π‘˜, we observe from
(25) that
Therefore, by (25) and the inequality as above, we observe that
𝑒𝑛+1 ∈ (0,
(33)
𝑒 󳨀→ 𝑒
∞
in R as 𝑛 󳨀→ ∞.
(32)
Δ𝑑 fl
π›Ώπœ€2
𝜏
1βˆ’π›Ώ
for some 𝜏 ∈ (1, 2) .
(38)
Then, we observe from (23) and (24) that
Δ𝑑
Δ𝑑 1 βˆ’ (1 βˆ’ 𝛿) 𝑒𝑛0
𝑛0
𝑛0
𝑓
(𝑒
)
=
𝑒
+
β‹…
𝛿
πœ€2
πœ€2
𝛿
(39)
𝜏
𝑛0
= (1 βˆ’ 𝜏) 𝑒 +
.
1βˆ’π›Ώ
𝑒𝑛0 +1 = 𝑒𝑛0 βˆ’
From (39) it follows that
𝑒𝑛0 +1 + (𝜏 βˆ’ 1) 𝑒𝑛0
1
=
.
𝜏
1βˆ’π›Ώ
(40)
6
Advances in Numerical Analysis
Therefore, we observe from (40) and 𝜏 ∈ (1, 2) that the zero
point 1/(1βˆ’π›Ώ) of 𝑓𝛿 (β‹…) is in the interval between 𝑒𝑛0 and 𝑒𝑛0 +1 .
Also, by (39) we observe that
𝑒𝑛0 +1 = (1 βˆ’ 𝜏) 𝑒𝑛0 +
𝑒
𝑛0 +1
1+𝛿
𝜏
𝜏
> (1 βˆ’ 𝜏)
+
1βˆ’π›Ώ
1βˆ’π›Ώ 1βˆ’π›Ώ
1 + 𝛿 βˆ’ πœπ›Ώ
=
β‰₯ 1,
1βˆ’π›Ώ
𝜏
𝜏
= (1 βˆ’ 𝜏) 𝑒𝑛0 +
< (1 βˆ’ 𝜏) β‹… 1 +
1βˆ’π›Ώ
1βˆ’π›Ώ
=
π‘›βˆ’1βˆ’π‘–
(41)
1 βˆ’ 𝛿 + πœπ›Ώ 1 + 𝛿
≀
,
1βˆ’π›Ώ
1βˆ’π›Ώ
1+𝛿
).
1βˆ’π›Ώ
(42)
1+𝛿
)
𝑒 ∈ (1,
1βˆ’π›Ώ
βˆ€π‘› β‰₯ 𝑛0
(43)
and 𝑒𝑛 oscillates around the zero point 1/(1βˆ’π›Ώ) for all 𝑛 β‰₯ 𝑛0 .
Also, we observe from (39) and (43) that
󡄨
󡄨
󡄨
󡄨󡄨 𝑛+1
󡄨󡄨𝑒 βˆ’ 1 󡄨󡄨󡄨 = |1 βˆ’ 𝜏| 󡄨󡄨󡄨𝑒𝑛 βˆ’ 1 󡄨󡄨󡄨 βˆ€π‘› β‰₯ 𝑛 .
(44)
󡄨󡄨
󡄨󡄨
󡄨
󡄨󡄨
0
1 βˆ’ 𝛿󡄨
1 βˆ’ 𝛿 󡄨󡄨
󡄨
󡄨
Therefore, by 𝜏 ∈ (1, 2), (43), and (44), there is a subsequence
{π‘›π‘˜ } of {𝑛} such that π‘’π‘›π‘˜ oscillates and converges to 1/(1 βˆ’ 𝛿)
as π‘˜ β†’ ∞. Hence, taking into account the uniqueness of the
limit point, the proof of (ii) has been completed.
Remark 8. Assume Δ𝑑 ∈ [2π›Ώπœ€2 /(1 βˆ’ 𝛿), ∞) and put Δ𝑑 fl
π›Ώπœ€2 𝜏/(1 βˆ’ 𝛿) for some 𝜏 β‰₯ 2. Then, we observe that
1+
(47)
Proof. Note that 𝑒0πœ€ fl (1 βˆ’ 𝛿)π‘›βˆ’1 /(1 + 𝛿)𝑛 ∈ (0, 1). Therefore,
by (23) and (24) we observe that
Δ𝑑
2𝛿
1+𝛿 πœ€
𝑓 (𝑒0 ) = 𝑒0πœ€ βˆ’
(βˆ’π‘’0πœ€ ) =
𝑒
πœ€2 𝛿
1βˆ’π›Ώ
1βˆ’π›Ώ 0
(1 βˆ’ 𝛿)π‘›βˆ’2
=
.
(1 + 𝛿)π‘›βˆ’1
(48)
Similarly, we have
Therefore, by (33) and (40) and by repeating the procedure as
above, we observe that
𝑛
(1 βˆ’ 𝛿)
{
{
{ (1 + 𝛿)π‘›βˆ’π‘– , 𝑖𝑓 𝑖 = 0, 1, . . . , 𝑛 βˆ’ 1,
𝑖
𝑒 ={
{
{ 1
,
𝑖𝑓 𝑖 β‰₯ 𝑛.
{1 βˆ’ 𝛿
𝑒1 = 𝑒0 βˆ’
which implies that
𝑒𝑛0 +1 ∈ (1,
Corollary 10. Let πœ€ ∈ (0, 1], 𝛿 ∈ (0, 1), Δ𝑑 = 2π›Ώπœ€2 /(1 βˆ’ 𝛿), and
𝑛 ∈ N. Assume 𝑒0πœ€ fl (1 βˆ’ 𝛿)π‘›βˆ’1 /(1 + 𝛿)𝑛 . Then, the solution to
(𝐷𝐸)πœ€π›Ώ is given by
2𝛿
Δ𝑑
>1+
> 1,
2
πœ€
1βˆ’π›Ώ
(45)
|1 βˆ’ 𝜏| β‰₯ 1.
Therefore, we infer from the proof of Theorem 7 (cf. (34),
(40), and (44)) that the solution 𝑒𝑛 to (𝐷𝐸)πœ€π›Ώ oscillates as
𝑛 β†’ ∞, in general.
Remark 9. By (24) we easily observe that
𝑒𝑛 ≑ 0 βˆ€π‘› β‰₯ 1, if 𝑒0 = 0,
𝑒𝑛 ≑
1
1βˆ’π›Ώ
βˆ€π‘› β‰₯ 1, if 𝑒0 =
1
,
1βˆ’π›Ώ
𝑒𝑛 ≑
βˆ’1
1βˆ’π›Ώ
βˆ€π‘› β‰₯ 1, if 𝑒0 =
βˆ’1
.
1βˆ’π›Ώ
(46)
From (ii) of Theorem 7, we observe that 𝑒𝑛 oscillates
and converges to the zero point of 𝑓𝛿 (β‹…) in the case when
Δ𝑑 ∈ (π›Ώπœ€2 /(1 βˆ’ 𝛿), 2π›Ώπœ€2 /(1 βˆ’ 𝛿)). However, in the case when
Δ𝑑 = 2π›Ώπœ€2 /(1 βˆ’ 𝛿), we have the following special case that the
solution to (𝐷𝐸)πœ€π›Ώ does not oscillate and coincides with the
zero point of 𝑓𝛿 (β‹…) after some finite number of iterations.
𝑒2 = 𝑒1 βˆ’
Δ𝑑
1 + 𝛿 1 (1 βˆ’ 𝛿)π‘›βˆ’3
1
𝑓
(𝑒
)
=
.
𝑒 =
𝛿
πœ€2
1βˆ’π›Ώ
(1 + 𝛿)π‘›βˆ’2
(49)
Repeating this procedure, we observe that the solution to
(𝐷𝐸)πœ€π›Ώ is given by (47).
Taking into account Theorem 7, we provide the numerical
experiments of (𝐷𝐸)πœ€π›Ώ as follows. To this end, we use the
following numerical data.
Numerical Data of (𝐷𝐸)πœ€π›Ώ
The numerical data are 𝑇 = 0.002, πœ€ = 0.01, 𝛿 = 0.01,
and the initial data 𝑒0πœ€ = 0.1.
Then, we observe that
1
1
=
= 1.010101010 . . . ,
1 βˆ’ 𝛿 1 βˆ’ 0.01
π›Ώπœ€2
= 0.0000010101010 . . . .
1βˆ’π›Ώ
(50)
3.1. The Case When Δ𝑑 = 0.000001. Now we consider the case
when Δ𝑑 = 0.000001. In this case, we have
π›Ώπœ€2
= 0.0000010101010 β‹… β‹… β‹… > Δ𝑑 = 0.000001,
1βˆ’π›Ώ
(51)
which implies that (i) of Theorem 7 holds. Thus, we have the
stable numerical result of (𝐷𝐸)πœ€π›Ώ . Indeed, we observe from
Figure 3 and Table 1 that the solution to (𝐷𝐸)πœ€π›Ώ converges
to the stationary solution 1/(1 βˆ’ 𝛿) = 1/(1 βˆ’ 0.01) =
1.010101010 . . ..
3.2. The Case When Δ𝑑 = 0.000002. Now we consider the
case when Δ𝑑 = 0.000002. In this case, we have
π›Ώπœ€2
= 0.0000010101010 β‹… β‹… β‹… < Δ𝑑 = 0.000002
1βˆ’π›Ώ
2π›Ώπœ€2
<
,
1βˆ’π›Ώ
(52)
Advances in Numerical Analysis
7
Table 1: Numerical data: Δ𝑑 = 000001.
Number of iterations 𝑖
0
1
2
3
4
5
..
.
Table 2: Numerical data: Δ𝑑 = 0.000002.
The value of 𝑒
0.100000
0.101000
0.102010
0.103030
0.104060
0.105101
..
.
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
𝑖
0.910636
0.919743
0.928940
0.938230
0.947612
0.957088
0.966659
0.976325
0.986089
0.995950
1.005909
1.010059
1.010101
1.010101
1.010101
1.010101
1.010101
1.1
1
0.9
Solution
0.8
0.7
0.6
0.5
0.4
0.3
Number of iterations 𝑖
The value of 𝑒𝑖
0
1
0.100000
0.102000
2
..
.
0.104040
..
.
114
115
0.955916
0.975034
116
117
118
0.994535
1.014425
1.005863
119
120
1.014254
1.006031
121
122
123
1.014090
1.006192
1.013932
124
125
1.006347
1.013780
126
127
128
1.006496
1.013634
1.006638
129
..
.
1.013494
..
.
560
561
1.010100
1.010102
562
563
1.010100
1.010102
564
565
566
1.010100
1.010102
1.010101
567
568
1.010101
1.010101
569
570
1.010101
1.010101
0.2
0.1
0
0.0005
0.001
Time
0.0015
0.002
3.4. The Case When Δ𝑑 = 0.000005. Now we consider the
case when Δ𝑑 = 0.000005. In this case, we have
Figure 3: π›Ώπœ€2 /(1 βˆ’ 𝛿) = 0.0000010101010 β‹… β‹… β‹… > Δ𝑑 = 0.000001.
2
π›Ώπœ€2
= 0.0000020202020 β‹… β‹… β‹… < Δ𝑑 = 0.000005.
1βˆ’π›Ώ
(53)
which implies that (ii) of Theorem 7 holds. Thus, we observe
from Figure 4 and Table 2 that the solution to (DE)πœ€π›Ώ oscillates
and converges to the stationary solution 1/(1 βˆ’ 𝛿) = 1/(1 βˆ’
0.01) = 1.010101010 . . ..
Therefore, we observe Remark 8. Indeed, we observe from
Figure 6 that the solution to (𝐷𝐸)πœ€π›Ώ oscillates.
3.3. The Case When Δ𝑑 = 2π›Ώπœ€2 /(1 βˆ’ 𝛿). Now we consider the
case when Δ𝑑 = 2π›Ώπœ€2 /(1 βˆ’ 𝛿) = 0.0000020202020 . . .. In this
case, we observe Remark 8. Indeed, we observe from Figure 5
and Table 3 that the solution to (𝐷𝐸)πœ€π›Ώ oscillates.
3.5. The Case When Δ𝑑 = 15π›Ώπœ€2 /(1 βˆ’ 𝛿). Now we consider
the case when Δ𝑑 = 15π›Ώπœ€2 /(1 βˆ’ 𝛿). In this case, we observe
Remark 8. Indeed, we observe from Figure 7 that the solution
to (𝐷𝐸)πœ€π›Ώ oscillates between three zero points of 𝑓𝛿 (β‹…).
8
Advances in Numerical Analysis
1.1
1
1
0.9
0.9
0.8
0.8
0.7
0.7
Solution
Solution
1.1
0.6
0.5
0.5
0.4
0.4
0.3
0.3
0.2
0.2
0.1
0
0.0005
0.001
Time
0.0015
0
0.0005
0.001
Time
0.0015
0.002
Figure 6: 2π›Ώπœ€2 /(1 βˆ’ 𝛿) = 0.0000020202020 β‹… β‹… β‹… < Δ𝑑 = 0.000005.
Table 3: Numerical data: Δ𝑑 = 2π›Ώπœ€2 /(1 βˆ’ 𝛿) = 0.0000020202020 . . ..
1.1
1
Number of iterations 𝑖
0
1
2
3
4
5
..
.
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.1
0.002
Figure 4: π›Ώπœ€2 /(1 βˆ’ 𝛿) = 0.0000010101010 β‹… β‹… β‹… < Δ𝑑 = 0.000002 <
2π›Ώπœ€2 /(1 βˆ’ 𝛿).
Solution
0.6
0
0.0005
0.001
Time
0.0015
0.002
Figure 5: Δ𝑑 = 2π›Ώπœ€2 /(1 βˆ’ 𝛿) = 0.0000020202020 . . ..
3.6. Numerical Result of Corollary 10. In this subsection, we
consider Corollary 10 numerically. To this end, we use the
following initial data:
𝑒0 fl
(1 βˆ’ 𝛿)5 (1 βˆ’ 0.01)5
=
= 0.8958756 . . . .
(1 + 𝛿)6 (1 + 0.01)6
(54)
Then, we observe from Table 4 and Figure 8 that Corollary 10
holds. Namely, we observe that (47) holds with 𝑛 = 6.
3.7. Conclusion of ODE Problem (𝐷𝐸)πœ€π›Ώ . From Theorem 7 and
numerical experiments as above, we conclude that
(i) the mesh size of time Δ𝑑 must be smaller than π›Ώπœ€2 /(1βˆ’
𝛿) in order to get the stable numerical experiments of
(𝐷𝐸)πœ€π›Ώ ,
(ii) we have the stable numerical experiments of (𝐷𝐸)πœ€π›Ώ
with the initial data 𝑒0πœ€ fl (1 βˆ’ 𝛿)π‘›βˆ’1 /(1 + 𝛿)𝑛 , even if
the mesh size of time Δ𝑑 is equal to 2π›Ώπœ€2 /(1 βˆ’ 𝛿).
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
The value of 𝑒𝑖
0.100000
0.102020
0.104081
0.106184
0.108329
0.110517
..
.
0.902568
0.920801
0.939403
0.958381
0.977742
0.997495
1.017646
1.002556
1.017646
1.002556
1.017646
1.002556
1.017646
1.002556
1.017646
1.002556
1.017646
1.002556
1.017646
1.002556
1.017646
4. Solvability and Convergence Results for (𝑃)πœ€π›Ώ
We begin by giving the rigorous definition of solutions to our
PDE problem (𝑃)πœ€π›Ώ (πœ€ ∈ (0, 1] and 𝛿 ∈ (0, 1]).
Advances in Numerical Analysis
9
1
Table 4: Numerical data: Δ𝑑 = 2π›Ώπœ€2 /(1 βˆ’ 𝛿) = 0.0000020202020 . . ..
0.8
Solution
The value of 𝑒𝑖
0.895876
0.913974
0.932438
0.951275
0.970493
0.990099
1.010101
1.010101
1.010101
1.010101
1.010101
Number of iterations 𝑖
0
1
2
3
4
5
6
7
8
9
10
0.6
0.4
0.2
0
0
0.0005
0.001
Time
0.0015
0.002
Figure 8: Δ𝑑 = 2π›Ώπœ€2 /(1 βˆ’ 𝛿) = 0.0000020202020 . . ..
1.5
1
Proof. By the same argument as in Proposition 2, we can show
the existence-uniqueness of a solution π‘’π›Ώπœ€ to (𝑃)πœ€π›Ώ on [0, 𝑇]
for each πœ€ ∈ (0, 1] and 𝛿 ∈ (0, 1]. Indeed, we can prove the
uniqueness of solutions to (𝑃)πœ€π›Ώ on [0, 𝑇] by the quite standard
arguments: monotonicity and Gronwall’s inequality.
Also, we can show the existence of solutions to (𝑃)πœ€π›Ώ on
[0, 𝑇] applying the abstract theory of evolution equations
governed by subdifferentials. Indeed, we define a functional
πœ‘π›Ώπœ€ on 𝐻 by
Solution
0.5
0
βˆ’0.5
βˆ’1
βˆ’1.5
0
0.0005
0.001
Time
0.0015
0.002
πœ‘π›Ώπœ€ (𝑧)
Figure 7: Δ𝑑 = 15π›Ώπœ€2 /(1 βˆ’ 𝛿).
Definition 11. Let πœ€ ∈ (0, 1], 𝛿 ∈ (0, 1], and 𝑒0πœ€ ∈ 𝐻. Then, a
function π‘’π›Ώπœ€ : [0, 𝑇] β†’ 𝐻 is called a solution to (𝑃)πœ€π›Ώ on [0, 𝑇],
if the following conditions are satisfied:
(i) π‘’π›Ώπœ€ ∈ π‘Š1,2 (0, 𝑇; 𝐻) ∩ 𝐿∞ (0, 𝑇; 𝑉).
(ii) The following variational identity holds:
((π‘’π›Ώπœ€ )𝑑 (𝑑) , 𝑧)𝐻 + ((π‘’π›Ώπœ€ )π‘₯ (𝑑) , 𝑧π‘₯ )𝐻
+(
(πœ•πΌ[βˆ’1,1] )𝛿 (π‘’π›Ώπœ€ (𝑑))
πœ€2
π‘’πœ€ (𝑑)
, 𝑧) = ( 𝛿 2 , 𝑧)
πœ€
𝐻
𝐻
(55)
1
1
{ 1 ∫ 󡄨󡄨󡄨𝑧 󡄨󡄨󡄨2 𝑑π‘₯ + 1 ∫ (𝐼[βˆ’1,1] ) (𝑧 (π‘₯)) 𝑑π‘₯,
𝛿
fl { 2 0 󡄨 π‘₯ 󡄨
πœ€2 0
∞,
{
if 𝑧 ∈ 𝑉,
(56)
otherwise,
where (𝐼[βˆ’1,1] )𝛿 (β‹…) is the function defined in (14). Clearly, πœ‘π›Ώπœ€
is proper, l.s.c., and convex on 𝐻 with the effective domain
𝐷(πœ‘) = 𝑉.
Note that the problem (𝑃)πœ€π›Ώ can be rewritten as in an
abstract framework of the form
𝑑 πœ€
1 πœ€
πœ€
πœ€
{
{ 𝑒𝛿 (𝑑) + πœ•πœ‘π›Ώ (𝑒𝛿 (𝑑)) βˆ’ 2 𝑒𝛿 (𝑑) = 0
πœ€
(𝑃𝑃)πœ€π›Ώ { 𝑑𝑑
{ πœ€
πœ€
{𝑒 (0) = 𝑒0
in 𝐻, for 𝑑 > 0,
(57)
in 𝐻.
βˆ€π‘§ ∈ 𝑉, a.e. 𝑑 ∈ (0, 𝑇) .
(iii) π‘’π›Ώπœ€ (0) = 𝑒0πœ€ in 𝐻.
Now, we mention the solvability result of (𝑃)πœ€π›Ώ on [0, 𝑇].
Proposition 12. Let πœ€ ∈ (0, 1] and 𝛿 ∈ (0, 1]. Assume the
following condition:
𝑒0πœ€ ∈ 𝐾 fl {𝑧 ∈ 𝑉; βˆ’1 ≀ 𝑧 (π‘₯) ≀ 1 π‘Ž.𝑒. π‘₯ ∈ (0, 1)} .
Then, for each 𝑒0πœ€
𝐾, there exists a unique solution π‘’π›Ώπœ€
∈
on [0, 𝑇] in the sense of Definition 11.
(A)
to (𝑃)πœ€π›Ώ
Therefore, applying the Lipschitz perturbation theory of
abstract evolution equations (cf. [23–25]), we can show the
existence of a solution π‘’π›Ώπœ€ to (𝑃𝑃)πœ€π›Ώ , hence, (𝑃)πœ€π›Ώ , on [0, 𝑇] for
each πœ€ ∈ (0, 1] and 𝛿 ∈ (0, 1] in the sense of Definition 11.
Thus, the proof of Proposition 12 has been completed.
Next, we recall the convergence result of (𝑃)πœ€π›Ώ as 𝛿 β†’ 0.
Taking into account Lemma 4 (cf. (18)), we observe that the
following lemma holds.
10
Advances in Numerical Analysis
Lemma 13 (cf. [27, Section 5], [22, Chapter 2], [28, Section
2]). Let πœ€ ∈ (0, 1], and define a functional πœ‘πœ€ on 𝐻 by
πœ€
πœ‘ (𝑧)
1
1
{ 1 ∫ 󡄨󡄨󡄨󡄨𝑧π‘₯ 󡄨󡄨󡄨󡄨2 𝑑π‘₯ + 1 ∫ 𝐼[βˆ’1,1] (𝑧 (π‘₯)) 𝑑π‘₯, 𝑖𝑓 𝑧 ∈ 𝑉, (58)
2
fl { 2 0
πœ€ 0
π‘œπ‘‘β„Žπ‘’π‘Ÿπ‘€π‘–π‘ π‘’.
{∞,
Then,
πœ‘π›Ώπœ€ (β‹…) 󳨀→ πœ‘πœ€ (β‹…)
π‘œπ‘› 𝐻 𝑖𝑛 π‘‘β„Žπ‘’ 𝑠𝑒𝑛𝑠𝑒 π‘œπ‘“ π‘€π‘œπ‘ π‘π‘œ [26] π‘Žπ‘  𝛿 󳨀→ 0.
(59)
By Lemma 13 and the general convergence theory of
evolution equations, we get the following result.
Proposition 14 (cf. [27, Section 5], [28, Section 2]). Let πœ€ ∈
(0, 1], 𝛿 ∈ (0, 1], and 𝑒0πœ€ ∈ 𝐾. Also, let π‘’π›Ώπœ€ be the unique solution
to (𝑃)πœ€π›Ώ on [0, 𝑇]. Then, π‘’π›Ώπœ€ converges to the unique function π‘’πœ€
to (𝑃)πœ€ on [0, 𝑇] in the sense that
π‘’π›Ώπœ€ 󳨀→ π‘’πœ€
π‘ π‘‘π‘Ÿπ‘œπ‘›π‘”π‘™π‘¦ 𝑖𝑛 𝐢 ([0, 𝑇] ; 𝐻) π‘Žπ‘  𝛿 󳨀→ 0.
(60)
Proof. Note that the problem (𝑃)πœ€ can be rewritten as in an
abstract framework of the form
𝑑
1
{ π‘’πœ€ (𝑑) + πœ•πœ‘πœ€ (π‘’πœ€ (𝑑)) βˆ’ 2 π‘’πœ€ (𝑑) βˆ‹ 0 in 𝐻, for 𝑑 > 0,
πœ€
(𝑃𝑃)πœ€ { 𝑑𝑑
πœ€
πœ€
in 𝐻.
{𝑒 (0) = 𝑒0
Therefore, by Lemma 13 and the abstract convergence theory
of evolution equations (cf. [27, 28]), we observe that the
solution π‘’π›Ώπœ€ to (𝑃𝑃)πœ€π›Ώ converges to the unique solution π‘’πœ€ to
(𝑃𝑃)πœ€ on [0, 𝑇] as 𝛿 β†’ 0 in the sense of (60). Note that π‘’πœ€
(resp., π‘’π›Ώπœ€ ) is the unique solution to (𝑃)πœ€ (resp., (𝑃)πœ€π›Ώ ) on [0, 𝑇]
(cf. Proposition 12). Thus, we conclude that Proposition 14
holds.
5. Stable Criteria and Numerical
Experiments for (𝑃)πœ€π›Ώ
In this section we consider (𝑃)πœ€π›Ώ from the viewpoint of
numerical analysis.
Remark 15. Note from Proposition 14 that (𝑃)πœ€π›Ώ is the approximating problem of (𝑃)πœ€ . Also note from (5) that the constraint
πœ•πΌ[βˆ’1,1] (β‹…) is the multivalued function. Therefore, it is very
difficult to study (𝑃)πœ€ numerically.
In order to perform the numerical experiments of (𝑃)πœ€π›Ώ ,
we consider the following explicit finite difference scheme to
(𝑃)πœ€π›Ώ , denoted by (𝐷𝑃)πœ€π›Ώ :
𝑛
𝑛
(πœ•πΌ[βˆ’1,1] )𝛿 (π‘’π‘˜π‘› ) π‘’π‘˜π‘›
βˆ’ 2π‘’π‘˜π‘› + π‘’π‘˜+1
π‘’π‘˜π‘›+1 βˆ’ π‘’π‘˜π‘› π‘’π‘˜βˆ’1
{
{
+
= 2
βˆ’
{
{
πœ€2
πœ€
(Ξ”π‘₯)2
{ Δ𝑑
πœ€ { 𝑛
𝑛
𝑛
𝑛
(𝐷𝑃)𝛿 {𝑒 = 𝑒 , 𝑒 = 𝑒
0
1
𝑁π‘₯
𝑁π‘₯ βˆ’1
{
{
{
{
{ 0
πœ€
{π‘’π‘˜ = 𝑒0 (π‘₯π‘˜ )
where Δ𝑑 is the mesh size of time, Ξ”π‘₯ is the mesh size of space,
𝑁𝑑 is the integer part of number 𝑇/Δ𝑑, 𝑁π‘₯ is the integer part
of number 1/Ξ”π‘₯, and π‘₯π‘˜ fl π‘˜Ξ”π‘₯.
We observe that π‘’π‘˜π‘› is the approximating solution of (𝑃)πœ€π›Ώ
at the time 𝑑𝑛 fl 𝑛Δ𝑑 and the position π‘₯π‘˜ fl π‘˜Ξ”π‘₯. Also,
we observe that the explicit finite difference scheme (𝐷𝑃)πœ€π›Ώ
converges to (𝑃)πœ€π›Ώ as Δ𝑑 β†’ 0 and Ξ”π‘₯ β†’ 0.
From Figure 1, we observe that we have to choose the
suitable constants πœ€ and 𝛿 and the mesh size of time Δ𝑑 and
the mesh size of space Ξ”π‘₯ in order to get the stable numerical
results of (𝐷𝑃)πœ€π›Ώ . Now, let us mention our second main result
concerning the stability of (𝐷𝐸)πœ€π›Ώ .
Theorem 16. Let πœ€ ∈ (0, 1], 𝛿 ∈ (0, 1), Δ𝑑 ∈ (0, 1], Ξ”π‘₯ ∈ (0, 1],
𝑇 > 0, and 𝑒0πœ€ ∈ 𝐾, where 𝐾 is the set of initial values defined
in Proposition 12 (cf. (A)). Let 𝑁π‘₯ be the integer part of number
1/Ξ”π‘₯, and let {π‘’π‘˜π‘› ; 𝑛 β‰₯ 0, π‘˜ = 0, 1, . . . , 𝑁π‘₯ } be the solution to
(𝐷𝑃)πœ€π›Ώ . Also, let 𝑐0 ∈ (0, 1) and assume that
0 < Δ𝑑 ≀
𝑐0 π›Ώπœ€2
,
1βˆ’π›Ώ
(61)
for 𝑛 = 0, 1, 2, . . . , 𝑁𝑑 , π‘˜ = 1, 2, . . . , 𝑁π‘₯ βˆ’ 1,
(62)
for 𝑛 = 1, 2, . . . , 𝑁𝑑 ,
for π‘˜ = 0, 1, 2, . . . , 𝑁π‘₯ ,
0≀
1 βˆ’ 𝑐0
Δ𝑑
≀
.
2
(Ξ”π‘₯)2
(63)
Then, one has the following:
(i) The solution to (𝐷𝑃)πœ€π›Ώ is bounded in the following sense:
1
󡄨 󡄨
max σ΅„¨σ΅„¨σ΅„¨π‘’π‘˜π‘› 󡄨󡄨󡄨 ≀
0β‰€π‘˜β‰€π‘π‘₯
1βˆ’π›Ώ
βˆ€π‘› β‰₯ 0.
(64)
(ii) {π‘’π‘˜π‘› ; π‘˜ = 0, 1, . . . , 𝑁π‘₯ } does not oscillate with respect to
𝑛 β‰₯ 0.
Proof. We first show (i), that is, (64), by the mathematical
induction.
Clearly (64) holds for 𝑛 = 0 because of 𝑒0πœ€ ∈ 𝐾.
Now, we assume that
1
󡄨 󡄨
max σ΅„¨σ΅„¨σ΅„¨σ΅„¨π‘’π‘˜π‘– 󡄨󡄨󡄨󡄨 ≀
1βˆ’π›Ώ
0β‰€π‘˜β‰€π‘π‘₯
βˆ€π‘– = 0, 1, . . . , 𝑛.
(65)
Advances in Numerical Analysis
11
We observe that the explicit finite difference problem (𝐷𝑃)πœ€π›Ώ
can be reformulated as in the following form:
𝑛
𝑛
π‘’π‘˜π‘›+1 = π‘Ÿπ‘’π‘˜βˆ’1
+ π‘Ÿπ‘’π‘˜+1
+ (1 βˆ’ 2π‘Ÿ) π‘’π‘˜π‘› βˆ’
Δ𝑑
𝑓 (𝑒𝑛 )
πœ€2 𝛿 π‘˜
(66)
βˆ€π‘› = 0, 1, 2, . . . , 𝑁𝑑 , π‘˜ = 1, 2, . . . , 𝑁π‘₯ βˆ’ 1,
where we put π‘Ÿ fl Δ𝑑/(Ξ”π‘₯)2 and 𝑓𝛿 (β‹…) is the function defined
by (23).
We observe from (63), (65), and (66) that
1
1
1
𝑛
𝑛
) + π‘Ÿ(
)
βˆ’ π‘’π‘˜π‘›+1 = π‘Ÿ (
βˆ’ π‘’π‘˜βˆ’1
βˆ’ π‘’π‘˜+1
1βˆ’π›Ώ
1βˆ’π›Ώ
1βˆ’π›Ώ
1
Δ𝑑
βˆ’ π‘’π‘˜π‘› ) + 2 𝑓𝛿 (π‘’π‘˜π‘› )
1βˆ’π›Ώ
πœ€
(67)
Δ𝑑
1
𝑛
𝑛
β‰₯ (1 βˆ’ 2π‘Ÿ) (
βˆ’ π‘’π‘˜ ) + 2 𝑓𝛿 (π‘’π‘˜ )
1βˆ’π›Ώ
πœ€
βˆ€π‘˜ = 1, 2, . . . , 𝑁π‘₯ βˆ’ 1.
From (23), (63), and (65) we infer that the function
[βˆ’1/(1βˆ’π›Ώ), 1/(1βˆ’π›Ώ)] βˆ‹ 𝑧 β†’ (1βˆ’2π‘Ÿ)(1/(1βˆ’π›Ώ)βˆ’π‘§)+Δ𝑑/πœ€2 𝑓𝛿 (𝑧)
is nonnegative and continuous. Indeed, it follows from (23)
that the function [βˆ’1/(1 βˆ’ 𝛿), 1] βˆ‹ 𝑧 β†’ (1 βˆ’ 2π‘Ÿ)(1/(1 βˆ’ 𝛿) βˆ’
𝑧) + Δ𝑑/πœ€2 𝑓𝛿 (𝑧) attains a minimum value at 𝑧 = 1. Therefore,
we observe from (23) and (63) that
1
Δ𝑑
βˆ’ 𝑧) + 2 𝑓𝛿 (𝑧)
1βˆ’π›Ώ
πœ€
β‰₯ (1 βˆ’ 2π‘Ÿ) (
1
Δ𝑑
βˆ’ 1) + 2 𝑓𝛿 (1)
1βˆ’π›Ώ
πœ€
𝑐𝛿
𝛿
Δ𝑑
Δ𝑑
= (1 βˆ’ 2π‘Ÿ) β‹…
β‰₯ 0 βˆ’ 2 β‰₯0
βˆ’
1 βˆ’ 𝛿 πœ€2
1βˆ’π›Ώ πœ€
βˆ€π‘§ ∈ [βˆ’
(68)
1
, 1] .
1βˆ’π›Ώ
=[
(69)
1
Δ𝑑
1βˆ’π›Ώ
Δ𝑑 βˆ’ (1 βˆ’ 2π‘Ÿ)] 𝑧 + (1 βˆ’ 2π‘Ÿ)
βˆ’ 2.
2
π›Ώπœ€
1 βˆ’ 𝛿 π›Ώπœ€
1
(73)
βˆ’ π‘’π‘˜π‘›+1 β‰₯ 0 βˆ€π‘˜ = 1, 2, . . . , 𝑁π‘₯ βˆ’ 1.
1βˆ’π›Ώ
Similarly, we observe from (63), (65), and (66) that
1
1
1
𝑛
𝑛
+
+
= π‘Ÿ (π‘’π‘˜βˆ’1
) + π‘Ÿ (π‘’π‘˜+1
)
1βˆ’π›Ώ
1βˆ’π›Ώ
1βˆ’π›Ώ
1
Δ𝑑
) βˆ’ 2 𝑓𝛿 (π‘’π‘˜π‘› )
1βˆ’π›Ώ
πœ€
(74)
1
Δ𝑑
𝑛
𝑛
β‰₯ (1 βˆ’ 2π‘Ÿ) (π‘’π‘˜ +
) βˆ’ 2 𝑓𝛿 (π‘’π‘˜ )
1βˆ’π›Ώ
πœ€
+ (1 βˆ’ 2π‘Ÿ) (π‘’π‘˜π‘› +
βˆ€π‘˜ = 1, 2, . . . , 𝑁π‘₯ βˆ’ 1.
By similar arguments as above, we observe that the function
[βˆ’1/(1βˆ’π›Ώ), 1/(1βˆ’π›Ώ)] βˆ‹ 𝑧 β†’ (1βˆ’2π‘Ÿ)(𝑧+1/(1βˆ’π›Ώ))βˆ’Ξ”π‘‘/πœ€2 𝑓𝛿 (𝑧)
is nonnegative and continuous. In fact, it follows from (23)
that the function [βˆ’1, 1/(1βˆ’π›Ώ)] βˆ‹ 𝑧 β†’ (1βˆ’2π‘Ÿ)(𝑧+1/(1βˆ’π›Ώ))βˆ’
Δ𝑑/πœ€2 𝑓𝛿 (𝑧) attains a minimum value at 𝑧 = βˆ’1. Therefore, we
observe from (23) and (63) that
1
Δ𝑑
) βˆ’ 2 𝑓𝛿 (𝑧)
(1 βˆ’ 2π‘Ÿ) (𝑧 +
1βˆ’π›Ώ
πœ€
β‰₯ (1 βˆ’ 2π‘Ÿ) (βˆ’1 +
1
Δ𝑑
) βˆ’ 2 𝑓𝛿 (βˆ’1)
1βˆ’π›Ώ
πœ€
(75)
1
].
1βˆ’π›Ώ
Also, for any 𝑧 ∈ [βˆ’1/(1 βˆ’ 𝛿), βˆ’1], we observe from (23) that
Δ𝑑
1
) βˆ’ 2 𝑓𝛿 (𝑧)
1βˆ’π›Ώ
πœ€
= (1 βˆ’ 2π‘Ÿ) (𝑧 +
= [(1 βˆ’ 2π‘Ÿ) βˆ’
1
Δ𝑑 1 + 𝑧
)βˆ’ 2 β‹…(
βˆ’ 𝑧)
1βˆ’π›Ώ
πœ€
𝛿
(76)
1
Δ𝑑
1βˆ’π›Ώ
Δ𝑑] 𝑧 + (1 βˆ’ 2π‘Ÿ)
.
βˆ’
π›Ώπœ€2
1 βˆ’ 𝛿 π›Ώπœ€2
Here we note from (63) that
Here we note from (63) that
1βˆ’π›Ώ
1βˆ’π›Ώ
Δ𝑑 βˆ’ (1 βˆ’ 2π‘Ÿ) ≀
Δ𝑑 βˆ’ 𝑐0 ≀ 0.
π›Ώπœ€2
π›Ώπœ€2
(70)
Therefore, we infer from (69) that the function [1, 1/(1βˆ’π›Ώ)] βˆ‹
𝑧 β†’ (1 βˆ’ 2π‘Ÿ)(1/(1 βˆ’ 𝛿) βˆ’ 𝑧) + Δ𝑑/πœ€2 𝑓𝛿 (𝑧) is nonincreasing and
attains a minimum value at 𝑧 = 1/(1 βˆ’ 𝛿). Hence, we have
(1 βˆ’ 2π‘Ÿ) (
which implies from (65) and (67) that
(1 βˆ’ 2π‘Ÿ) (𝑧 +
1
Δ𝑑 𝑧 βˆ’ 1
βˆ’ 𝑧) + 2 β‹… (
βˆ’ 𝑧)
1βˆ’π›Ώ
πœ€
𝛿
(72)
βˆ€π‘§ ∈ [βˆ’1,
Δ𝑑
1
βˆ’ 𝑧) + 2 𝑓𝛿 (𝑧)
1βˆ’π›Ώ
πœ€
= (1 βˆ’ 2π‘Ÿ) (
1
1
,
],
1βˆ’π›Ώ 1βˆ’π›Ώ
𝑐𝛿
𝛿
Δ𝑑
Δ𝑑
= (1 βˆ’ 2π‘Ÿ) β‹…
β‰₯ 0 βˆ’ 2 β‰₯0
βˆ’
1 βˆ’ 𝛿 πœ€2
1βˆ’π›Ώ πœ€
Also, for any 𝑧 ∈ [1, 1/(1 βˆ’ 𝛿)], we observe from (23) that
(1 βˆ’ 2π‘Ÿ) (
βˆ€π‘§ ∈ [βˆ’
π‘’π‘˜π‘›+1 +
+ (1 βˆ’ 2π‘Ÿ) (
(1 βˆ’ 2π‘Ÿ) (
Thus, we observe from (68) and (71) that
Δ𝑑
1
βˆ’ 𝑧) + 2 𝑓𝛿 (𝑧) β‰₯ 0,
(1 βˆ’ 2π‘Ÿ) (
1βˆ’π›Ώ
πœ€
1
Δ𝑑
1
Δ𝑑
βˆ’ 𝑧) + 2 𝑓𝛿 (𝑧) β‰₯ 2 𝑓𝛿 (
)=0
1βˆ’π›Ώ
πœ€
πœ€
1βˆ’π›Ώ
1
βˆ€π‘§ ∈ [1,
].
1βˆ’π›Ώ
(71)
1βˆ’π›Ώ
1βˆ’π›Ώ
(77)
Δ𝑑 β‰₯ 𝑐0 βˆ’
Δ𝑑 β‰₯ 0.
π›Ώπœ€2
π›Ώπœ€2
Therefore, we infer from (76) that the function [βˆ’1/(1 βˆ’
𝛿), βˆ’1] βˆ‹ 𝑧 β†’ (1 βˆ’ 2π‘Ÿ)(𝑧 + 1/(1 βˆ’ 𝛿)) βˆ’ Δ𝑑/πœ€2 𝑓𝛿 (𝑧) is
nondecreasing and attains a minimum value at 𝑧 = βˆ’1/(1βˆ’π›Ώ).
Hence, we have
1
Δ𝑑
Δ𝑑
1
) βˆ’ 2 𝑓𝛿 (𝑧) β‰₯ βˆ’ 2 𝑓𝛿 (βˆ’
)
(1 βˆ’ 2π‘Ÿ) (𝑧 +
1βˆ’π›Ώ
πœ€
πœ€
1βˆ’π›Ώ
(78)
1
= 0 βˆ€π‘§ ∈ [βˆ’
, βˆ’1] .
1βˆ’π›Ώ
(1 βˆ’ 2π‘Ÿ) βˆ’
12
Advances in Numerical Analysis
Thus, we observe from (75) and (78) that
where we put
1
Δ𝑑
) βˆ’ 2 𝑓𝛿 (𝑧) β‰₯ 0,
1βˆ’π›Ώ
πœ€
(1 βˆ’ 2π‘Ÿ) (𝑧 +
βˆ€π‘§ ∈ [βˆ’
1
1
,
],
1βˆ’π›Ώ 1βˆ’π›Ώ
𝑒1𝑛
(79)
fl (
(𝑛)
𝑒⃗
which implies from (65) and (74) that
π‘’π‘˜π‘›+1
1
+
β‰₯0
1βˆ’π›Ώ
βˆ€π‘˜ = 1, 2, . . . , 𝑁π‘₯ βˆ’ 1.
1
󡄨
󡄨
max σ΅„¨σ΅„¨σ΅„¨σ΅„¨π‘’π‘˜π‘›+1 󡄨󡄨󡄨󡄨 ≀
,
0β‰€π‘˜β‰€π‘π‘₯
1βˆ’π›Ώ
(80)
(81)
which implies that (65) holds for 𝑖 = 𝑛 + 1. Therefore, we
conclude from the mathematical induction that (64) holds.
Hence, the proof of (i) of Theorem 16 has been completed.
Next, we show (ii) by the standard arguments. Namely, we
reformulate (𝐷𝑃)πœ€π›Ώ as in the following form:
..
.
𝐴
(
(
=(
(
(
1 βˆ’ 2π‘Ÿ
π‘Ÿ
)
𝑒2𝑛
)
)
)(
..
)
)
.
1 βˆ’ 2π‘Ÿ π‘Ÿ
d
d
π‘Ÿ 1 βˆ’ 2π‘Ÿ
π‘Ÿ
(
Δ𝑑
𝑓 (𝑒𝑛 )
πœ€2 𝛿 1
Δ𝑑
βˆ’ 2 𝑓𝛿 (𝑒2𝑛 )
πœ€
..
.
𝑒0𝑛
π‘Ÿ
1 βˆ’ 2π‘Ÿ)
(
( . ) (
) (
+ π‘Ÿ(
( .. ) + (
(
0
𝑛
(𝑒𝑁π‘₯ )
(82)
d
π‘π‘˜π‘›
)
)
).
)
)
Δ𝑑
𝑛
𝑓𝛿 (𝑒𝑁
)
π‘₯ βˆ’1
)
( πœ€2
= 𝐴𝑒⃗
(
𝑛
π‘Ÿπ‘’π‘
βˆ’
π‘₯ βˆ’1
)
)
),
)
)
Δ𝑑
𝑓 (𝑒𝑛 )
πœ€2 𝛿 𝑁π‘₯ βˆ’1 )
1 βˆ’ 2π‘Ÿ)
1
𝛿
1
𝛿
if π‘’π‘˜π‘› ≀ βˆ’1,
if π‘’π‘˜π‘› ∈ [βˆ’1, 1] ,
(85)
if π‘’π‘˜π‘› β‰₯ 1.
if π‘’π‘˜π‘› βˆ‰ [βˆ’1, 1] ,
if π‘’π‘˜π‘› ≀ βˆ’1,
if π‘’π‘˜π‘› ∈ [βˆ’1, 1] ,
if π‘’π‘˜π‘› β‰₯ 1,
we observe from (85) and (86) that
Δ𝑑
𝑓 (𝑒𝑛 )
πœ€2 𝛿 1
Δ𝑑
βˆ’ 2 𝑓𝛿 (𝑒2𝑛 )
πœ€
..
.
π‘Ÿπ‘’1𝑛 βˆ’
(83)
π‘Ÿ
if π‘’π‘˜π‘› ∈ [βˆ’1, 1] ,
{
{βˆ’1
fl { 1 βˆ’ 𝛿
{
{ 𝛿
1
{
{
{
𝛿
{
{
𝑛
π‘Μƒπ‘˜ fl {0
{
{
{
{ 1
βˆ’
{ 𝛿
βˆ’
(
(
+(
(
(
d
π‘Ÿ
𝑛
(𝑒𝑁π‘₯ βˆ’1 )
Δ𝑑
𝑓 (𝑒𝑛 )
πœ€2 𝛿 1
Δ𝑑
βˆ’ 2 𝑓𝛿 (𝑒2𝑛 )
πœ€
..
.
)
)
).
)
)
1 βˆ’ 2π‘Ÿ π‘Ÿ
Defining
π‘Ÿπ‘’1𝑛 βˆ’
(𝑛)
π‘Ÿ
1βˆ’π›Ώ 𝑛
𝑒 +
{
{
{
𝛿 π‘˜
{
{
𝑛
𝑓𝛿 (π‘’π‘˜π‘› ) = {βˆ’π‘’π‘˜
{
{
{
{1 βˆ’ 𝛿 𝑛
{ 𝛿 π‘’π‘˜ βˆ’
Here by taking into account Neumann boundary condition
𝑛
𝑛
and initial condition, namely, by 𝑒0𝑛 = 𝑒1𝑛 and 𝑒𝑁
= 𝑒𝑁
π‘₯
π‘₯ βˆ’1
for all 𝑛 β‰₯ 0, we observe that (82) is reformulated as in the
following form:
𝑒⃗
π‘Ÿ
βˆ’
0
(𝑛+1)
1 βˆ’ 2π‘Ÿ
Note from (23) that
𝑒1𝑛
π‘Ÿ
π‘Ÿ
(84)
(
𝑛+1
π‘Ÿ
π‘Ÿ
π‘Ÿ 1 βˆ’ 2π‘Ÿ
(𝑒𝑁π‘₯ βˆ’1 )
π‘Ÿ
1 βˆ’ 2π‘Ÿ
(
(
=(
(
(
)
1 βˆ’ 2π‘Ÿ
),
(𝑒𝑁π‘₯ βˆ’1 )
𝑒1𝑛+1
𝑒2𝑛+1
..
.
𝑛
Taking into account Neumann boundary condition,
𝑛+1
𝑛+1
namely, by 𝑒0𝑛+1 = 𝑒1𝑛+1 and 𝑒𝑁
= 𝑒𝑁
, we observe from
π‘₯
π‘₯ βˆ’1
(73) and (80) that
(
𝑒2𝑛
(
(
(
(
(
(
𝑛
π‘Ÿπ‘’π‘
βˆ’
π‘₯ βˆ’1
)
)
)
)
)
Δ𝑑
𝑓 (𝑒𝑛 )
πœ€2 𝛿 𝑁π‘₯ βˆ’1 )
(86)
Advances in Numerical Analysis
π‘Ÿβˆ’
Δ𝑑 𝑛
𝑏
πœ€2 1
βˆ’
(
=(
13
𝑒1𝑛
Δ𝑑 𝑛
𝑏
πœ€2 2
)(
)
d
𝑒2𝑛
..
.
Then, by the abstract perturbation theory of matrix, we
observe that
)
Μƒ ≀ πœ† + πœ†π΅ ,
πœ† 𝑁π‘₯ βˆ’1 + πœ†π΅π‘— ≀ πœ†
𝑗
1
𝑗
𝑛
Δ𝑑 𝑛
π‘Ÿ βˆ’ 2 𝑏𝑁
(𝑒𝑁π‘₯ βˆ’1 )
π‘₯ βˆ’1 )
πœ€
(
Δ𝑑 ̃𝑛
𝑏
πœ€2 1
Δ𝑑 𝑛
βˆ’ 2 ̃𝑏2
πœ€
..
.
πœ† 𝑁π‘₯ βˆ’1 + πœ†π΅π‘— β‰₯ 1 βˆ’ 4π‘Ÿ sin2 (
)
)
).
)
)
β‰₯ 1 βˆ’ 4π‘Ÿ βˆ’
Δ𝑑 𝑛
βˆ’ ̃𝑏
( πœ€2 𝑁π‘₯ βˆ’1 )
β‰₯1βˆ’4β‹…
(87)
𝑒⃗
= 𝐴𝑒⃗
(𝑛)
+ 𝐡𝑒⃗
(𝑛)
βˆ’
(
𝐡 fl (
Δ𝑑 𝑛
𝑏
πœ€2 2
1 βˆ’ 𝑐0
βˆ’ 𝑐0 = βˆ’1 + 𝑐0 > βˆ’1
2
Thus, we conclude from (93) and the above inequality that
Μƒ(𝑛)
+ 𝑏⃗ ,
(𝑛 β‰₯ 0) ,
(88)
Μƒ > βˆ’1 βˆ€π‘— = 1, 2, . . . , 𝑁 βˆ’ 1.
πœ†
𝑗
π‘₯
)
),
d
π‘Ÿβˆ’
Μƒβƒ—(𝑛)
𝑏
1 βˆ’ 2π‘Ÿ βˆ’
Δ𝑑 𝑛
𝑏
πœ€2 𝑁π‘₯ βˆ’1 )
󡄨
󡄨󡄨
󡄨󡄨1 βˆ’ π‘Ÿ βˆ’ Δ𝑑 𝑏𝑛 󡄨󡄨󡄨 + |π‘Ÿ| = 1 βˆ’ π‘Ÿ βˆ’ Δ𝑑 𝑏𝑛 + π‘Ÿ = 1 + Δ𝑑 > 1
󡄨󡄨
π‘˜ 󡄨󡄨
2
πœ€ 󡄨
πœ€2 π‘˜
πœ€2
󡄨
By the general theory, we observe that the eigenvalue πœ† 𝑗 of
matrix 𝐴 is given by
for 𝑗 = 1, 2, . . . , 𝑁π‘₯ βˆ’ 1, (90)
which implies that πœ† 1 (resp., πœ† 𝑁π‘₯ βˆ’1 ) is the maximum (resp.,
minimum) eigenvalue of 𝐴.
Μƒ ; 𝑗 = 1, 2, . . . , 𝑁 βˆ’ 1} be the set of all
Now let {πœ†
𝑗
π‘₯
Μƒ fl 𝐴 + 𝐡 such that
eigenvalues of matrix 𝐴
Μƒ β‰₯πœ†
Μƒ β‰₯ β‹…β‹…β‹… β‰₯ πœ†
Μƒ
πœ†
1
2
𝑁π‘₯ βˆ’1 .
(91)
Also, let {πœ†π΅π‘— ; 𝑗 = 1, 2, . . . , 𝑁π‘₯ βˆ’ 1} be the set of all eigenvalues
of 𝐡 such that
πœ†π΅1
β‰₯
πœ†π΅2
(96)
Therefore, all components of 𝐴 + 𝐡 are positive. Hence, the
sum of all components in the π‘˜th row of 𝐴+𝐡 is the following:
Δ𝑑 ̃𝑛
𝑏
( πœ€2 𝑁π‘₯ βˆ’1 )
π‘—πœ‹
)
2𝑁π‘₯
1 βˆ’ 𝑐0 Δ𝑑
+ 2 >0
2
πœ€
βˆ€π‘˜ = 1, 2, . . . , 𝑁π‘₯ βˆ’ 1.
)
)
).
)
)
βˆ’
πœ† 𝑗 fl 1 βˆ’ 4π‘Ÿ sin2 (
Δ𝑑
Δ𝑑
Δ𝑑 𝑛
π‘π‘˜ = 1 βˆ’ 2
+ 2
2
2
πœ€
πœ€
(Ξ”π‘₯)
β‰₯1βˆ’2β‹…
(89)
βˆ’
(
(
fl (
(
(
(95)
Note that (95) holds in any case: π‘’π‘˜π‘› ∈ [βˆ’1, 1] and π‘’π‘˜π‘› βˆ‰ [βˆ’1, 1].
Next, we now assume max1β‰€π‘˜β‰€π‘π‘₯ βˆ’1 |π‘’π‘˜π‘› | ≀ 1. Then, we
observe from (63) and (86) that
(
Δ𝑑 ̃𝑛
𝑏
πœ€2 1
Δ𝑑 𝑛
βˆ’ 2 ̃𝑏2
πœ€
..
.
(94)
βˆ€π‘— = 1, 2, . . . , 𝑁π‘₯ βˆ’ 1.
where we define
Δ𝑑
π‘Ÿ βˆ’ 2 𝑏1𝑛
πœ€
(𝑁π‘₯ βˆ’ 1) πœ‹
Δ𝑑 1 βˆ’ 𝛿
)βˆ’ 2 β‹…
2𝑁π‘₯
πœ€
𝛿
Δ𝑑 (1 βˆ’ 𝛿)
π›Ώπœ€2
Using the matrix as above, (82) can be rewritten as in the
following form:
(𝑛+1)
(93)
Since 𝐡 is the symmetric matrix, it follows from (63), (86),
and (90) that
βˆ’
(
(
+(
(
(
βˆ€π‘— = 1, 2, . . . , 𝑁π‘₯ βˆ’ 1.
β‰₯ β‹…β‹…β‹… β‰₯
πœ†π΅π‘π‘₯ βˆ’1 .
(92)
for π‘˜ = 1 or 𝑁π‘₯ βˆ’ 1,
󡄨󡄨
Δ𝑑 󡄨󡄨
Δ𝑑
|π‘Ÿ| + 󡄨󡄨󡄨󡄨1 βˆ’ 2π‘Ÿ βˆ’ 2 π‘π‘˜π‘› 󡄨󡄨󡄨󡄨 + |π‘Ÿ| = π‘Ÿ + 1 βˆ’ 2π‘Ÿ βˆ’ 2 π‘π‘˜π‘› + π‘Ÿ
πœ€ 󡄨
πœ€
󡄨
=1+
Δ𝑑
>1
πœ€2
(97)
βˆ€π‘˜ = 2, 3, . . . , 𝑁π‘₯ βˆ’ 2.
Therefore, we observe from (97) that max1β‰€π‘˜β‰€π‘π‘₯ βˆ’1 |π‘’π‘˜π‘› |
is increasing with respect to 𝑛 in the case when
max1β‰€π‘˜β‰€π‘π‘₯ βˆ’1 |π‘’π‘˜π‘› | ≀ 1.
However, if π‘’π‘˜π‘› βˆ‰ [βˆ’1, 1] for some π‘˜ = 1, 2, . . . , 𝑁π‘₯ βˆ’ 1, it
follows from (63) and (86) that
1 βˆ’ 2π‘Ÿ βˆ’
Δ𝑑
Δ𝑑 1 βˆ’ 𝛿
Δ𝑑 𝑛
π‘π‘˜ = 1 βˆ’ 2
βˆ’ 2 β‹…
2
2
πœ€
πœ€
𝛿
(Ξ”π‘₯)
1 βˆ’ 𝑐0
β‰₯1βˆ’2β‹…
βˆ’ 𝑐0 = 0.
2
(98)
14
Advances in Numerical Analysis
u(t, x)
Therefore, the sum of all components in the π‘˜th row of 𝐴 + 𝐡
is the following:
󡄨
󡄨󡄨
󡄨󡄨1 βˆ’ π‘Ÿ βˆ’ Δ𝑑 𝑏𝑛 󡄨󡄨󡄨 + |π‘Ÿ| = 1 βˆ’ π‘Ÿ βˆ’ Δ𝑑 𝑏𝑛 + π‘Ÿ
󡄨󡄨
π‘˜ 󡄨󡄨
2
πœ€ 󡄨
πœ€2 π‘˜
󡄨
=1βˆ’
Δ𝑑 1 βˆ’ 𝛿
β‹…
<1
πœ€2
𝛿
if π‘’π‘˜π‘› βˆ‰ [βˆ’1, 1] for some π‘˜ = 1 or 𝑁π‘₯ βˆ’ 1,
󡄨󡄨
Δ𝑑 󡄨󡄨
Δ𝑑
|π‘Ÿ| + 󡄨󡄨󡄨󡄨1 βˆ’ 2π‘Ÿ βˆ’ 2 π‘π‘˜π‘› 󡄨󡄨󡄨󡄨 + |π‘Ÿ| = π‘Ÿ + 1 βˆ’ 2π‘Ÿ βˆ’ 2 π‘π‘˜π‘› + π‘Ÿ
πœ€ 󡄨
πœ€
󡄨
(99)
Δ𝑑 1 βˆ’ 𝛿
=1βˆ’ 2 β‹…
<1
πœ€
𝛿
if
π‘’π‘˜π‘›
0
0.002
0.004
Ti
0.006
m
e
0.008
0.01 0
0.2
0.4
0.6
1
0.8
Ξ©
Figure 9: πœ€ = 0.05, Δ𝑑 = 0.000005, Ξ”π‘₯ = 0.005, and 𝛿 = 0.01.
βˆ‰ [βˆ’1, 1] for some π‘˜ = 2, 3, . . . , 𝑁π‘₯ βˆ’ 2.
Although max1β‰€π‘˜β‰€π‘π‘₯ βˆ’1 |π‘’π‘˜π‘› | is increasing with respect to 𝑛
in the case when max1β‰€π‘˜β‰€π‘π‘₯ βˆ’1 |π‘’π‘˜π‘› | ≀ 1 (cf. (97)), we conclude
from (95) and (99) that (ii) of Theorem 16 holds. Thus, the
proof of Theorem 16 has been completed.
Remark 17. By (63) we get the suitable mesh size of space Ξ”π‘₯.
In fact, for each πœ€ ∈ (0, 1], 𝛿 ∈ (0, 1) we take the constant
̃𝑐0 ∈ (0, 1), Δ𝑑 ∈ (0, 1], Ξ”π‘₯ ∈ (0, 1] such that
Δ𝑑 ≀
̃𝑐0 π›Ώπœ€2
,
1βˆ’π›Ώ
1 βˆ’ ̃𝑐0
Δ𝑑
=
.
2
2
(Ξ”π‘₯)
(100)
Δ𝑑 =
̃𝑐 π›Ώπœ€2
1 βˆ’ ̃𝑐0
β‹… (Ξ”π‘₯)2 ≀ 0 .
2
1βˆ’π›Ώ
2̃𝑐0 𝛿
.
(1 βˆ’ ̃𝑐0 ) (1 βˆ’ 𝛿)
βˆ’
=0
πœ€
𝑒 (0, π‘₯) =
𝑒0πœ€
𝑑 ∈ (0, 𝑇) ,
(102)
(103)
(π‘₯) , π‘₯ ∈ (0, 1) .
Taking into account Theorem 16, we provide the numerical experiments of (𝐷𝑃)πœ€π›Ώ as follows. To this end, we use the
following numerical data.
Numerical Data of
if π‘₯ ∈ [0.25, 0.75] ,
(104)
if π‘₯ ∈ [0.75, 1.00] .
5.1. The Case When πœ€ = 0.05 and Δ𝑑 = 0.000005. Now, we
consider the case when πœ€ = 0.05 and Δ𝑑 = 0.000005. In this
case, we observe that
1 βˆ’ 𝑐0
0.000005
Δ𝑑
=
= 0.2 =
,
2
2
2
(Ξ”π‘₯)
(0.005)
(105)
= 0.00001515151515 . . . .
𝑐0 π›Ώπœ€2
= 0.00001515151515 β‹… β‹… β‹… > Δ𝑑,
1βˆ’π›Ώ
in 𝑄 fl (0, 𝑇) × (0, 1) ,
𝑒π‘₯πœ€ (𝑑, 0) = 𝑒π‘₯πœ€ (𝑑, 1) = 0,
if π‘₯ ∈ [0.00, 0.25] ,
Therefore, we have
Remark 18. We can take 𝑐0 = 0 in (63) for the explicit finite
difference scheme to the following usual heat equation with
Neumann boundary condition:
πœ€
𝑒π‘₯π‘₯
βˆ’0.5,
{
{
{
{
𝑒0πœ€ (π‘₯) = {βˆ’0.5 sin (2πœ‹π‘₯) ,
{
{
{
{0.5,
(101)
Thus, we have the following condition of Ξ”π‘₯:
0 < Ξ”π‘₯ < πœ€βˆš
Also, we consider the initial data 𝑒0πœ€ (π‘₯) defined by
𝑐0 π›Ώπœ€2 0.6 × 0.01 × (0.05)2
=
1βˆ’π›Ώ
1 βˆ’ 0.01
Then, we have
π‘’π‘‘πœ€
1.5
1
0.5
0
βˆ’0.5
βˆ’1
βˆ’1.5
(𝐷𝑃)πœ€π›Ώ
The numerical data is 𝑇 = 0.01, 𝛿 = 0.01, Ξ”π‘₯ = 0.005,
𝑐0 = 0.6.
(106)
which implies that criteria condition (63) holds. Thus, we can
provide the stable numerical experiment of (𝐷𝑃)πœ€π›Ώ . Indeed,
we provide Figure 9, which implies the stable numerical
experiment of (𝐷𝑃)πœ€π›Ώ .
5.2. The Case When πœ€ = 0.007 and Δ𝑑 = 0.000005. Now, we
consider the case when πœ€ = 0.007 and Δ𝑑 = 0.000005. In this
case, we observe that
1 βˆ’ 𝑐0
Δ𝑑
0.000005
=
= 0.2 =
,
2
2
2
(Ξ”π‘₯)
(0.005)
𝑐0 π›Ώπœ€2 0.6 × 0.01 × (0.007)2
=
1βˆ’π›Ώ
1 βˆ’ 0.01
(107)
= 0.00000029696969 . . . .
Therefore, we have
𝑐0 π›Ώπœ€2
= 0.00000029696969 β‹… β‹… β‹… < Δ𝑑,
1βˆ’π›Ώ
(108)
u(t, x)
Advances in Numerical Analysis
15
5.4. Conclusion of PDE Problem (𝐷𝑃)πœ€π›Ώ . By Theorem 16 and
the numerical experiments as above, we conclude that the
mesh size of time Δ𝑑 and space Ξ”π‘₯ must be satisfied:
1.5
1
0.5
0
βˆ’0.5
βˆ’1
βˆ’1.5
0 < Δ𝑑 ≀
0≀
0
0.002
0.004
0.006
Ti
me
0.008
0.01 0
u(t, x)
1 βˆ’ 𝑐0
Δ𝑑
≀
2
2
(Ξ”π‘₯)
(110)
for some constant 𝑐0 ∈ (0, 1) ,
0.2
0.4
0.6
0.8
1
Ξ©
Figure 10: πœ€ = 0.007, Δ𝑑 = 0.000005, Ξ”π‘₯ = 0.005, and 𝛿 = 0.01.
in order to get the stable numerical experiments of (𝐷𝑃)πœ€π›Ώ .
Also, by Theorems 7 and 16, we conclude that the value
π›Ώπœ€2 /(1 βˆ’ 𝛿) is very important to perform a numerical
experiment of (𝐷𝐸)πœ€π›Ώ and (𝐷𝑃)πœ€π›Ώ .
Competing Interests
1.5
1
0.5
0
βˆ’0.5
βˆ’1
βˆ’1.5
0
0.002
0.004
0.006
Ti
me
0.008
0.01 0
𝑐0 π›Ώπœ€2
,
1βˆ’π›Ώ
The authors declare that there are no competing interests
regarding the publication of this paper.
Acknowledgments
This work was supported by Grant-in-Aid for Scientific
Research (C) no. 26400179, JSPS.
0.2
0.4
0.6
0.8
1
Ξ©
Figure 11: πœ€ = 0.007, Δ𝑑 = 0.0000002, Ξ”π‘₯ = 0.005, and 𝛿 = 0.01.
which implies that criteria condition (63) does not hold.
Therefore, we provide the unstable numerical experiment of
(𝐷𝑃)πœ€π›Ώ . Indeed, we have Figure 10.
5.3. The Case When πœ€ = 0.007 and Δ𝑑 = 0.0000002. Now, we
consider the case when πœ€ = 0.007 and Δ𝑑 = 0.0000002. In this
case, we have
1 βˆ’ 𝑐0
0.0000002
1
Δ𝑑
=
=
≀ 0.2 =
,
2
2
125
2
(Ξ”π‘₯)
(0.005)
𝑐0 π›Ώπœ€2
= 0.00000029696969 β‹… β‹… β‹… > Δ𝑑,
1βˆ’π›Ώ
(109)
which implies that criteria condition (63) holds. Therefore, we
provide the stable numerical experiment of (𝐷𝑃)πœ€π›Ώ . Indeed, we
have Figure 11, which implies the stable numerical experiment
of (𝐷𝑃)πœ€π›Ώ .
Remark 19. We observe from Theorem 16 that, in order to get
the stable numerical results of (𝐷𝑃)πœ€π›Ώ , we have to choose the
suitable constants πœ€ and 𝛿 and the mesh size of time Δ𝑑 and
space Ξ”π‘₯. Therefore, if we perform a numerical experiment of
(𝑃)πœ€ for sufficient small πœ€, we had better consider the original
problem (𝑃)πœ€ by using a primal-dual active set method in [2],
a Lagrange multiplier method in [9], and so on.
References
[1] S. M. Allen and J. W. Cahn, β€œA microscopic theory for antiphase
boundary motion and its application to antiphase domain
coarsening,” Acta Metallurgica, vol. 27, no. 6, pp. 1085–1095,
1979.
[2] L. Blank, H. Garcke, L. Sarbu, and V. Styles, β€œPrimal-dual
active set methods for Allen-Cahn variational inequalities with
nonlocal constraints,” Numerical Methods for Partial Differential
Equations, vol. 29, no. 3, pp. 999–1030, 2013.
[3] L. Bronsard and R. V. Kohn, β€œMotion by mean curvature as
the singular limit of Ginzburg-Landau dynamics,” Journal of
Differential Equations, vol. 90, no. 2, pp. 211–237, 1991.
[4] X. Chen, β€œGeneration and propagation of interfaces for
reaction-diffusion equations,” Journal of Differential Equations,
vol. 96, no. 1, pp. 116–141, 1992.
[5] X. Chen and C. M. Elliott, β€œAsymptotics for a parabolic double
obstacle problem,” Proceedings of the Royal Society. London.
Series A. Mathematical, Physical and Engineering Sciences, vol.
444, no. 1922, pp. 429–445, 1994.
[6] P. de Mottoni and M. Schatzman, β€œEvolution géométrique
d’interfaces,” Comptes Rendus de l’Académie des Sciences. Série
1, Mathématique, vol. 309, no. 7, pp. 453–458, 1989.
[7] P. C. Fife, Dynamics of Internal Layers and Diffusive Interfaces,
vol. 53 of CBMS-NSF Regional Conference Series in Applied
Mathematics, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, Pa, USA, 1988.
[8] M. H. Farshbaf-Shaker, T. Fukao, and N. Yamazaki, β€œSingular
limit of Allen-Cahn equation with constraints and its Lagrange
multiplier,” in Dynamical Systems, Differential Equations and
Applications, AIMS Proceedings, pp. 418–427, AIMS, 2015.
[9] M. H. Farshbaf-Shaker, T. Fukao, and N. Yamazaki, β€œLagrange
multiplier and singular limit of double-obstacle problems for
16
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
Advances in Numerical Analysis
the Allen–Cahn equation with constraint,” Mathematical Methods in the Applied Sciences, 2016.
A. Ito, β€œAsymptotic stability of Allen-Cahn model for nonlinear
Laplacian with constraints,” Advances in Mathematical Sciences
and Applications, vol. 9, no. 1, pp. 137–161, 1999.
N. Kenmochi and K. Shirakawa, β€œStability for a parabolic variational inequality associated with total variation functional,”
Funkcialaj Ekvacioj. Serio Internacia, vol. 44, no. 1, pp. 119–137,
2001.
T. Ohtsuka, β€œMotion of interfaces by an Allen-Cahn type
equation with multiple-well potentials,” Asymptotic Analysis,
vol. 56, no. 2, pp. 87–123, 2008.
T. Ohtsuka, K. Shirakawa, and N. Yamazaki, β€œOptimal control
of a singular diffusion equation with constraint,” Advances in
Mathematical Sciences and Applications, vol. 18, no. 1, pp. 1–28,
2008.
T. Ohtsuka, K. Shirakawa, and N. Yamazaki, β€œOptimal control
problem for Allen-Cahn type equation associated with total
variation energy,” Discrete and Continuous Dynamical Systems,
Series S, vol. 5, no. 1, pp. 159–181, 2012.
K. Shirakawa and M. Kimura, β€œStability analysis for AllenCahn type equation associated with the total variation energy,”
Nonlinear Analysis. Theory, Methods & Applications, vol. 60, no.
2, pp. 257–282, 2005.
Y. Tonegawa, β€œIntegrality of varifolds in the singular limit of
reaction-diffusion equations,” Hiroshima Mathematical Journal,
vol. 33, no. 3, pp. 323–341, 2003.
X. Feng and A. Prohl, β€œNumerical analysis of the AllenCahn equation and approximation for mean curvature flows,”
Numerische Mathematik, vol. 94, no. 1, pp. 33–65, 2003.
X. Feng, H. Song, T. Tang, and J. Yang, β€œNonlinear stability
of the implicit-explicit methods for the Allen-Cahn equation,”
Inverse Problems and Imaging, vol. 7, no. 3, pp. 679–695, 2013.
J. Shen and X. Yang, β€œNumerical approximations of AllenCAHn and CAHn-Hilliard equations,” Discrete and Continuous
Dynamical Systems. Series A, vol. 28, no. 4, pp. 1669–1691, 2010.
X. Yang, β€œError analysis of stabilized semi-implicit method
of Allen-Cahn equation,” Discrete and Continuous Dynamical
Systems Series B, vol. 11, no. 4, pp. 1057–1070, 2009.
J. Zhang and Q. Du, β€œNumerical studies of discrete approximations to the Allen-Cahn equation in the sharp interface limit,”
SIAM Journal on Scientific Computing, vol. 31, no. 4, pp. 3042–
3063, 2009.
H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes
de Contractions dans les Espaces de Hilbert, North-Holland,
Amsterdam, The Netherlands, 1973.
H. Brezis, M. G. Crandall, and A. Pazy, β€œPerturbations of nonlinear maximal monotone sets in Banach space,” Communications on Pure and Applied Mathematics, vol. 23, pp. 123–144,
1970.
A. Ito, N. Yamazaki, and N. Kenmochi, β€œAttractors of nonlinear
evolution systems generated by time-dependent subdifferentials in Hilbert spaces,” in Dynamical Systems and Differential
Equations, vol. 1 of Discrete and Continuous Dynamical Systems,
pp. 327–349, American Institute of Mathematical Sciences,
Springfield, Mo, USA, 1996.
M. OΜ‚tani, β€œNonmonotone perturbations for nonlinear
parabolic equations associated with subdifferential operators,
Cauchy problems,” Journal of Differential Equations, vol. 46, no.
2, pp. 268–299, 1982.
[26] U. Mosco, β€œConvergence of convex sets and of solutions of
variational inequalities,” Advances in Mathematics, vol. 3, pp.
510–585, 1969.
[27] H. Attouch, Variational Convergence for Functions and Operators, Pitman Advanced Publishing Program, Boston, Mass,
USA, 1984.
[28] N. Kenmochi, β€œMonotonicity and compactness methods for
nonlinear variational in-equalities,” in Handbook of Differential
Equations, Stationary Partial Differential Equations, M. Chipot,
Ed., vol. 4, chapter 4, pp. 203–298, North-Holland Publishing,
Amsterdam, The Netherlands, 2007.
Advances in
Operations Research
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Advances in
Decision Sciences
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Applied Mathematics
Algebra
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Probability and Statistics
Volume 2014
The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Differential Equations
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Submit your manuscripts at
http://www.hindawi.com
International Journal of
Advances in
Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com
Mathematical Physics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Journal of
Complex Analysis
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International
Journal of
Mathematics and
Mathematical
Sciences
Mathematical Problems
in Engineering
Journal of
Mathematics
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Discrete Mathematics
Journal of
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Discrete Dynamics in
Nature and Society
Journal of
Function Spaces
Hindawi Publishing Corporation
http://www.hindawi.com
Abstract and
Applied Analysis
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
International Journal of
Journal of
Stochastic Analysis
Optimization
Hindawi Publishing Corporation
http://www.hindawi.com
Hindawi Publishing Corporation
http://www.hindawi.com
Volume 2014
Volume 2014