* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Basics of density functional perturbation theory
Old quantum theory wikipedia , lookup
Renormalization wikipedia , lookup
Density of states wikipedia , lookup
Noether's theorem wikipedia , lookup
Electrostatics wikipedia , lookup
Partial differential equation wikipedia , lookup
Equation of state wikipedia , lookup
Yang–Mills theory wikipedia , lookup
Hydrogen atom wikipedia , lookup
Derivation of the Navier–Stokes equations wikipedia , lookup
Schrödinger equation wikipedia , lookup
Theoretical and experimental justification for the Schrödinger equation wikipedia , lookup
Nordström's theory of gravitation wikipedia , lookup
Dirac equation wikipedia , lookup
Time in physics wikipedia , lookup
Relativistic quantum mechanics wikipedia , lookup
CECAM Tutorial: “Dynamical, dielectric and magnetic properties of solids with ABINIT” Lyon, 12-16 may 2014 Basics of density functional perturbation theory Gian-Marco Rignanese European Theoretical Spectroscopy Facility Institute of Condensed Matter and Nanosciences, B-1348 Louvain-la-Neuve, Belgique Born-Oppenheimer approximation • Quantum treatment for electrons → Kohn-Sham equation Eel [r] =  yv |T +Vext | yv ⇥ + EHxc [r] v r(r) =  yv⇤ (r)yv (r) v 1 2 — +Vext (r) +VHxc (r) yi (r) = ei yi (r) 2 • Classical treatment for nuclei → unit cell a Fka = atom ∂ Etot ∂ Raka direction (α=1,2,3) CECAM Tutorial, Lyon, 12-16 may 2014 Newton equation d 2 Raka = Mk dt 2 {R} Etot = Eion + Eel 2 Harmonic approximation Etot a Rκα = Raα + τκα + uaκα cell equilibrium atomic position displacement u Etot ({u}) (0) = Etot + 1 ∑ ′∑′ ′ 2 aκα a κ α CECAM Tutorial, Lyon, 12-16 may 2014 ! ∂ 2 Etot ′ a a ∂ uκα ∂ uκ ′ α ′ " a′ a uκα uκ ′ α ′ 3 Phonons • The matrix of interatomic force!constants (IFCs) " is defined as Cκα ,κ ′ α ′ (a, a′ ) = ∂ 2 Etot ′ a a ∂ uκα ∂ uκ ′ α ′ • Its Fourier transform (using translational invariance) C̃κα ,κ ′ α ′ (q) = ∑ Cκα ,κ ′ α ′ (0, a′ )eiq·Ra′ a′ allows one to compute phonon frequencies and eigenvectors as solutions of the following generalized eigenvalue problem: 2 C̃ka,k 0 a 0 (q)Umq (k 0 a 0 ) = Mk wmq Umq (ka)  0 0 ka phonon displacement pattern CECAM Tutorial, Lyon, 12-16 may 2014 masses square of phonon frequencies 4 Example: Diamond 1400 1200 z -1 Frequency(cm) 1000 L U x 800 K X W y 600 400 200 0 K,U X L Theory vs. Experiment [X. Gonze, GMR, and R. Caracas, Z. Kristallogr. 220, 458 (2000)] CECAM Tutorial, Lyon, 12-16 may 2014 5 Total energy derivatives • In fact, many physical properties are derivatives of the total energy (or a suitable thermodynamic potential) with respect to external perturbations. • Possible perturbations include: ★ atomic displacements, ★ expansion or contraction of the primitive cell, ★ homogeneous external field (electric or magnetic), ★ alchemical change ★ ... CECAM Tutorial, Lyon, 12-16 may 2014 6 Total energy derivatives • Related derivatives of the total energy (Eel + Eion) ★ 1st order: ★ 2nd order: ★ 3rd order: forces, stress, dipole moment, ... dynamical matrix, elastic constants, dielectric susceptibility, Born effective charge tensors, piezoelectricity, internal strains non-linear dielectric susceptibility, phonon-phonon interaction, Grüneisen parameters, ... • Further properties can be obtained by integration over phononic degrees of freedom (e.g., entropy, thermal expansion, ...) CECAM Tutorial, Lyon, 12-16 may 2014 7 Total energy derivatives • These derivatives can be obtained from ★ direct approaches: ■ finite differences (e.g. frozen phonons) ■ molecular-dynamics spectral analysis methods ★ perturbative approaches • The former have a series of limitations (problems with commensurability, difficulty to decouple the responses to perturbations of different wavelength, ...). On the other hand, the latter show a lot of flexibility which makes it very attractive for practical calculations. CECAM Tutorial, Lyon, 12-16 may 2014 8 Outline Perturbation Theory Density Functional Perturbation Theory Atomic displacements and homogeneous electric field CECAM Tutorial, Lyon, 12-16 may 2014 9 Outline Perturbation Theory Density Functional Perturbation Theory Atomic displacements and homogeneous electric field CECAM Tutorial, Lyon, 12-16 may 2014 10 Reference and perturbed systems • Let us assume that all the solutions are known for a reference system for which the one-body Schrödinger equation is: E E (0) (0) (0) H (0) yi = ei yi with the normalization condition: D E (0) (0) yi yi =1 • Let us now introduce a perturbation of the external potential characterized by a small parameter λ: (0) (1) (2) Vext (λ ) = Vext + λ Vext + λ 2Vext + · · · known at all orders. CECAM Tutorial, Lyon, 12-16 may 2014 11 Reference and perturbed systems • We now want to solve the perturbed Schrödinger equation: H(l )|yi (l ) = ei (l )|yi (l ) with the normalization condition: yi (l )|yi (l )⇥ = 1 • Idea: all the quantities (X=H, εi, ψi) are written as a perturbation series with respect to the parameter λ : X(λ ) = X (0) + λ X (1) + λ 2 X (2) + λ 3 X (3) + · · · with X (n) 1 dnX = n! dl n CECAM Tutorial, Lyon, 12-16 may 2014 l =0 12 Expansion of the Schrödinger equation • Starting from: and inserting: H(l )|yi (l )⇥ = ei (l )|yi (l )⇥ l H(! ) = H (0) + ! H (1) + ! 2 H (2) + . . . (0) yi (l ) = yi (0) ei (l ) = ei (1) + l yi (1) + l ei + l 2 yi (2) + l 2 ei (2) +... +... we get: ⌘ ⌘⇣ (0) (1) (2) H (0) + ! H (1) + ! 2 H (2) + . . . |"i + ! |"i + ! 2 |"i + . . . = ⇣ ⌘⇣ ⌘ (0) (1) (2) (0) (1) (2) #i + ! #i + ! 2 #i + . . . |"i + ! |"i + ! 2 |"i + . . . ⇣ CECAM Tutorial, Lyon, 12-16 may 2014 13 Expansion of the Schrödinger equation • This can be rewritten as: (0) H (0) |yi setting λ=0 ⇣ ⌘ (1) (0) +l H (0) |yi + H (1) |yi ⇣ ⌘ deriving w.r.t. λ (2) (1) (0) +l 2 H (0) |yi + H (1) |yi + H (2) |yi and setting λ=0 + ... = deriving twice (0) (0) ei |yi ⇣ ⌘ (0) (1) (1) (0) +l ei |yi + ei |yi ⇣ ⌘ (0) (2) (1) (1) (2) (0) +l 2 ei |yi + ei |yi + ei |yi w.r.t. λ and setting λ=0 + ... CECAM Tutorial, Lyon, 12-16 may 2014 14 Expansion of the Schrödinger equation • Finally, we have that: (0) = "i |!i (1) + H (1) |!i (2) + H (1) |!i H (0) |!i H (0) |!i H (0) |!i (0) (0) (0) 0th order (0) = "i |!i (1) (2) "i |!i (0) (1) + "i |!i + H (2) |!i (0) = + "i |!i + "i |!i (1) (1) (1) (2) (0) (0) 1st order 2nd order ··· CECAM Tutorial, Lyon, 12-16 may 2014 15 Expansion of the normalization condition • Starting from: and inserting: ⇥yi (l )|yi (l )⇤ = 1 (0) yi (l ) = yi (1) + l yi l + l 2 yi (2) +... we get: (0) (0) yi |yi ⇥ ⇣ ⌘ (0) (1) (1) (0) +l yi |yi ⇥ + yi |yi ⇥ ⇣ (0) (2) (1) (1) 2 yi |yi ⇥ + yi |yi ⇥ + +l + ... = 1 CECAM Tutorial, Lyon, 12-16 may 2014 (2) (0) yi |yi ⇥ ⌘ 16 Expansion of the normalization condition • Finally, we have that (0) (0) (0) (1) (1) (0) (0) (2) (1) (1) yi |yi ⇥ = 1 0th order yi |yi ⇥ + yi |yi ⇥ = 0 1st order (2) (0) yi |yi ⇥ + yi |yi ⇥ + yi |yi ⇥ = 0 2nd order ··· CECAM Tutorial, Lyon, 12-16 may 2014 17 1st order corrections to the energies • Starting from the 1st order of the Schrödinger equation (1) H (0) |yi (0) + H (1) |yi (0) (0) and premultiplying by yi | , we get: (0) (1) (0) (0) (1) = ei |yi (0) (0) (1) (0) + ei |yi (1) (1) (0) (0) yi |H (0) |yi ⇥ + yi |H (1) |yi ⇥ = ei yi |yi ⇥ + ei yi |yi ⇥ | {z } | {z } (0) (0) (1) 1 ei yi |yi ⇥ and thus, finally, we have the Hellman-Feynman theorem: (1) ei • (0) (0) = yi |H (1) |yi ⇥ The 0th order wavefunctions are thus the only required ingredient to obtain the 1st order corrections to the energies. CECAM Tutorial, Lyon, 12-16 may 2014 18 2nd order corrections to the energies • Starting from the 2nd order of the Schrödinger equation (2) (1) (1) (2) (0) H |!i + H |!i + H |!i = (0) (2) (1) (1) (2) (0) "i |!i + "i |!i + "i |!i (0) and premultiplying by yi | , we get: (0) (0) (2) ei yi |yi ⇥ (0) | {z } (0) (2) (0) (1) (0) (0) !i |H (0) |!i ⇥ + !i |H (1) |!i ⇥ + !i |H (2) |!i ⇥ = (0) "i (0) (2) (1) !i |!i ⇥ + "i and thus, finally, we have: (2) !i = (0) (1) (2) !i |!i ⇥ + "i (0) (0) (2) (0) ⇥"i |H |"i ⇤ + ⇥"i |H (1) CECAM Tutorial, Lyon, 12-16 may 2014 (0) (0) !i |!i ⇥ | {z } 1 (1) (1) !i |"i ⇤ 19 2nd order corrections to the energies • Since the energies are real, we can write that: (2) !i = (0) (0) (2) (0) ⇥"i |H |"i ⇤ + ⇥"i |H (1) (0) (1) (2) (0) ⇥"i |H |"i ⇤ + ⇥"i |H (1) = or, combining both equalities: (2) (0) =⇥"i |H (2) |"i ⇤ ⌘ 1 ⇣ (0) (1) (1) (1) (1) (1) (0) !i |"i ⇤ + ⇥"i |H (1) !i |"i ⇤ + ⇥"i |H 2 Using the expansion of the normalization condition at 1st order, !i • (0) (1) (1) !i |"i ⇤ (1) (0) !i |"i ⇤ we can finally write that: ⇣ ⌘ 1 (2) (0) (0) (0) (1) (1) (0) !i = "i |H (2) |"i ⇥ + "i |H (1) |"i ⇥ + "i |H (1) |"i ⇥ 2 • To obtain the 2nd order corrections to the energies, the only required ingredients are the 0th and 1st order wavefunctions. CECAM Tutorial, Lyon, 12-16 may 2014 20 1st order corrections to the wavefunctions • The 1st order of the Schrödinger equation H (0) can be rewritten ⇣ H (0) • (1) (0) + ei |yi +H (1) gathering the terms containing |yi : ⌘ ⇣ ⌘ (0) (1) (1) (0) ei |yi ⇥ = H (1) ei |yi ⇥ (1) |yi (1) (0) |yi (0) (1) = ei |yi producing the so-called Sternheimer equation. (1) In order to get |yi one would like to invert the (H (0) ei(0) ) (0) operator, but it cannot be done as such since ei is an eigenvalue of H (0). The problem can be solved by expressing the 1st order wavefunction as a linear combination of the 0th order ones: (1) |yi CECAM Tutorial, Lyon, 12-16 may 2014 =  ci j |y j (1) (0) j 21 1st order corrections to the wavefunctions • We separate the 0th order wavefunctions into two subsets: ★ those (0) (0) associated to ei(0) : j I if H (0) |y (0) ⇥ = e j i |y j ⇥ (0) (just |yi if the energy is non-degenerate) ★ those that belong to the subspace that is orthogonal: j ∈ I⊥ |yi ⇤ =  ci j |y j ⇤ =  ci j |y j ⇤ + (1) (1) (1) (0) (0) j I j  (1) j I⇥ equation can thus be rewritten as: • The Sternheimer ⌘ ⇣ ⌘ ⇣ H (0) (0) ei |yi ⌅ =  ci j (1) (1) j =  j⇥I ⇤ = CECAM Tutorial, Lyon, 12-16 may 2014 ⇣ H (0) ⇣ (1) (0) ci j e j H (1) (1) ei (0) ei ⌘ (0) |y j ⌅ (0) ei (0) ci j |y j ⇤ ⌘ (0) |y j ⌅ (0) |yi ⌅ 22 1st order corrections to the wavefunctions • Premultiplying by yk(0) | with k ∈ I⊥, we get: ⌘ ⇣ (0) (0) (0) (1) (0) (0) (1) (0) (1) ⇧ = ⌅y |H e e ⌅y |y c e  ij j j i |yi ⇧ i k k | {z } j⇥I ⇤ (0) (0) ⇤yk |yi ⌅ = 0 δkj since k I ⇥ ⌘ ⇣ (0) (0) (1) (0) (0) = ⇥yk |H (1) |yi ⇤ cik ek ei and, thus: (1) ci j = 1 (0) ei (0) (0) (1) ⇤ ⌅y |H |y ⇧ for j ⇥ I j i (0) ej CECAM Tutorial, Lyon, 12-16 may 2014 23 1st order corrections to the wavefunctions • Premultiplying by yk(0) | with k ∈ I, we get:  j⇥I ⇤ (1) ci j ⇣ (0) ej (0) ei ⌘ (0) (0) (0) (1) | (1) ek dki {z 0 = } (0) ei |yi ⇧ ⌅yk |y j ⇧ = ⌅yk |H (1) (0) (0) ⇥yk |yi ⇤ = dki since k (0) (0) yk |H (1) |yi ⇥ I • For k = i, it is nothing but the Hellmann-Feynman theorem. (1) • But, it does not provide any information on the ci j for j 2 I. In fact, there is a gauge freedom that allows to choose them equal to zero. CECAM Tutorial, Lyon, 12-16 may 2014 24 1st order corrections to the wavefunctions • Finally, we can write the so-called sum over states expression: (1) |yi ⇧ = •  (0) |y j ⇧ (0) ei j⇥I ⇤ 1 (0) (0) (1) ⌅y |H |yi ⇧ j (0) ej which requires the knowledge of all the 0th order wavefunctions and energies. Instead, if we define the projector PI ? onto the subspace I ? by: PI ⇥ =  j I⇥ (0) (0) |y j ⌅⇤y j | we can rewrite the Sterheimer equation in that subspace: ⇣ ⌘ (0) (1) (0) (1) (0) PI ⇥ H ei PI ⇥ |yi ⇤ = PI ⇥ H |yi ⇤ CECAM Tutorial, Lyon, 12-16 may 2014 25 1st order corrections to the wavefunctions • In this form, the singularity has disappeared and it can thus be inverted: (1) PI ⇥ |yi ⇤ = h ⇣ PI ⇥ H (0) (0) ei ⌘ PI ⇥ i 1 H (1) (0) |yi ⇤ and defining the Green’s function in the subspace I ? as: h ⇣ ⌘ i 1 GI ? (e) = PI ? e H (0) PI ? we can write: (1) (0) (0) PI |yi ⇥ = GI (ei )H (1) |yi ⇥ • This is the Green's function technique for dealing with the Sternheimer equation. CECAM Tutorial, Lyon, 12-16 may 2014 26 2nd order corrections to the energies • The sum over states expression for the 1st order wavefunctions: (1) |yi ⇧ =  (0) |y j ⇧ (0) ei j⇥I ⇤ 1 (0) (0) (1) ⌅y |H |yi ⇧ j (0) ej can be inserted in the 2nd order corrections to the energies: ⇣ ⌘ 1 (2) (0) (0) (0) (1) (1) (0) !i = "i |H (2) |"i ⇥ + "i |H (1) |"i ⇥ + "i |H (1) |"i ⇥ 2 leading to: (2) !i (0) (0) =⌅"i |H (2) |"i ⇧ + (0) (0) ⌅"i |H (1) |" j ⇧ (0) !i j⇥I ⇤ # CECAM Tutorial, Lyon, 12-16 may 2014 1 (0) (0) (1) " |H |"i ⇧ ⌅ j (0) !j 27 2nd order corrections to the energies • Alternatively, we can write that: ⇤!i (" )|H(" ) #i (" )|!i (" )⌅ = 0 ⇥" and the perturbation expansion at the 2nd order gives: (0) ⇥!i |H (0) (0) +⇥!i |H (1) (0) +⇥!i |H (2) (0) (2) "i |!i ⇤ (1) (1) (1) "i |!i ⇤+⇥!i |H (0) (2) (0) (1) "i |!i ⇤+⇥!i |H (1) (0) (1) "i |!i ⇤ (1) (0) (2) "i |!i ⇤+⇥!i |H (0) (0) (0) "i |!i ⇤ = 0 • It can be shown that the sum of the terms in a row or in column vanishes! Getting rid of the first row and the last column, we get another expression for the 2nd order corrections to the energies: (2) !i (0) (1) (0) (1) (2) (0) (0) =⇥"i |H |"i ⇤ + ⇥"i |H !i |"i ⇤ (0) (1) (1) (1) (1) (0) (1) (1) + ⇥"i |H !i |"i ⇤ + ⇥"i |H !i |"i ⇤ CECAM Tutorial, Lyon, 12-16 may 2014 28 2nd order corrections to the energies • Actually, a number of other expressions exist for the 2nd order • corrections to the energies. However, it can be demonstrated that this expression is variational in the sense that the 2nd order corrections to the (1) ! energies can be obtained by minimizing it with respect to i : n ! (2) = min ⇥" (0) |H (2) |" (0) ⇤ + ⇥" (1) |H (0) ! (0) |" (1) ⇤ i i i i i i (1) "i (0) +⇥"i |H (1) under the constraint that: (0) (1) (1) (1) !i |"i ⇤ + ⇥"i |H (1) (1) (1) (1) (0) !i |"i ⇤ o (0) !i |!i ⇥ + !i |!i ⇥ = 0 CECAM Tutorial, Lyon, 12-16 may 2014 29 3rd order corrections to the energies • Starting from the 3rd order of the Schrödinger equation (3) H (0) |!i (2) + H (1) |!i (0) (3) "i |!i (1) + H (2) |!i (1) (2) + "i |!i (0) + H (3) |!i (2) (1) + "i |!i and premultiplying by yi(0) | , we get: (0) (0) (3) !i "i |"i ⇥ | {z } (0) (0) (0) (3) (1) (2) !i |H |!i ⇥ + !i |H |!i ⇥ + = (3) (0) + "i |!i (0) (0) (2) (1) (3) (0) !i |H |!i ⇥ + !i |H |!i ⇥ (0) (0) (3) (1) (0) (2) = "i !i |!i ⇥ + "i !i |!i ⇥ (2) (0) (1) (3) (0) (0) + "i !i |!i ⇥ + "i !i |!i ⇥ CECAM Tutorial, Lyon, 12-16 may 2014 | {z 1 } 30 3rd order corrections to the energies • Finally, we we can write: (3) !i (0) (0) =⇥"i |H (3) |"i ⇤ (0) + ⇥"i |H (2) (0) + ⇥"i |H (1) (2) (1) (1) (2) !i |"i ⇤ !i |"i ⇤ • This expression of the 3rd order corrections to the energies requires to know the wavefunctions up to the 2nd order. CECAM Tutorial, Lyon, 12-16 may 2014 31 3rd order corrections to the energies • Alternatively, we can write that: ⇤!i (" )|H(" ) #i (" )|!i (" )⌅ = 0 ⇥" and the perturbation expansion at the 3rd order gives: (0) ⇥!i |H (0) (0) +⇥!i |H (1) (0) +⇥!i |H (2) (0) +⇥!i |H (3) (0) (3) "i |!i ⇤ (1) (2) (1) "i |!i ⇤+⇥!i |H (0) (2) (1) (1) "i |!i ⇤+⇥!i |H (1) (3) (0) (1) "i |!i ⇤+⇥!i |H (2) (0) (2) "i |!i ⇤ (1) (1) (2) "i |!i ⇤+⇥!i |H (0) (2) (0) (2) "i |!i ⇤+⇥!i |H (1) (0) (1) "i |!i ⇤ (1) (0) (3) "i |!i ⇤+⇥!i |H (0) (0) (0) "i |!i ⇤ = 0 • Again, the sum of the terms in a row or in column vanishes. So, getting rid of the first two rows and the last two columns, we get another expression that does not require to know the 2nd order wavefunctions : (3) (0) (0) (1) (1) (1) !i =⇥"i |H (3) |"i ⇤ + ⇥"i |H (1) !i |"i ⇤ (0) (1) (1) (0) + ⇥"i |H (2) |"i ⇤ + ⇥"i |H (2) |"i ⇤ CECAM Tutorial, Lyon, 12-16 may 2014 32 Summary • There are 4 different methods to get the 1st order wavefunctions: ★ solving the Sternheimer equation directly, complemented by a condition derived from the normalization requirement ★ using the Green’s function technique ★ exploiting the sum over states expression the constrained functional for the 2nd order corrections to the energies ★ minimizing • With these 1st order wavefunctions, both the 2nd and 3rd order corrections to the energies can be obtained. • More generally, the nth order wavefunctions give access to the (2n)th and (2n+1)th order energy [“2n+1” theorem]. CECAM Tutorial, Lyon, 12-16 may 2014 33 Outline Perturbation Theory Density Functional Perturbation Theory Atomic displacements and homogeneous electric field CECAM Tutorial, Lyon, 12-16 may 2014 34 Reference system • In DFT, one needs to minimize the electronic energy functional: D E (0) (0) (0) (0) (0) Eel [r ] =  yi T +Vext yi + EHxc [r (0) ] Ne i=1 in which the electronic density is given by: i⇤ Ne h (0) (0) r (0) (r) =  yi (r) yi (r) under the constraint that: D i=1 (0) yi (0) yj E = di j equation: • Alternatively,Eonecan solve the reference Shrödinger E E 1 2 (0) (0) (0) (0) (0) = ei yi H = — +Vext +VHxc yi 2 where the Hartree and exchange correlation potential is: (0) (0) ] [r d E (0) Hxc VHxc (r) = d r(r) (0) (0) yi CECAM Tutorial, Lyon, 12-16 may 2014 35 Perturbed system • The electronic energy functional to be minimized is: Ne Eel [r(l )] =  yi (l ) |T +Vext (l )| yi (l )⇥ + EHxc [r(l )] i=1 in which the electronic density is given by: Ne r(r; l ) =  yi⇤ (r; l )yi (r; l ) under the constraint that: i=1 ↵ yi (l )| y j (l ) = di j • Alternatively, the Shrödinger equation to be solved is: 1 2 H(l ) |yi (l )⇥ = — +Vext (l ) +VHxc (l ) |yi (l )⇥ = ei (l ) |yi (l )⇥ 2 where the Hartree and exchange correlation potential is: d EHxc [r(l )] VHxc (r; l ) = d r(r) CECAM Tutorial, Lyon, 12-16 may 2014 36 1st order of perturbation theory in DFT • For the energy, it can be shown that: D E d (0) (0) =  yi (T +Vext )(1) yi EHxc [r (0) ] + dl l =0 i=1 This is the equivalent of the Hellman-Feynman theorem for density-functional formalism. (1) Eel Ne the constraint leads to: • For the wavefunctions, D E D E (0) yi (1) yj CECAM Tutorial, Lyon, 12-16 may 2014 + (1) yi (0) yj =0 37 2nd order energy in DFPT • For the energy, it can be shown that: hD E D Ei (2) (1) (0) (0) (1) Eel =  yi (T +Vext )(1) yi + yi (T +Vext )(1) yi Ne i=1 Ne hD E D (0) (0) (1) +  yi (T +Vext )(2) yi + yi (H i=1 1 + 2 + with Z Z Z (1) ei )(0) yi d 2 EHxc [r (0) ] (1) (1) 0 0 r (r)r (r )drdr d r(r)d r(r0 ) d EHxc [r (0) ] dl d r(r) l =0 2 1 d (0) E [r ] r (1) (r)dr + Hxc 2 2 dl h i⇤ ⌘ ⇣h i⇤ (0) (0) (1) (1) r (1) (r) =  yi (r) yi (r) + yi (r) yi (r) Ei l =0 Ne i=1 CECAM Tutorial, Lyon, 12-16 may 2014 38 1st order wavefunctions in DFPT • The 1st order wavefunctions can be obtained by minimizing: hn o n oi (2) (2) (0) (1) Eel = Eel yi , yi n o D E (1) with respect to yi under the constraint: yi(0) y (1) =0 j • These can also be obtained by solving the Sternheimer equation: ⇣ Ĥ (0) (0) ei ⌘ (1) |yi ⇥ = H (1) = (T +Vext )(1) + (1) ei = CECAM Tutorial, Lyon, 12-16 may 2014 Z ⇣ Ĥ (1) (1) ei ⌘ (0) |yi ⇥ d 2 EHxc [r (0) ] (1) 0 0 r (r )dr 0 d r(r)d r(r ) (0) (1) (0) yi |H |yi ⇥ 39 Higher orders in DFPT • More generally, it easy to show that since there is a variational principle for the 0th order energy: hn oi (0) (0) (0) Eel = Eel yi non-variational expression can be obtained for higher orders: oi hn (1) (1) (0) Eel = Eel yi hn o n oi (2) (2) (0) (1) Eel = Eel yi , yi hn o n o n oi (3) (3) (0) (1) (2) Eel = Eel yi , yi , yi • ··· But, this is not the best that can be done! CECAM Tutorial, Lyon, 12-16 may 2014 40 Higher orders in DFPT • We assume that all wavefunctions are known up to (n-1)th order: (0) (1) n 1 (n 1) <n n + O(l n ) ȳi = yi + O(l ) = yi + l yi + · · · + l yi • The variational property of the energy functional implies that: Eel [{ytrial + O(h)}] = Eel [{ytrial }] + O(h 2 ) • Taking {ytrial } = yi<n and h = l n , we see that: the wavefunctions are known up to (n-1)th order, the energy is know up to (2n-1)th order; ★ if the wavefunctions are known up to nth order, the energy is know up to (2n+1)th order. ★ if • This is the “2n+1” theorem. CECAM Tutorial, Lyon, 12-16 may 2014 41 Higher orders in DFPT • Since the variational principle is also an extremal principle [the error is either > 0 → minimal principle, or < 0 → maximal principle], the leading missing term is also of definite sign (it is also an extremal principle): oi hn (0) = yi hn oi (1) (1) (0) Eel = Eel yi hn o n oi (2) (2) (0) (1) Eel = Eel yi , yi hn o n oi (3) (3) (0) (1) Eel = Eel yi , yi hn o n o n oi (4) (4) (0) (1) (2) Eel = Eel yi , yi , yi hn o n o n oi (5) (5) (0) (1) (2) Eel = Eel yi , yi , yi (0) Eel (0) Eel CECAM · · · Tutorial, Lyon, 12-16 may 2014 n o (0) variational w.r.t. yi n o (1) variational w.r.t. yi n o (2) variational w.r.t. yi 42 Mixed derivatives in DFPT • Similar expressions exist for mixed derivatives (related to two different perturbations j1 and j2): n o (0) Eelj1 j2 = Eelj1 j2 yi ; yij1 ; yij2 • The extremal principle is lost but the expression is stationary: ★ the error is proportional to the product of errors made in the 1st order quantities for the first and second perturbations; ★ if these errors are small, their product will be much smaller; ★ however, the sign of the error is undetermined, unlike for the variational expressions. CECAM Tutorial, Lyon, 12-16 may 2014 43 Order of calculation in DFPT (0) (0) 1. Ground state calculation: Vext ! yi and r (0) 2. FOR EACH pertubation j1 DO (0) use yi j1 Vext ! and r (0) yij1 and r j1 ENDDO minimize 2nd order energy solve Sternheimer equation 3. FOR EACH pertubation pair {j1, j2} DO j1 j2 j1 j2 y and y E determine using both i i (stationary expression) j1 y using just i ENDDO 4. Post-processing to get the physical properties from E j1 j2 CECAM Tutorial, Lyon, 12-16 may 2014 44 Outline Perturbation Theory Density Functional Perturbation Theory Atomic displacements and homogeneous electric field CECAM Tutorial, Lyon, 12-16 may 2014 45 Perturbations of the periodic solid • Let us consider the case where the reference system is periodic: (0) (0) Vext (r + Ra ) = Vext (r) • It can be shown that if the perturbation is characterized by a wavevector q such that: (1) iq·Ra (1) Vext (r + Ra ) = e Vext (r) all the responses, at linear order, will also be characterized by q: r (1) (r + Ra ) = eiq·Ra r (1) (r) yi,k,q (r + Ra ) = eiq·Ra yi,k,q (r) (1) (1) ··· CECAM Tutorial, Lyon, 12-16 may 2014 46 Perturbations of the periodic solid • We define related periodic quantities: r̄ (1) (r) = e iq·r (1) r (r) ui,k,q (r) = (Ne W0 )1/2 e (1) i(k+q)·R (1) yi,k,q (r) • In the equations of DFPT, only these periodic quantities appear: the phases e iq·r and e i(k+q)·R can be factorized. • The treatment of perturbations incommensurate with the • unperturbed system periodicity is mapped onto the original periodic system. This is interesting for atomic displacements but more importantly for electric fields. CECAM Tutorial, Lyon, 12-16 may 2014 47 Electronic dielectric permittivity tensor • The dielectric permittivity tensor is the coefficient of proportionality between the macroscopic displacement field and the macroscopic electric field, in the linear regime: Dmac,a =  eaa 0 Emac,a 0 a0 • ∂ Dmac,a ∂ Pmac,a eaa 0 = = daa 0 + 4p ∂ Emac,a 0 ∂ Emac,a 0 At high frequencies of the applied field, the dielectric permittivity tensor only includes a contribution from the electronic polarization: 4π Eα∗ Eα ′ ∞ εαα ′ = δαα ′ − 2Eel Ω0 1 ′ ∞ ∑′ q̂α εαα ′ q̂α = ε −1 αα G=0,G′ =0 (q → 0) unit vector CECAM Tutorial, Lyon, 12-16 may 2014 48 Treatment of homogeneous electric fields • When the perturbation is an electric field, we have: (1) Vext (r) = E · r which breaks the periodic boundary conditions. of the energy: • To obtain the 2nd order derivative Z Ea⇤ Ea 0 2Eel = r Ea 0 (r)ra dr the following matrix elements need to be computed: D E D E (0) (0) uc,k ra 0 uEv,ka and uEc,ka ra 0 uv,k conduction valence CECAM Tutorial, Lyon, 12-16 may 2014 49 Treatment of homogeneous electric fields • These matrix elements can be determined writing that: ⇣ (0) ei,k ⌘D E D (0) (0) (0) (0) (0) e j,k ui,k ra u j,k = ui,k Hkk ra D (0) = ui,k (0) (0) ra Hkk u j,k ∂ Hkk (0) E i u j,k ∂ ka (0) E which leads to the Sternheimer equation: (0) ⇣ ⌘ E E ∂ H (0) (0) (0) (0) Pc Hkk e j,k Pc ra u j,k = Pc i kk u j,k ∂ ka ⇣ ⌘ (0) (1) (0) PI ⇥ H (0) ei PI ⇥ |yi ⇤ = PI ⇥ H (1) |yi ⇤ DDK CECAM Tutorial, Lyon, 12-16 may 2014 perturbation 50 Born effective charge tensor • It is defined as the proportionality coefficient relating at linear order, the polarization per unit cell, created along the direction α, and the displacement along the direction α’ of the atoms belonging to the sublattice κ: ! ! ∂ Pmac,α !! ∂ Fκα ′ !! ∗ Zκαα ′ = Ω0 = ! ∂ uκα ′ (q = 0) Eα =0 ∂ Eα !u ′ =0 κα • It also describes the linear relation between the force in the • direction α’ on an atom κ and the macroscopic electric field Both can be connected to the mixed 2nd order derivative of the energy with respect to uκα’ and Eα ∗ • Sum rule: ∑ Zκαα ′ =0 κ CECAM Tutorial, Lyon, 12-16 may 2014 51 Born effective charge tensor • Model system: -q(r) 𝒫(r) +q(r) ★ diatomic molecule: r ★ dipole moment related to static charge q(r): 𝒫(r)= q(r) r • Atomic polar charge Z*(r) such that ∂𝒫(r)= Z*(r)∂r ★ purely covalent case: ★ purely ionic case: ★ mixed ionic-covalent: q(r) ৪ZҶҨ*(r) )৻* ৪ܖҨ )৻* Q r r Q CECAM Tutorial, Lyon, 12-16 may 2014 q(r)=0=Z*(r) q(r)=Q ≠ 0 ⇒Z*(r)=Q ∂𝒫(r)= q(r)∂r + ∂q(r) r ಘ৺)৻* Ҩ ৪ )৻* > ৺)৻* , ৻ ಘ৻ ಘ৺)৻* Ҩ ৪౿ಀ )৻* > ৺)৻*ಂ౿ಀ , ৻౿ ಘ৻ಀ 52 Static dielectric permittivity tensor • The mode oscillator strength tensor is defined as Sm,αα ′ = ! ∗ ∗ Z U ∑ καβ mq=0 (κβ ) κβ "! ′ ∗ U ( Z κβ ′ ′ ∑ κα β mq=0 ) κβ ′ " • The macroscopic static (low-frequency) dielectric permittivity tensor is calculated by adding the ionic contribution to the electronic dielectric permittivity tensor: εαα ′ (ω ) = 0 εαα ′ = ∞ εαα ′ ∞ εαα ′ CECAM Tutorial, Lyon, 12-16 may 2014 Sm,αα ′ 4π + 2 2 Ω0 ∑ m ωm − ω Sm,αα ′ 4π + Ω0 ∑ ωm2 m 53 LO-TO splitting • The macroscopic electric field that accompanies the collective atomic displacements at q → 0 can be treated separately: NA C̃κα ,κ ′ α ′ (q → 0) = C̃κα ,κ ′ α ′ (q = 0) + C̃κα ,κ ′ α ′ (q → 0) where the nonanalytical, direction-dependent term is: ! "! " ′ ′ ∗ ∗ q Z qβ Zκ ′ β ′ α ′ ∑ ∑ γ β β κβ α 4 π NA C̃κα ,κ ′ α ′ (q → 0) = Ω0 ∑β β ′ qβ εβ∞β ′ qβ′ • The transverse modes are common to both C ̃ matrices but the longitudinal ones may be different, the frequencies are related by ′ ′ qα Sm,αα ′ qα π 4 ∑ αα ωm2 (q → 0) = ωm2 (q = 0) + ∞ q′ Ω0 ∑αα ′ qα εαα ′ α CECAM Tutorial, Lyon, 12-16 may 2014 54 Example 1: Zircon (phonons) 6 1200 LDA PBE PBEsol AM05 WC HTBS 2 0 800 Relative error (%) Theoretical frequency (cm−1) 1000 4 600 400 2 4 6 8 LDA PBE PBEsol AM05 WC HTBS 10 200 12 14 0 0 200 400 600 800 1000 −1 Experimental frequency (cm ) CECAM Tutorial, Lyon, 12-16 may 2014 1200 0 200 400 600 800 1000 1200 1 Experimental frequency (cm ) 55 Example 1: Zircon (Born effective charges) Nominal: M → +4 Si → +4 O → -2 • M : anomalously large (esp. Z⊥) • Si : smaller deviations (↗ and ↘) → → PbZrO3, ZrO2 SiO2 (α-quartz or stishovite) → SiO2 stishovite or TiO2 rutile • O : strong anisotropy ↗ in the y-z plane (plane of the M-O bonds) (rem: ≠ from SiO2 α-quartz ↘ in the x direction Interpretation: • mixed ionic-covalent bonding where 2 ↘ components) • closer to stishovite than α-quartz in agreement with naive bond counting for O atoms CECAM Tutorial, Lyon, 12-16 may 2014 56 Example 1: Zircon (dielectric properties) * are the largest for the lowest and highest frequency modes • Sm and Zm • due to the frequency factor, it is the lowest frequency mode that contributes the most to ε0 * are smaller for HfSiO ← mass difference and Born effective charges • Sm and Zm 4 • this effect can be compensated by a lower frequency for hafnon [e.g. A2u(1)] CECAM Tutorial, Lyon, 12-16 may 2014 57 Example 2: Copper (thermodynamics) 0 0.5 0 0 (b) 200 400 800 600 1000 T (K) 600 800 1000 LDA PBE PBEsol AM05 WC HTBS Expt. B0 (MBar) ) 1.6 1 5 (10 400 T (K) LDA PBE PBEsol AM05 WC HTBS Expt. 2 200 (c) 1.8 3 2.5 0 1.5 1 1.4 1.2 0.5 1 0 0 200 400 800 600 1000 0 200 400 (c) 1.8 800 1000 300 LDA PBE PBEsol AM05 WC HTBS Expt. 250 Frequency (cm-1 ) 1.6 B0 (MBar) 600 T (K) T (K) 1.4 1.2 200 150 100 50 0 1 0 200 400 X Γ 600 W 800 (K) CECAM Tutorial, Lyon, T12-16 may 2014 L Γ 1000 K X 58 • • • • • • • ! ! S. Baroni, P. Giannozzi & A. Testa, Phys. Rev. Lett. 58, 1861 (1987) X. Gonze & J.-P. Vigneron, Phys. Rev. B 39, 13120 (1989) X. Gonze, Phys. Rev. A 52 , 1096 (1995) S. de Gironcoli, Phys. Rev. B 51, 6773 (1995) X. Gonze, Phys. Rev. B. 55, 10337 (1997) X. Gonze & C. Lee, Phys. Rev. B. 55, 10355 (1997) S. Baroni, S. de Gironcoli, A. Dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001) CECAM Tutorial, Lyon, 12-16 may 2014 59